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a b s t r a c t

This paper studies the stability of Kalman filtering over a network subject to random packet losses,
which aremodeled by a time-homogeneous ergodicMarkov process. For second-order systems, necessary
and sufficient conditions for stability of the mean estimation error covariance matrices are derived by
taking into account the system structure. While for certain classes of higher-order systems, necessary
and sufficient conditions are also provided to ensure stability of the mean estimation error covariance
matrices. All stability criteria are expressed by simple inequalities in terms of the largest eigenvalue of the
open loop matrix and transition probabilities of the Markov process. Their implications and relationships
with related results in the literature are discussed.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

This work is a contribution to the stability analysis of Kalman
filtering with random packet losses. Amotivating example is given
by a sensor and an estimator/controller communicating over a
wireless channel for which the quality of the communication
channel varies over time because of random fading and congestion.
This happens in resource limited wireless sensor networks where
communication between devices are power constrained and
therefore limited in range and reliability.

Kalman filtering is of great importance in networked systems
due to its various applications ranging from tracking and detection
to control. Recently, much attention has been paid to the stability
analysis of Kalman filtering with intermittent observations; see
Hespanha, Naghshtabrizi, and Xu (2007); Schenato, Sinopoli,
Franceschetti, Poolla, and Sastry (2007) and the references therein.
The pioneering work (Sinopoli et al., 2004) studies the optimal
state estimation problem for a discrete-time linear stochastic
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system under the assumption that the raw measurements of the
system are randomly dropped. Bymodeling the packet loss process
as an independent and identically distributed (i.i.d.) Bernoulli
process, they prove the existence of a critical packet loss rate above
which the mean state estimation error covariance matrices will
diverge. However, they are unable to exactly quantify the critical
loss rate for general systems except providing its lower and upper
bounds, which are attainable under some special cases, e.g., the
lower bound is tight if the observation matrix is invertible. A
less restrictive condition is provided by Plarre and Bullo (2009),
where invertibility on the observable subspace is required. Mo and
Sinopoli (2010) explicitly characterize the loss rate for awider class
of systems, including second-order systems and the so-called non-
degenerate higher-order systems. A remarkable discovery by Mo
and Sinopoli (2010) is that there are counterexamples of second-
order systems for which the lower bound given by Sinopoli et al.
(2004) is not tight.

Since the communication channel state generally does not
vary independently in time, an i.i.d. process is inadequate to
describe the packet loss process. To capture the possible temporal
correlation of network conditions, a time-homogeneous binary
Markov process is adopted to model the packet loss process by
Huang and Dey (2007). This is usually called the Gilbert–Elliott
channelmodel. Under i.i.d. packet losses, stability of the estimation
error covariance matrices in the mean sense may be effectively
analyzed by amodified discrete-time Riccati recursion. In contrast,
this approach is no longer feasible for the Markovian packet loss
model, rendering the stability analysis more challenging. Due to
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the temporal correlation of the Markov process, the generalization
of the results of Mo and Sinopoli (2010) to the Markov packet
loss model is far from trivial. In Huang and Dey (2007), an
interesting notion of peak covariance stability in the mean sense
is introduced. They give a sufficient condition for this stability
notion for vector systems, which is also necessary for systemswith
observation index one. A less conservative sufficient condition
for the peak covariance stability under some cases is provided
by Xie and Xie (2008). However, these works do not exploit
the system structure and fail to offer necessary and sufficient
conditions for the peak covariance stability, except for the special
systemswith observation index one. In addition, they are unable to
characterize the relationship between the peak covariance stability
and the usual stability of the estimation error covariance matrices
for vector systems. Thus, the usual stability condition for the
mean estimation error covariance matrices of vector systems with
Markovian packet losses is yet to be known.

Note that if the sensor is allowed to equip with computing
power and memory to preprocess the measurements, the effects
of i.i.d. packet losses on the mean square stability of the optimal
state estimate can be significantly reduced (Schenato, 2008).
Under the same assumption on the sensor’s capability, the
stabilizability of a discrete-time linear time-invariant systemusing
two remote sensors over packet dropping channels is analyzed
by Gupta, Martins, and Baras (2009). Moreover, there are some
other probabilistic descriptions to examine the behavior of the
estimation error covariance matrices, which are stochastic due
to random packet losses. In Shi, Epstein, and Murray (2010),
they study the performance of Kalman filtering by considering a
different metric P(Pk ≤ M), i.e., the probability that the one-step
prediction error covariance matrix Pk is bounded by a given
positive definite matrix M , which is related to finding the
cumulative distribution of Pk. This probability could be exactly
computed for scalar systems and only has lower and upper bounds
for vector systems (Shi et al., 2010). Another performance metric
called the stochastic boundedness is introduced by Kar, Sinopoli,
andMoura (2010) for an i.i.d. packet lossmodel. It isworth pointing
out that under different metrics or scenarios, the effects of random
packet losses on performance would be substantially different.
Other related works include Censi (2011); Dey, Leong, and Evans
(2009); Epstein, Shi, Tiwari, and Murray (2008); Gupta, Dana,
Hespanha, Murray, and Hassibi (2009); Hu and Yan (2007); Kluge,
Reif, and Brokate (2010); Mostofi and Murray (2009); Sun, Xie,
Xiao, and Soh (2008); Trivellato and Benvenuto (2010); Xiao, Xie,
and Fu (2009).

The present work continues to study the stability of Kalman
filtering with Markovian packet losses in transmitting the raw
measurements. Instead of directly analyzing a random Riccati
recursion as in Huang and Dey (2007), the system structure is
exploited to investigate the effects of Markovian packet loss on
stability. Motivated by You and Xie (2011), we first investigate
the stability of the estimation error covariance matrices at packet
reception times and introduce the notion of stability in stopping
times. It turns out that this problem is equivalent to the stability
of Kalman filtering for a stochastically time-varying linear system,
whose studies can be traced back to Bougerol (1993). However,
the framework by Bougerol (1993) is quite general and not
suitable to quantify the effects of Markovian packet losses on
stability. Another stability notion is the usual stability of the
mean state estimation error covariance matrices in the literature,
which is referred to as stability in sampling times for comparison.
Although the first stability notion (in stopping times) deals with
stability of a randomly down-sampled system obtained by down-
sampling the discrete-time system at the stopping times, both
the aforementioned stability notions are shown to be equivalent.
Thus, themean estimation error covariancematrices for the down-
sampled system and the original discrete-time system are with
wk
yk

vk
0 or 1

x

Fig. 1. Network configuration.

the same stability property. Apart from the theoretical merit on its
own, this result allows us to relatively easily analyze the stability of
the estimation error covariance matrices because the first stability
notion is generally easier to study.

For second-order systems, necessary and sufficient conditions
for the stability of the mean estimation error covariance matrices
under different system structures are derived, respectively. For
certain classes of higher-order systems, including that each
unstable eigenvalue of the open-loop matrix associates with only
one Jordan block and has a distinct magnitude and also non-
degenerate systems (Mo & Sinopoli, 2010), a simple necessary and
sufficient condition for the stability of the mean estimation error
covariance matrices is obtained. All stability criteria of this work
are described by simple strict inequalities in terms of the largest
eigenvalue of the open loop matrix and transition probabilities of
the Markov process, rather than an infinite sum as in Huang and
Dey (2007) and Xie and Xie (2008). Thus, the effect of the Markov
packet losses and the largest unstable eigenvalue on stability could
be easily understood for the above systems. However, based on
the existing results such as Huang and Dey (2007) and Xie and Xie
(2008), it is unclear whether the stability condition relies on other
unstable eigenvalues of the open-loop matrix, besides the largest
one.

