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a b s t r a c t

This paper investigates the attainability of the minimum average data rate for stabilization of linear
systems via logarithmic quantization. It is shown that a finite-level logarithmic quantizer suffices to
approach the well-known minimum average data rate for stabilizing an unstable linear discrete-time
system under two basic network configurations. In particular, we derive explicit finite-level logarithmic
quantizers and the corresponding controllers to approach the minimum average data rate.

© 2010 Published by Elsevier Ltd
1. Introduction

There has been a lot of interest in quantized feedback control in
recent years due to the emergence of networked control systems.
The idea of modeling the quantization error as an additive white
Gaussian noise began to be challenged in the new environment
where only very coarse information is allowed to propagate
through the network due to limited network bandwidth or for the
purpose of energy saving, e.g., in wireless sensor networks.

The change of view on quantization can be traced back to the
paper (Delchamps, 1990) where the author treated quantization
as partial information of the quantized entity rather than its
approximation, and demonstrated the significance of the historical
values of the quantizer output. Since then, various methods for
studying quantization effects on control and estimation have been
developed.

The research on quantized feedback control can be categorized
depending on whether the quantizer is static or dynamic.
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A static quantizer is a memoryless nonlinear function while
a dynamic quantizer uses memory and is more complicated
and potentially more powerful. Following Delchamps (1990),
Brockett and Liberzon (2000) studied a dynamic finite-level
uniform quantizer for stabilization and pointed out that there
exist a dynamic adjustment policy for quantizer sensitivity and
a quantized state feedback controller to asymptotically stabilize
an unstable linear system. This raised a fundamental question:
how much information needs to be communicated between the
quantizer and the controller in order to stabilize an unstable
linear system? Various authors have addressed this problem under
different scenarios, e.g., Baillieul (2002), Nair and Evans (2004),
Tatikonda and Mitter (2004) and Wong and Brockett (1999), and
the appealing data rate theorem states that the minimum average
data rate required for stabilization is given by the following
inequality:

R >
−

|λ(A)|≥1

log2 |λ(A)| , Rmin, (1)

where λ(A) denotes an eigenvalue of the open-loop systemmatrix
A. To achieve the minimum data rate, a dynamic quantizer is
needed.

Perhaps, one of the most interesting static quantizers is the so-
called logarithmic quantizer introduced by Elia and Mitter (2001)
and Fu and Xie (2005), which gives the coarsest quantization
density for quadratic stabilization of an unstable single input
linear system. However, the use of static logarithmic quantizers
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requires an infinite data rate. This problem is resolved by Fu and
Xie (2009), which shows that an unstable linear system can be
stabilized using a fixed-rate finite-level logarithmic quantizer with
a dynamic scaling. Though the study of logarithmic quantizers
constitutes a vast body of the literature, e.g., Ceragioli andDe Persis
(2007), Carli, Bullo, and Zampieri (2010), Elia and Mitter (2001),
Fu and Xie (2005, 2009, 2010), Gao and Chen (2007), Hayakawa,
Ishii, and Tsumura (2009) Liu and Elia (2004) and Tsumura,
Ishii, and Hoshina (2009), it is unclear whether a logarithmic
quantizer can approach the well-known minimum average data
rate required for stabilizing an unstable linear system. This
problem is of interest due to the better efficiency of a logarithmic
quantizer in terms of data rate for performance control than
a uniform quantizer. Furthermore, floating-point quantization
whose relative quantization error is uniformly bounded and
independent of the quantizer input (Widrow, Kollar, & Liu, 1996)
may be treated as logarithmic quantization. Note that, scientific
calculations are almost exclusively implemented by using floating-
point roundoff and also more and more digital signal processors
contain floating-point arithmetic (Widrow et al., 1996). It is
practically important to account for logarithmic quantization
effects.

The above motivates the study on the attainability of the
minimum average data rate for stabilization of linear systems via a
finite-level logarithmic quantizer. Precisely, we ask the following
question: does a logarithmic quantizer require an average data rate
higher than the minimum average data rate for stabilization? The
main contribution of this paper shows that the answer is negative.
The result is confirmed by showing that the use of a finite-level
logarithmic quantizer with a variable data rate can approach the
minimum average data rate. We also show that, in the absence of
disturbance, asymptotic stabilization can be achieved via the same
logarithmic quantizer with a simple dynamic scaling.

The rest of the paper is organized as follows. The problem of
interest is