The rest of the paper is organized as follows. The problemunder
consideration is precisely formulated in Section 2, where two
stability notions are introduced. In Section 3, a necessary condition
for both stability notions of vector systems is derived, from which
the equivalence between the two stability notions is established.
Necessary and sufficient conditions for the stability of the mean
estimation error covariance matrices of second-order systems
is provided in Section 4. The necessary condition presented in
Section 3 is proved to be sufficient for certain classes of higher-
order systems in Section 5. Illustrative examples are presented in
Section 6. Concluding remarks are drawn in Section 7. To improve
the readability of the paper, most of proofs aremoved to Appendix.
A preliminary version of this paper on the scalar measurement can
be found in You, Fu, and Xie (2011).

Notation: For a symmetric matrix M , M ≥ 0 (M > 0) means
that thematrix is positive semi-definite (definite), and the relation
M1 ≥ M2 for symmetric matrices means that M1 − M2 ≥ 0. The
sets of nonnegative integers, real numbers and complex numbers
are denoted by N,R and C, respectively. tr(M) represents the
summation of all the diagonal elements ofM while det(M) returns
its determinant. ‖ · ‖ and ρ(·) denote the spectral norm and the
spectral radius of a matrix, respectively.

2. Problem formulation

Consider a discrete-time stochastic linear system:
xk+1 = Axk + wk;

yk = Cxk + vk,
(1)

where xk ∈ Rn and yk ∈ Rm are the vector state andmeasurement.
wk ∈ Rn and vk ∈ Rm are white Gaussian noises with zero means
and covariance matrices Q > 0 and R > 0, respectively. C is of full
row rank, i.e., rank(C) = m ≤ n. The initial state x0 is a random
Gaussian vector of mean x̄0; and the covariance matrix P0 > 0.
Moreover,wk, vk and x0 are mutually independent.

We focus on a network environment where the raw measure-
ments of the system are transmitted to an estimator via an unre-
liable communication channel; see Fig. 1. Due to random fading



K. You et al. / Automatica 47 (2011) 2647–2657 2649
and/or congestion of the communication channel, packets may be
lost while in transit through the channel. Different from You and
Xie (2010, 2011), the present work ignores other effects such as
quantization, transmission errors and data delays. The packet loss
process is modeled by a time-homogeneous binary Markov pro-
cess {γk}k≥0, which is more general and realistic than the i.i.d. case
studied by Sinopoli et al. (2004) due to possible temporal correla-
tion of network conditions. Furthermore, assume that {γk}k≥0 does
not contain any information of the system. Let γk = 1 indicate that
the packet containing the information of yk has been successfully
delivered to the estimator while γk = 0 corresponds to the loss of
the packet. In addition, the Markov process has a transition proba-
bility matrix given by

Π+
= (P{γk+1 = j|γk = i})i,j∈S =

[
1 − q q
p 1 − p

]
, (2)

where S , {0, 1} is the state space of the Markov process. To avoid
any trivial case, the failure rate p and recovery rate q are assumed
to be strictly positive and less than 1, i.e., 0 < p, q < 1, so that
the Markov process {γk}k≥0 is ergodic. Obviously, a smaller value
of p and a larger value of q indicate a more reliable communication
link.

Denote the common probability space by (Σ,F ,O) for all
random variables in the paper, whereΩ is the space of elementary
events, F is the underlying σ -field on Ω , and P is a probability
measure on F . Let Fk , σ(yiγi, γi, i ≤ k) ⊂ F be an increasing
sequence of σ -fields generated by the information received by the
estimator up to time k, i.e., all events that are generated by the
random variables {yiγi, γi, i ≤ k}. In the sequel, the terminology
of almost everywhere (abbreviated as a.e.) is always with
respect to (w.r.t.) the probability measure P. Associated with
the Markov process {γk}k≥0, define a sequence of stopping times
{tk}k≥0 adapted to the Markov process {γk}k≥0 as follows:

t0 = 0,
t1 = inf{k|k ≥ 1, γk = 1},
t2 = inf{k|k > t1, γk = 1},
...
...

tk = inf{k|k > tk−1, γk = 1}. (3)

By the ergodic property of the Markov process {γk}k≥0, tk is
finite a.e. for any fixed k (Meyn, Tweedie, & Hibey, 1996). Thus, the
integer valued sojourn times {τk}k>0 to denote the time duration
between two successive packet received times are well-defined
a.e., where

τk , tk − tk−1 > 0. (4)

With regard to the probability distribution of sojourn times {τk}k>0,
we recall the following interesting result.

Lemma 1 (Xie and Xie (2009)). Conditioned on the event that
{γ0 = 1}, the sojourn times {τk}k>0 are independent and identically
distributed. Furthermore, the conditional distribution of τ1 is
explicitly expressed as

P{τ1 = i|γ0 = 1} =


1 − p, i = 1;
pq(1 − q)i−2, i > 1. (5)

As in You and Xie (2011), we shall use the above lemma to es-
tablish our results. To this purpose, denote the state estimate and
one-step prediction corresponding to the minimum mean square
error estimator by x̂k|k = E[xk|Fk] and x̂k+1|k = E[xk+1|Fk], re-
spectively. The associated estimation error covariancematrices are
defined by Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)H |Fk] and Pk+1|k = E
[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)

H
|Fk], where AH is the conjugate
transpose of A. From Sinopoli et al. (2004), it is known that the
Kalman filter is still optimal. That is, the following recursions are
in force:

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1); (6)

Pk|k = Pk|k−1 − γkKkCPk|k−1, (7)

where Kk = Pk|k−1CH(CPk|k−1CH
+ R)−1. In addition, the time up-

date equations continue to hold: x̂k+1|k = Ax̂k|k, Pk+1|k = APk|kAH
+

Q and x̂0|−1 = x̄0, P0|−1 = P0. For simplicity of exposition, let
Pk+1 = Pk+1|k and Mk = Ptk+1. To analyze the behavior of the
estimation error covariance matrices, we introduce two types of
stability.

Definition 1. We say that the mean state estimation error
covariance matrices are stable in sampling times if supk∈N E[Pk] <
∞

2 while they are stable in stopping times if supk∈N E[Mk] < ∞

for any P0 > 0, where the expectation is taken w.r.t. packet loss
process {γk}k≥0 with γ0 being any Bernoulli random variable.

Here E[Pk] represents the mean of one-step prediction error
covariance at the sampling time whereas E[Mk] denotes the mean
of one-step prediction error covariance at the stopping time. To
some extent, the former is time-driven while the latter is event-
driven. Although the two stability notions have differentmeanings,
they will be shown to be equivalent in Section 3. Our objective
of this paper is to establish the equivalence between the two
stability notions and derive necessary and sufficient conditions for
stability. For scalar systems, the stability in sampling times has
been discussed by Huang and Dey (2007) by analyzing a random
Riccati recursion. Their approach is quite conservative for vector
systems as they leave the system structure unexplored. In this
paper, a completely different method is developed to establish the
main results.

In consideration of Theorems 3 and 8 ofMo and Sinopoli (2010),
there is no loss of generality to assume that:

A1: P0,Q , R are all identity matrices with compatible dimensions.
A2: All the eigenvalues of A lie outside the unit circle.
A3: (C, A) is observable.

3. Equivalence of the two stability notions

It is generically difficult to directly study the notion of stability
in sampling times (Huang & Dey, 2007). However, the two stability
notions will be shown to be equivalent in this section.

For any i ∈ S, denote by Ei
[·] the mathematical expectation

operator conditioned on the event that {γ0 = i}.

Lemma 2. The following statements hold:

(a) supk∈N E[Pk] < ∞ if and only if supk∈N E1
[Pk] < ∞ and supk∈N

E0
[Pk] < ∞.

(b) supk∈N E[Mk] < ∞ if and only if supk∈N E1
[Mk] < ∞ and

supk∈N E0
[Mk] < ∞.

Proof. (a) ‘‘⇐:’’ It is obvious since E[Pk] ≤ E1
[Pk] + E0

[Pk]. ‘‘⇒:’’
Let P{γ0 = 1} = P{γ0 = 0} = 1/2. Note that Pk ≥ 0; then
E[Pk] ≥ E1

[Pk]/2 and E[Pk] ≥ E0
[Pk]/2. (b) Similar to (a). �

Theorem 3. Consider system (1) satisfying A1–A3 and the packet
loss process of the measurements governed by a time-homogeneous
Markov process with transition probability matrix (2). Then, a
necessary condition for supk∈N E[Mk] < ∞ is that ρ(A)2(1−q) < 1.

2 This notation means that there is a positive definite P̄ such that E[Pk] < P̄ for
all k ∈ N. A similar meaning applies to the notation supk∈N E[Mk] < ∞.



2650 K. You et al. / Automatica 47 (2011) 2647–2657
Proof. Define a linear operator g(·) by g(P) = APAH
+ Q and the

composite function g ◦ g(·) by g ◦ g(P) = g(g(P)) = g2(P). A
similar definition applies to the notation gk(·) for all k ≥ 1. Since
tk is a stopping time, Ftk , σ(yiγi, γi, i ≤ tk) is a well defined σ -
field. Noting that Pk ≥ Q = I for all k ∈ N and Mk = Ptk+1, it
immediately follows from the property of conditional expectation
that

E[Mk+1] = E

E[Mk+1|Ftk ]


= E [gτk+1(Mk)] ≥ E[gτk+1(Q )]

= E


τk+1−
j=0

Aj(Aj)H


, (8)

where the first inequality is due to that g(·) is a monotonically
increasing function. Let J = diag(J1, . . . , Jd) ∈ Cn×n be the Jordan
canonical form of A, where Ji ∈ Cni×ni corresponds to the eigen-
value λi. That is, there exists a nonsingular matrix U ∈ Rn×n such
that A = UJU−1. Then, it follows that
τk+1−
j=0

Aj(Aj)H = U
τk+1−
j=0

J jU−1U−H(J j)HUH

≥ λmin(U−1U−H)U
τk+1−
j=0

J j(J j)HUH , (9)

whereλmin(U−1U−H) > 0 is the smallest eigenvalue ofU−1U−H . In
view of (8) and (9) and Lemma 2, it is clear that supk∈N E[Mk+1] <
∞ implies that

sup
k∈N

E1


τk+1−
j=0

J j(J j)H

< ∞. (10)

Note that the (ni, ni)-th element of E1
[
∑τk+1

j=0 J ji (J
j
i )

H
] is computed

by E1
[
∑τk+1

j=0 |λi|
2j
] =

|λ2i |E
1
[|λi|

2τ1 ]−1
|λi|2−1

. By (10) and the equivalence
property of norms on a finite-dimensional vector space, it follows

that |λ2i |E
1
[|λi|

2τ1 ]−1
|λi|2−1

< ∞. Together with Lemma 1, we have that

|λi|
2(1 − q) < 1. Since λi is an arbitrary eigenvalue of A, this

completes the proof. �

Theorem 4. Consider system (1) satisfying A1–A3 and the packet
loss process of the measurements governed by a time-homogeneous
Markov process with transition probability matrix (2). Then, a
necessary condition for supk∈N E[Pk] < ∞ is that ρ(A)2(1− q) < 1.
Proof. Since Pk − PkCH(CPkCH

+ R)−1CPk ≥ 0 (see Xie and Xie
(2008)), we obtain that for any k > 3,

Pk+1 ≥ (1 − γk)APkAH
+ Q

≥

k−
j=1


k∏
i=j

(1 − γi)


Ak−j(Ak−j)H , (11)

where the second inequality is due to that Q = I by A1. Denote
π i
j = P{γj = i}, i ∈ {0, 1} and πj = [π0

j , π
1
j ]. By (2), we have that

πj+1 = πjΠ
+ for any j ∈ N. Together with 0 < p, q < 1, one can

test that for any finite j > 1, π i
j > 0 for all i ∈ {0, 1}. In addition,

the Markov process {γk}k∈N has a unique stationary distribution
[π0, π1

], i.e., limj→∞ π
i
j = π i, i ∈ S. By (2), we further obtain that

π0
=

p
p+q > 0. Then, it follows that π0 , infj≥1 π

0
j > 0, which

further implies that for all j ≥ 2,

E


k∏
i=j

(1 − γi)


≥ E


k∏
i=j

(1 − γi)|γj−1 = 0


P(γj−1 = 0)

≥ π0(1 − q)k−j. (12)
In view of (11), we obtain that E[Pk+1] ≥ π0∑k−2
j=0 (1 − q)jAj(Aj)H .

By following a similar line of the proof in Theorem3, it immediately
yields that ρ(A)2(1 − q) < 1. �

Remark 5. Let q̄ = max{q, 1 − p}, Xie and Xie (2008) provides a
necessary condition, i.e., ρ2(A)(1 − q̄) < 1 for supk∈N E[Pk] < ∞,
which is obviously weaker than Theorem 4 if p + q < 1.

By the above results, the equivalence between the two stability
notions is established in the following result, whose proof is given
in Appendix.

Theorem 6. Consider system (1) satisfying A1–A3 and the packet
loss process of the measurements governed by a time-homogeneous
Markov process with transition probability matrix (2). Then, the
notions of stability in stopping times and stability in sampling times
are equivalent.

Thus, there is no loss of generality for the rest of the paper to
focus on the stability in stopping times.

4. Second-order systems

Consider second-order systems with the following structure:

A4: A = diag(λ1, λ2) and rank(C) = 1, where λ2 = λ1 exp( 2πrd i),
i2 = −1, d > r ≥ 1 and r, d ∈ N are irreducible.

Under A4, it is easy to verify that (C, Ad) is not an observable
pair. This essentially indicates that the measurements received at
times kd for all k ∈ N do not help to reduce the estimation error,
which will become clear shortly. Thus, it is intuitive that with a
smaller d, it may require a stronger condition to ensure stability
of the mean estimation error covariance matrices as observability
may be lost relatively easily, which is confirmed in Theorem 7.

Theorem 7. Consider second-order system (1) satisfying A1–A3 and
the packet loss process of the measurements governed by a time-
homogeneous Markov process with transition probability matrix (2).
Then,

(a) if the pair (C, A) satisfies A4, a necessary and sufficient condition
for supk∈N E[Mk] < ∞ is that (1+

pq
(1−q)2

)(ρ(A)2(1− q))d < 1;
(b) otherwise, a necessary and sufficient condition for supk∈N E

[Mk] < ∞ is that ρ(A)2(1 − q) < 1.

The proof is delivered in Appendix. By Theorem 6, the results
in Theorem 7 apply to the notion of stability in sampling times as
well. Some remarks are included below.

Remark 8. Since d ≥ 2, the function (1+
pq

(1−q)2
)(1−q)d is decreas-

ing w.r.t. q ∈ (0, 1) but increasing w.r.t. p ∈ (0, 1). For a commu-
nication link with a smaller p and a larger q, which corresponds
to a more reliable network, a more unstable system can be toler-
atedwithout losing stability of the estimation error covariancema-
trices. This is consistent with our intuition.

Remark 9. If the conjugate complex eigenvalues satisfy that λ2 =

λ1 exp(2πϕi), where ϕ is an irrational number, A4 does not hold. A
necessary and sufficient condition for both the types of stability is
that |λ1|2(1−q) < 1. Under this situation, the pair (C, Ak) remains
observable for all k ≥ 1. Then, the failure rate p becomes immate-
rial. In Section 5, we show that even for certain classes of higher-
order systemswith scalar measurements, the failure rate is of little
importance for stability as well.

Remark 10. In Huang and Dey (2007), they establish the equiva-
lence of the usual stability (stability in sampling times) and the so-
called peak covariance stability of the estimation error covariance
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matrices only for scalar systems. But for vector systems, they give a
conservative sufficient condition for the peak covariance stability
and do not consider the usual stability.

Remark 11. If the packet loss process is an i.i.d. process, corre-
sponding to q = 1 − p in the transition probability matrix of the
Markov process, the stability criterion under A4 in Theorem 7 is
reduced to that q > 1 − ρ(A)−

2d
d−1 , which recovers the result by

Mo and Sinopoli (2010). Note that under i.i.d. packet losses, a lower
bound for the critical packet loss rate given by Sinopoli et al. (2004)
is interpreted as q > 1 − ρ(A)−2, which is obviously not tight for
systems satisfying A4.

5. Higher-order systems

Under an i.i.d. packet loss assumption, an explicit characteri-
zation of necessary and sufficient conditions for stability of filter-
ing error covariance for general vector linear systems is known
to be extremely challenging (Mo & Sinopoli, 2010; Plarre & Bullo,
2009; Sinopoli et al., 2004). Fortunately, for certain classes of
higher-order systems, where each stable eigenvalue of A−1 asso-
ciates with only one Jordan block and has a distinct magnitude or
(C, A) is a non-degenerate pair, it is possible to give a simple nec-
essary and sufficient condition for stability of the estimation er-
ror covariance matrices. This section shows that the condition in
Theorem 3 is also sufficient under certain classes of higher-order
systems, whose proofs are given in Appendix. To this aim, some
definitions introduced by Mo and Sinopoli (2010) are adopted.

Definition 2. The pair (C, A) is one step observable if C is of full
column rank.

Definition 3. Assume that (C, A) is in diagonal standard form,
i.e., A = diag(λ1, . . . , λn) and C = [C1, . . . , Cn]. An equi-block
of the system is defined as the subsystem corresponding to the
block (CI, AI), where I = {i1, . . . , il} ⊂ {1, . . . , n} is an index
set such that |λi1 | = · · · = |λil | and AI = diag(λi1 , . . . , λil),
CI = [Ci1 , . . . , Cil ].

Definition 4. The system (C, A) is non-degenerate if every equi-
block of the system is one step observable. Conversely, the system
(C, A) is degenerate if there exists an equi-block of the system that
is not one step observable.

The concept of a non-degenerate system is weaker than that of
a one step observable system but stronger than an observable one.
A5: (C, A) is a non-degenerate pair.

Theorem 12. Consider system (1) satisfying A1–A3, A5 and the
packet loss process of the measurements governed by a time-
homogeneous Markov process with transition probability matrix (2).
Then, a necessary and sufficient condition for supk∈N E[Mk] < ∞ is
that ρ(A)2(1 − q) < 1.

It should be noted that Theorem 7 of Mo and Sinopoli (2010)
provides a necessary and sufficient condition for stability in
sampling times for non-degenerate systems under i.i.d. packet
losses. Their results indicate that the lower bound for the critical
packet loss rate by Sinopoli et al. (2004) is tight for non-degenerate
systems. While in Theorem 12, we give a necessary and sufficient
condition for stability of non-degenerate systemsunderMarkovian
packet losses. Next, the necessary condition in Theorem3 is proved
be sufficient for another class of higher-order systems with the
following structure.
A6: A−1

= diag(J1, . . . , Jm) and rank(C) = 1, where Ji = λ−1
i Ii +

Ni ∈ Rni×ni and |λi| > |λi+1|. Ii is an identity matrix with a
compatible dimension and the (j, k)-th element of Ni is 1 if
k = j + 1 and 0, otherwise.
Fig. 2. A sample path with q = 0.8 and p = 0.1.

Fig. 3. A sample path with q = 0.6 and p = 0.1.

Theorem 13. Consider system (1) satisfying A1–A3, A6 and the
packet loss process of the measurements governed by a time-
homogeneous Markov process with transition probability matrix (2).
Then, a necessary and sufficient condition for supk∈N E[Mk] < ∞ is
that ρ(A)2(1 − q) < 1.

Remark 14. Note that except for the case that A has n eigenvalues
and each of them iswith a distinctmagnitude, Assumptions A5 and
A6 define two disjoint classes of higher-order systems.

6. Illustrative example

Example 1. Let a second-order system be specified by

A =

[
1.5 0
0 −1.5

]
and C = [1 1]. (13)

In order to achieve stability, the failure rate p and recovery rate
q should satisfy that


1 +

pq
(1−q)2


(1 − q)2 < 1.5−4

= 0.198 by
Theorem 7. Two sample paths with different recovery rates are
shown in Figs. 2 and 3,which illustrate thatwith a smaller recovery
rate, the estimation error covariance matrices have more chances
to reach a high level, even diverge. Actually, it can be verified that
with q = 0.6 and p = 0.1, the inequality in Theorem 7 is violated.

Example 2. The results on higher-order systems in Section 5 are
applied to target tracking over a packet loss network. The dynamic
of target is expressed by Singer (1970)

xk+1 =

1 h h2

0 1 h
0 0 1

 xk + wk, (14)

where h is the sampling period and xk denotes the target state at
time kh, including the target position, speed and acceleration. The
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Fig. 4. A sample path with q = 0.2 and p = 0.5.

input random signalwk is an additive white Gaussian noise. When
the sampling period h is sufficiently small, the covariance of wk is
given by

Q = 2ασ 2
m

h5/20 h4/8 h3/6
h4/8 h3/3 h2/2
h3/6 h2/2 h

 , (15)

where σ 2
m is the variance of the target acceleration and α is the

reciprocal of the maneuver time constant. The sensor periodically
measures the target position with the following output equation:

yk = [1 0 0]xk + vk, (16)

where the measurement noise vk is an additive white noise with
variance R and independent ofwk. The initial state x0 is a Gaussian
random vector with zero mean and covariance as follows (Singer,
1970):

P0 =

 R R/h 0
R/h 2R/h2 0
0 0 0

 .
In this example, set h = 0.1s,α = 0.1,σ 2

m = 1 and R = 0.01. Al-
though here A is marginally unstable, a scaling on A can bemade as
in Theorem 8 of Mo and Sinopoli (2010). Jointly with Theorem 13,
it follows that q > 0 is sufficient to guarantee the stability of the
estimation error covariancematrices. Let q = 0.2 and p = 0.5, one
sample path for the tracking error variance of position is shown in
Fig. 4, which illustrates that the tracking task is fulfilled.

7. Conclusion

Wehave examined the stability of Kalman filteringwithMarko-
vian packet losses. To analyze the random estimation error co-
variance matrices, two stability notions have been introduced and
shown to be equivalent, which makes it relatively easier to ana-
lyze the stability of the estimation error covariance matrices. For
second-order systems, necessary and sufficient conditions were
obtained for ensuring stability with respect to different system
structures. For certain classes of higher-order systems, a necessary
and sufficient condition has been derived to guarantee the stability
of estimation error covariance matrices. All results can recover the
related results in the existing literature. Our future work is to find
the stability conditions for general vector systems.

Appendix

Since the Markov process is temporally correlated, the proof
would be more challenging than the case with i.i.d. packet losses.
Before proceeding further, we need some technical lemmas.
Lemma 15 (Solo (1991)). For any A ∈ Rn×n and ϵ > 0, it holds that

‖Ak
‖ ≤ Nηk, ∀k ≥ 0, (17)

where N =
√
n(1 +

2
ϵ
)n−1 and η = ρ(A)+ ϵ‖A‖.

If A is invertible, define φ(k, i) = Ati−tk if k > i and φ(k, i) = I
if k ≤ i. Let

Θk =

k−
i=0

γi(Ai−k)HCHCAi−k
+ (A−k)HA−k, (18)

Λk =

k−
j=0

φH(k, j)CHCφ(k, j)+ φH(k, 0)φ(k, 0), (19)

Ξk =

k−
j=0

φH(j, 0)CHCφ(j, 0)+ φH(k, 0)φ(k, 0), (20)

Ξ =

∞−
j=0

φH(j, 0)CHCφ(j, 0). (21)

Lemma 16. Under A1–A3, there exist strictly positive constant
numbers α and β such that for any k ∈ N,

αAΛ−1
k AH

≤ Mk ≤ βAΛ−1
k AH . (22)

Proof. By revising Lemma 2 inMo and Sinopoli (2010) and the fact
that γj = 0 if j ∉ {tk, k ∈ N}, the proof can be readily established
and the details are omitted. �

By (2), it is easy to check thatΞ is invertible a.e. Thus, except on
a set with zero probability, the inverse ofΞ is well defined. On this
exceptional set, we can set Ξ−1 to be any value, e.g., zero matrix,
as its value on a zero probability set does not affect the expectation
of E[Ξ−1

].

Lemma 17. Under A1–A3, there exist strictly positive constant
numbers α̃ and β̃ such that

α̃AE1
[Ξ−1

]AH
≤ sup

k∈N
E1

[Mk] ≤ β̃AE1
[Ξ−1

]AH . (23)

Proof. By Lemma 1, it is clear that conditioned on the event {γ0 =

1}, the following random vectors are with an identical distribution,
e.g., (τk, τk +τk−1, . . . , τk +· · ·+τ1)

d
= (τ1, τ1 +τ2, . . . , τ1 +· · ·+

τk), where d
= means equal in distribution on both its sides. Thus,

it yields that E1
[Λ−1

k ] = E1
[Ξ−1

k ] by (19) and (20). Jointly with
Lemma 16, it follows that

E1
[Mk] ≤ βAE1

[Ξ−1
k ]AH . (24)

Under A2, it is possible to select a positive ϵ < 1−ρ(A−1)
‖A−1‖

and η =

ρ(A−1)+ ϵ‖A−1
‖ < 1; then it follows from Lemma 15 that for any

k ∈ N,
∞−

j=k+1

φH(j, k)CHCφ(j, k) ≤ ‖C‖
2

∞−
j=k+1

‖A(tj−tk)‖2I

≤ N‖C‖
2

∞−
j=k+1

η2(tk−tj)I ≤
N‖C‖

2

1 − η2
I , β0I, (25)

where the last inequality is due to that τk ≥ 1 for all k ∈ N. Let
β1 = min(1, β−1

0 ) and β̃ = ββ1; we further obtain that Ξk

≥
∑k

j=0 φ
H(j, 0)CHCφ(j, 0) + β−1

0 φH(k, 0)(
∑

∞

j=k+1 φ
H(j, k)CHCφ

(j, k))φ(k, 0) ≥ β1Ξ , where the second inequality is due to (25).
Then, the right hand side of the inequality of (23) trivially follows
from (24). Similar to (24), the left hand side of (23) can be shown
by using Fatou’s Lemma (Ash & Doléans-Dade, 2000). �
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A.1. Proof of Theorem 6

Proof. On one hand, assume that supk∈N E[Pk] < ∞. By (2), the
Markov process has a unique stationary distribution given as
follows,

P{γ∞ = i} = lim
k→∞

P{γk = i} =
p1−iqi

p + q
, ∀i ∈ S. (26)

Consider a special case that the Markov process starts at its
stationary distribution, i.e., P{γ0 = i} =

p1−iqi

p+q for all i ∈ S. Then,
the distribution of γk is the same as that of γ0. Under this case, it
can be verified that

Π−
= (P{γk = j|γk+1 = i})i,j∈S =

[
1 − q q
p 1 − p

]
. (27)

Given a measurable function f : Rk+1
→ Rn×n, we obtain that

E[f (γk, . . . , γ0)]

=

−
ij∈S,0≤j≤k

f (ik, . . . , i0)P{γk = ik, . . . , γ0 = i0}

=

−
ij∈S,0≤j≤k

f (ik, . . . , i0)P{γ0 = i0}

×

k−1∏
j=0

P{γj+1 = ij+1|γj = ij} (28)

=

−
ij∈S,0≤j≤k

f (ik, . . . , i0)P{γk = i0}

×

k−1∏
j=0

P{γj = ij+1|γj+1 = ij} (29)

= E[f (γ0, . . . , γk)] = E[f (γ1, . . . , γk+1)], (30)

where (28) follows from theMarkov property of {γk}k≥0 while (29)
is due to (2), (27) and that the distribution of γk is the same as that
of γ0. The last equality is due to the strict stationarity of theMarkov
process starting from its stationary distribution. By Lemma 3 of
Mo and Sinopoli (2010), there exists a positive constant α1 such
that Pk+1 ≥ α1(

∑k+1
i=1 γk+1−i(A−i)HCHCA−i

+ (A−k−1)HA−k−1)−1.
Together with (30), we have that

E[Pk+1] ≥ α1E


k+1−
i=1

γi(A−i)HCHCA−i
+ (A−k−1)HA−k−1

−1

≥ α1E


∞−
i=1

γi(A−i)HCHCA−i
+ (A−k−1)HA−k−1

−1

. (31)

Under A2, the term in (31) is decreasing w.r.t. k, which, jointly
withmonotone convergence theorem (Ash&Doléans-Dade, 2000),
implies that supk∈N E[Pk] ≥ α1E[(

∑
∞

i=1 γi(A
−i)HCHCA−i)−1

] ≥

α1E[Ξ−1
], where the last equality follows from the definition of

Ξ in (21). Define a stopping time µ as the time at which the first
packet is received, i.e.,

µ = inf{k|γk = 1,∀k ∈ N}.

Since µ is a stopping time adapted to the Markov process
{γk}k≥0, we know that Gµ , σ(γ0, . . . , γµ) is a well defined σ -
field. Furthermore, it follows from the property of conditional
expectation that
E[Ξ−1
] = E

Aµ


∞−
j=0

γj+µ(A−j)HCHCA−j

−1

(Aµ)H



= E

AµE

 ∞−
j=0

γj+µ(A−j)HCHCA−j

−1

|Gµ

 (Aµ)H
 .

By (2), it is clear that γk is a strong Markov process (Meyn et al.,
1996). This implies that

E

 ∞−
j=0

γj+µ(A−j)HCHCA−j

−1

|Gµ



= E

 ∞−
j=0

γj+µ(A−j)HCHCA−j

−1

|γµ

 . (32)

By the definition ofµ, it yields that γµ = 1. Again, by the strong
Markov property, it follows that the transition probability matrix
of {γk+µ}k≥0 is the same as that of the original Markov process
{γk}k≥0. Combining the above, we obtain that supk∈N E[Pk] <
∞ implies E1

[Ξ−1
] = E[(

∑
∞

j=0 γj+µ(A
−j)HCHCA−j)−1

|γµ = 1]
< ∞. By Lemma 17, it follows that supk∈N E1

[Mk] < ∞. In view of
Theorem 4, it implies that ρ(A)2(1 − q) < 1. This implies that E0

[Aµ(Aµ)H ] = q
∑

∞

i=1 A
i(Ai)H(1−q)i−1 < ∞. Together with supk∈N

E1
[Mk] < ∞, it can be easily established that supk∈N E0

[Mk] < ∞.
By Lemma 2, we finally obtain that supk∈N E[Mk] < ∞.

On the other hand, assume that supk∈N E[Mk] < ∞. By
Lemmas 2 and 17, we obtain that E1

[Ξ−1
] < ∞. By Theorem 3,

it follows that ρ(A)2(1 − q) < 1. Then, one can easily show that
E0

[Ξ−1
] < ∞. As in the first part, consider the special case that

the Markov process {γk}k≥0 starts at its stationary distribution.
By Lemma 3 of Mo and Sinopoli (2010), there exists a positive
constant β2 such that Pk+1 ≤ β2(

∑k+1
i=1 γk+1−i(A−i)HCHCA−i

+

(A−k−1)HA−k−1)−1. Together with (30), we have that

E[Pk+1] ≤ β2E


k+1−
i=1

γi(A−i)HCHCA−i
+ (A−k−1)HA−k−1

−1

= β2AE[Θ−1
k ]AH , (33)

where the last equality is due to the strict stationarity of the
Markov process as it starts from its stationary distribution andΘk
is defined (18).

Similar to (25), there exists a positive number β3 such that∑
∞

j=1 γk+j(A−j)HCHCA−j
≤ β3I . Let β4 = min(1, β−1

3 ); we obtain
that Θk ≥ β4Ξ . By (33), it follows that E[Pk+1] ≤ β2β

−1
4 AE

[Ξ−1
]AH < β2β

−1
4 A(E0

[Ξ−1
] + E1

[Ξ−1
])AH < ∞ for all k ∈ N.

Note that hereE[Pk] is takenw.r.t. theMarkov process {γk}k≥0 with
the distribution of γ0 being the stationary distribution. Jointly with
(26), we obtain that E0

[Pk] < ∞ and E1
[Pk] < ∞ for all k ∈ N. By

Lemma 2, the proof is completed. �

A.2. Proof of Theorem 7

Proof. Define the integer valued set Sd = {kd|∀k ∈ N} and
θ =

∑
j∈Sd

P{τ1 = j|γ0 = 1}. Let Ek, k ≥ 1 be a sequence of events
defined as follows: E1 = {τ1 ∉ Sd}, Ek , {τ1 ∈ Sd, . . . , τk−1 ∈

Sd, τk ∉ Sd}, for all k ≥ 2. By Lemma 1, it is obvious that P(Ek|γ0 =

1) = θ k−1(1 − θ) and Ei


Ej = ∅ if i ≠ j. Let Fk =
k

j=1 Ej
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and F =


∞

j=1 Ej; it follows that Fk asymptotically increases to F
and P(F |γ0 = 1) = P(


∞

j=1 Ej|γ0 = 1) =
∑

∞

j=1 P(Ej|γ0 = 1)
= 1. Define the indicator function 1Fk(w) which is one if w ∈

Fk, otherwise 0. It is clear that 1Fk =
∑k

j=1 1Ej asymptotically
increases to 1F . Since P(F |γ0 = 1) = 1, then 1F = 1 a.e. on {γ0
= 1}. Together with the monotone convergence theorem (Ash &
Doléans-Dade, 2000), it follows that E1

[Ξ−1
] = E1

[Ξ−11F ] =

E1
[Ξ−1(limk→∞ 1Fk)] = limk→∞

∑k
j=1 E1

[Ξ−11Ej ].

Proof of part (a). ‘‘⇐:’’ By (21), it is clear that

E1
[Ξ−11Ej ] ≤ E1

 j−
i=j−1

φH(i, 0)CHCφ(i, 0)

−1

1Ej

 .
Define C = [c1, c2], we can compute that

j−
i=j−1

φH(i, 0)CHCφ(i, 0) = φH(j − 1, 0)
[
c1

c2

]

×


1 + λ

−2τj
1 1 + λ

−τj
1 λ

−τj
2

1 + λ
−τj
1 λ

−τj
2 1 + λ

−2τj
2

[
c1

c2

]
φ(j − 1, 0). (34)

Define Σj =

[
1 + λ

−2τj
1 1 + λ

−τj
1 λ

−τj
2

1 + λ
−τj
1 λ

−τj
2 1 + λ

−2τj
2

]
; then if τj ∉ Sd, it yields

that Σ−1
j ≤

4

λ
−2τj
1 +λ

−2τj
2 −2λ

−τj
1 λ

−τj
2

I ≤
2|λ1|

2τj

1−cos( 2πd )
I . Let c = max(c−2

1 ,

c−2
2 ); it follows from (34) that if τj ∉ Sd, then (

∑j
i=j−1 φ

H(i, 0)CHCφ

(i, 0))−1
≤

2c|λ1|
2tj

1−cos( 2πd )
I . Combining the above, we get that E1

[Ξ−1
]

≤
2cI

1−cos( 2πd )
limk→∞

∑k
j=1 E1

[|λ1|
2tj1Ej ]. By Lemma1, the following

statements are in force:

lim
k→∞

k−
j=1

E1
[|λ1|

2tj1Ej ]

= lim
k→∞

k−
j=1

E1


j−1∏
i=1

|λ1|
2τi1{τi∈Sd}


|λ1|

2τj1{τj∉Sd}



≤ lim
k→∞

E1
[|λ1|

2τ1 ]

k−
j=1

(E1
[|λ1|

2τ11{τ1∈Sd}])
j−1, (35)

which is finite if and only ifE1
[|λ1|

2τ1 ] < ∞ andE1
[|λ1|

2τ11{τ1∈Sd}]

< 1. After some algebraic manipulations, it is easy to verify that
(1+

pq
(1−q)2

)(|λ1|
2(1−q))d < 1 is equivalent to that |λ1|2(1−q) < 1

and pq
(1−q)2

(|λ1|
2(1−q))d

1−(|λ1|2(1−q))d
< 1. Together with Lemma 1, it implies

that E1
[|λ1|

2τ1 ] < ∞ and

E1
[|λ1|

2τ11{τ1∈Sd}] =
pq

(1 − q)2
(|λ1|

2(1 − q))d

1 − (|λ1|2(1 − q))d
< 1.

Then, we conclude that E1
[Ξ−1

] < ∞. By Lemma 17, it follows
that supk∈N E1

[Mk] < ∞. Observe that |λ1|
2(1 − q) < 1, it is easy

to show that supk∈N E0
[Mk] < ∞. By Lemma 2, we obtain that

supk∈N E[Mk] < ∞.
‘‘⇒:’’ Denote Ξ ′

k =
∑k

j=0 φ
H(j, 0)CHCφ(j, 0). In view of (25),

it is easy to derive that Ξ = Ξ ′

j−1 + φH(j, 0)(CHC +
∑

∞

i=j+1

φH(i, j)CHCφ(i, j))φ(j, 0) ≤ Ξ ′

j−1 + φH(j, 0)(CHC + β0I)φ(j, 0),
where β0 is given in (25). Let β−1

5 = max( 1
1−|λ1|−2 , 1, β0); it

follows that if 1Ej = 1, then
Ξ−1
≥ (Ξ ′

j−1 + φH(j, 0)(CHC + β0I)φ(j, 0))−1

=


j−1−
i=0

|λ1|
−2tiCHC + φH(j, 0)(CHC + β0I)φ(j, 0)

−1

≥


1

1 − |λ1|−2
CHC + φH(j, 0)(CHC + β0I)φ(j, 0)

−1

≥ β5(CHC + φH(j, 0)(CHC + I)φ(j, 0))−1. (36)

By the definition of the indicator function, it is clear that
Ξ−11Ej ≥ β5(CHC + φH(j, 0)(CHC + I)φ(j, 0))−11Ej . In view of
Lemma 17, then supk∈N E1

[Mk] < ∞ is equivalent to that E1
[Ξ−1

]

< ∞. This implies that limk→∞

∑k
j=1 E1

[(CHC + φH(j, 0)(CH

C + I)φ(j, 0))−11Ej ] < ∞. By some manipulations, there exists
a positive constant β6 > 0 such that tr((CHC + φH(j, 0)(CHC + I)
φ(j, 0))−11Ej) ≥ β6|λ1|

2tj1Ej . Thus, we obtain that

lim
k→∞

k−
j=1

E1
[|λ1|

2tj1Ej ] = E1
[|λ1|

21{τ1∉Sd}]

× lim
k→∞

k−
j=1

(E1
[|λ1|

21{τ1∈Sd}])
j−1 < ∞. (37)

Finally, as in the proof of sufficiency, one can easily derive that
(1 +

pq
(1−q)2

)(|λ1|
2(1 − q))d < 1.

Proof of part (b). ‘‘⇐:’’ Without loss of generality, only the
following cases need to be discussed.

(i) If rank(C) = 2 or A has two eigenvalues but with distinct
magnitudes, this indicates that (C, A) is a non-degenerate pair.
It is proved in Theorem 12.

(ii) If rank(C) = 1 and A contains two identical eigenvalues, it is
proved in Theorem 13. Note that for this case, A cannot be of
the form A = λ1I for it leads to the pair (C, A) unobservable.
Thus, A must contain exactly an elementary Jordan block.

(iii) If rank(C) = 1 and A = diag(λ1, λ2), where λ2 = λ1 exp
(2πϕi) and ϕ is an irrational number. Since ϕ is an irrational
number and the set of rational numbers is dense, we can
find a sequence of rational numbers {ϕk =

rk
dk

}k≥0 such that
limk→∞ ϕk = ϕ, the integers rk and dk are irreducible and dk
goes into infinity as k → ∞. Note that |λ1|

2(1 − q) < 1,
there must exist a positive integer, denoted by dk0 , such that
(1 +

pq
(1−q)2

)(|λ1|
2(1 − q))dk0 < 1. Then, the rest of the proof

follows similarly as the proof of sufficiency of part (a).

‘‘⇒:’’ It directly follows from Theorem 3. �

A.3. Proofs of results in Section 5

Lemma 18 (Moand Sinopoli (2010)). Let λ1, . . . , λn be the eigenval-
ues of A and |λ1| ≥ · · · ≥ |λn|. If the pair (C, A) satisfies A2–A3 and
A5, then the following inequality holds

lim sup
∆1,...,∆n→∞


n∑

j=1
(A−kj)HCHCA−kj

−1

n∏
j=1

|λj|
2∆j

≤ β7I, (38)

where β7 is a positive constant, k1 < k2 < · · · < kn ∈ N, ∆1 = k1,
∆j = kj − kj−1 for all j ∈ {2, . . . , n}.

Proof of Theorem 12. ‘‘⇐:’’ By Lemma 18, there exists a suffi-
ciently large∆ > 0 such that for all∆j > ∆, it holds
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
n−

j=1

(A−kj)HCHCA−kj

−1

≤ β7

n∏
j=1

|λj|
2∆j I.

Now, select kj = tij , where i1 > ∆, ij − ij−1 > ∆ for all j ∈

{2, . . . , n} and tij is a stopping time defined in (4). Then, it is
obvious that tij − tij−1 ≥ ij − ij−1 > ∆, which jointly with (21),
implies that

E1
[Ξ−1

]

≤ β7E1


n∏

j=1

|λj|
2∆j


I = β7E1


n∏

j=1

|λj|
2(tij−tij−1 )


I

= β7

n∏
j=1

(E1
[|λj|

2τ1 ])ij−ij−1 I < ∞, (39)

where the last equality is due to Lemma 1 and we use the fact that
|λ1|

2(1−q) < 1 in the last inequality. By Lemma 17, it follows that
supk∈N E1

[Mk] < ∞. Together with that |λ1|2(1−q) < 1, it is easy
to establish that supk∈N E0

[Mk] < ∞. The rest of the proof follows
from Lemma 2.
‘‘⇒:’’ It is proved in Theorem 3. �

The proof of Theorem13 ismuchmore involved and depends on
the following lemmas, which are devoted to establishing a similar
result as (38) under A2–A3 and A6.

Lemma 19. For any integer ki such that ki+1 > ki, let B ∈ Rn×n

be a matrix with its (i, j)-th element given by Bij =


ki
j−1


. Then, the

determinant of B is computed as

det(B) =
1

n−1∏
i=0

i!

∏
1≤j<i≤n

(ki − kj),

where i! is the factorial of a positive integer i.

Proof. It is clear that det(B) is an alternative, i.e., swapping the
i-th and j-th rows is the same as changing values of ki and kj.
Moreover, det(B) is an (n−1)-th ordermultivariate polynomial in
k1, . . . , kn. For example, det(B) is an (n − 1)-th order polynomial
in ki when all kj, j ≠ i are fixed. Combining these two properties,
we obtain that det(B) contains

∏
1≤j<i≤n(ki − kj) as a factor.

Furthermore,
∏

1≤j<i≤n(ki−kj) is the only factor of det(B), modulo
a constant αn, due to that

∏
1≤j<i≤n(ki − kj) and det(B) are both of

(n − 1)-th order, from which we get the following equality:

det(B) = αn

∏
1≤j<i≤n

(ki − kj). (40)

It remains to show that αn = 1/
∏n−1

i=0 i!. We do so by
mathematical induction. For n = 1, detB(k1) = 1. The factor∏

1≤j<i≤n(ki − kj) is void and 1/
∏n−1

i=0 i! = 1. Thus, α1 = 1, which
is correct.

Given n = m; suppose it holds that αm = 1/
∏m−1

i=0 i!. Then, for
n = m+1, let k1, . . . , km be fixed and km+1 go to infinity. Note that

limkm+1→∞


km+1

i


kim+1

=
1
i! ; we have

lim
km+1→∞

det(B(k1, . . . , km+1))

kmm+1

= lim
km+1→∞




km+1
m


det(B)

kmm+1
+

m−1−
i=0

O(kim+1)

kmm+1


= det(B(k1, . . . , km))/m!
=
1

m∏
i=0

i!

∏
1≤j<i≤m

(ki − kj), (41)

where O(kim+1) in the first equality means that limkm+1→∞

O(kim+1)

kim+1

< ∞. In light of (40), it yields that limkm+1→∞

det(B(k1,...,km+1))
kmm+1

=

αm+1
∏

1≤j<i≤m(ki − kj). Combining the above, we immediately
obtain that αm+1 = 1/

∏m
i=0 i!. Hence, αn = 1/

∏n−1
i=0 i! holds for

all n ≥ 1. �

Lemma 20. For any integer ki such that ki+1 > ki, let B ′
∈ Rn×n

be a matrix such that the (i, j)-th element is given by B ′

ij =
ki
j


. Then, the determinant of B ′ is computed as det(B ′) =

(
∏n

i=1
ki
i! )
∏

1≤j<i≤n(ki − kj).

Proof. Similar to the proof of Lemma 19, det(B ′) is an alternative
and n-th order multivariate polynomial. It is straightforward that
det(B ′) contains

∏n
i=1 ki as a factor. Thus, we further obtain that

det(B ′) contains
∏n

i=1 ki
∏

1≤j<i≤n(ki − kj) as a factor, which is
also the only factor containing ki. Hence, the following is in force:
det(B ′) = α′

n(
∏n

i=1 ki
∏

1≤j<i≤n(ki − kj)). Using similar induction
arguments as in Lemma 19, one can easily show that α′

n =

1/
∏n

i=1 i!. �

Lemma 21. Given any integer ki such that ki+1 > ki > n, let ∆1 =

k1,∆i = ki − ki−1 if i ≥ 2. Denote O({ki}n−1
1 ) = [CH , (A−k1)HCH ,

. . . , (A−kn−1)HCH
]
H and Dλ({ki}n−1

1 ) =
∏m
v=1 λ

−k(v)+ nv(nv−1)
2

v , where
k(1) = k1 +· · ·+kn1−1 and k(v) = kn1+···+nv−1 +· · ·+kn1+···+nv−1
if v ≥ 2. Under A2 and A6, we can asymptotically compute the
determinant of O({ki}n−1

1 ). In particular, there exists a multivariate
polynomialψ({ki}n−1

1 )w.r.t. {ki}n−1
1 and independent of λi such that

lim
∆1,...,∆n−1→∞

detO({ki}n−1
1 )

Dλ({ki}n−1
1 )ψ({ki}n−1

1 )
= 1.

Proof. Under A6, partition the observation matrix C in conformity
with the block diagonal matrix A. Let Ci = [ci1, . . . , cini ]; it is easy
to verify that

CiNk
i = [0, . . . , 0  

k

, ci1, . . . , ci(ni−k)]

for any k ≤ ni − 1. We further obtain that for any k > ni,

Ci(λ
−1
i Ii + Ni)

k

=


ci1
λki
,
ci2
λki

+


k
1


ci1
λk−1
i

, . . . ,

ni−1−
j=0


k
j


ci(ni−j)

λ
k−j
i



, λ−k
i

[
1,

k
1


, . . . ,


k

ni − 1

]Ci,

whereCi is defined as

Ci = diag(1, λi, . . . , λ
ni−1
i )


ci1 ci2 . . . cini

ci1 . . . ci(ni−1)
. . .

ci1


and det(Ci) = λ

ni(ni−1)/2
i cnii1 . By using the above property, it follows

that
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detO({ki}n−1
1 )

= det


C1 . . . Cm

C1(λ
−1
1 I1 + N1)

k1 . . . Cm(λ
−1
m Im + Nm)

k1

. . .
. . .

C1(λ
−1
1 I1 + N1)

kn−1 . . . Cm(λ
−1
m Im + Nm)

kn−1



= det



1 0 . . . 0
k1
0


λ

−k1
1


k1
1


λ

−k1
1 . . .


k1

n1 − 1


λ

−k1
1

. . .
kn−1

0


λ

−kn−1
1


kn−1

1


λ

−kn−1
1 . . .


kn−1

n1 − 1


λ

−kn−1
1

. . . 1 0 . . . 0

. . .


k1
0


λ−k1
m


k1
1


λ−k1
m . . .


k1

nm − 1


λ−k1
m

. . .
. . .

. . .


kn−1

0


λ

−kn−1
m


kn−1

1


λ

−kn−1
m . . .


kn−1

nm − 1


λ

−kn−1
m


× det(diag(C1, . . . ,Cm))

, (D1 + · · · + Dm) det(diag(C1, . . . ,Cm)), (42)

where Di is the determinant of the minor of the first matrix in the
previous equation, obtained by eliminating the first row and the
first column in the i-th block. For example, the first block consists of
the first n1 columns and the followed n2 columns forms the second
block.

Let σ = [σ1, . . . , σm] be a permutation of {1, . . . , n − 1} such
that #σ1 = n1 − 1, #σ2 = n2, . . . ,#σm = nm, where #σi denotes
the order of the permutation σi.

Then, it follows from the Leibnitz formula (Horn & Johnson,
1985) for the determinant of a matrix that

D1 =

−
σ

sgn(σ )h(kσj)


m∏
j=1

λ
−kσj
j


, (43)

where the signature of permutation σ is denoted as sgn(σ ), which

is +1 for even permutation and −1 for odd permutations, λ
−kσj
j =

λ
−
∑

i∈σj
ki

j and h(kσi) is a polynomial function of ki for all i ∈ σj. The
summation is taken w.r.t. all permutations with order n − 1.

Due to that |λ1| > · · · > |λm|, it is clear that λσ , |
∏m

j=1 λ
−kσj
j |

achieves the maximum when λ
−kσ1
1 = λ

−
∑

i∈{1,...,n1−1} ki
1 , λ

−kσ2
2 =

λ
−
∑

i∈{n1,...,n1+n2−1} ki
2 , . . ., λ−kσm

m = λ
−
∑

i∈{n1+···+nm−1,...,n−1} ki
m . Thus,

denote the set of permutations having the above property by P ∗
σ .

Given any permutation σ which does not belong to P ∗
σ , we always

have lim∆1,...,∆n−1→∞
λσ

λσ
∗ = 0 for all σ ∗

∈ P ∗
σ and σ ∉ P ∗

σ .

Consequently, lim∆1,...,∆n−1→∞
D1

D1∞
= 1, where D1∞ =

∏m
j=1 D1j

and

D11 = det




k1
1


λ

−k1
1 . . .


k1

n1 − 1


λ

−k1
1

. . .
kn1−1

1


λ

−kn1−1
1 . . .


kn1−1

n1 − 1


λ

−kn1−1
1



= λ
−(k1+···+kn1−1)

1 det




k1
1


. . .


k1

n1 − 1


. . .

kn1−1

1


. . .


kn1−1

n1 − 1



=


n1−1∏
i=1

ki
i!

∏
1≤j<i≤n1−1

(ki − kj)


λ

−k(1)
1 ,

where the last equality follows from Lemma 20. Using Lemma 19,
we can similarly derive that

D12 = det




kn1
0


λ

−kn1
2 . . .


kn1

n2 − 1


λ

−kn1
2

. . .
kn1+n2−1

0


λ

−kn1+n2−1
2 . . .


kn1+n2−1

n2 − 1


λ

−kn1+n2−1
2



= λ
−(kn1+···+kn1+n2−1)

2 det




kn1
0


. . .


kn1

n2 − 1


. . .

kn1+n2−1

0


. . .


kn1+n2−1

n2 − 1




=


n2−1∏
i=0

1
i!

∏
0≤j<i≤n2−1

(kn1+i − kn1+j)


λ

−k(2)
2 .

Applying the same arguments to the rest of D1j, we obtain that

D1∞ =

n1−1∏
i=1

ki
i!


m∏
v=2

nv−1∏
i=0

1
v!

∏
0≤j<i≤nv−1

× (kn1+···+nv−1+i − kn1+···+nv−1+j)

 m∏
v=1

λ−k(v)
v

, ψ1({ki}n−1
1 )D1

λ({ki}
n−1
1 ), (44)

where ψ1({ki}n−1
1 ) is a multivariate polynomial in ki and D1

λ

({ki}n−1
1 ) contains ki as its exponential component. Continuingwith

the same fashion, one can show that lim∆1,...,∆n−1→∞
D2

D2∞
= 1with

D2∞ = ψ2({ki}n−1
1 )D2

λ({ki}
n−1
1 ), whereψ2({ki}n−1

1 ) is amultivariate
polynomial in ki and

D2
λ({ki}

n−1
1 ) =

m∏
v=3

λ−k(v)
v

λ
k1+···+kn1
1 λ

kn1+1+···+kn1+n2−1
2

.

Then, it follows that

lim
∆1,...,∆n−1→∞

D2∞

D1∞
=


λ2

λ1

kn1 ψ2({ki}n−1
1 )

ψ1({ki}n−1
1 )

= 0

due to thatψi({ki}n−1
1 ) is amultivariate polynomial in ki and |λ1| >

|λ2|.
A similar conclusion is reached for D3, . . . ,Dm, e.g.,

lim
∆1,...,∆n−1→∞

Dv∞
D1∞

= 0, ∀v ≥ 3.

To sum up, we finally get that

lim
∆1,...,∆n−1→∞

D1 + · · · + Dm

D1∞
= 1.

By setting ψ({ki}n−1
1 ) = (

∏m
i=1 c

ni
i1 )ψ1({ki}n−1

1 ) and Dλ({ki}n−1
1 ) =

(
∏m

i=1 λ
ni(ni−1)/2
i )D1

λ({ki}
n−1
1 ), it follows from (42) to (44) that

lim
∆1,...,∆n−1→∞

detO({ki}n−1
1 )

ψ({ki}n−1
1 )Dλ({ki}n−1

1 )
= 1. � (45)
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Proof of Theorem 13. ‘‘⇐:’’ In order to simplify notation, we
remove the dependence of {ki}n−1

1 for quantities in Lemma 21, i.e.,
rewrite O({ki}n−1

1 ) as O. Then, it yields that

(OHO)−1
≤ tr(OHO)−1I =

−
i,j


[adj(O)]ij
det(O)

2

I. (46)

Here adj(O) is the adjointmatrix ofO and [adj(O)]ij is the (i, j)-
th element of adj(O). Following a similar line of Lemma 21, we can
show that there exist constant numbers βi,j = βi,j(λ1, . . . , λm)
such that for sufficiently large ∆j, we have that adj(O)ij ≤

βi,j|ψ |
∏m
v=1 |λv|

−k′(v), where k′(v) = k1 +· · ·+ kn1−2 and k′(v) =

kn1+···+nv−1−1 +· · ·+kn1+···+nv−2 if v ≥ 2. In light of (46), it follows
that there exist constant numbers β̃ij = β̃ij(λ1, . . . , λm) such that

lim sup
∆1,...,∆n−1→∞

(OHO)−1

m∏
i=1

|λv|2∆(v)
≤

−
i,j

β̃i,j


I, (47)

where∆(1) = ∆1 + · · · +∆n1−1 and∆(v) = ∆n1+···+nv−1 + · · · +

∆n1+···+nv−1, v ≥ 2. The rest of the proof directly follows from that
of Theorem 12.

‘‘⇒:’’ It is proved in Theorem 3. �
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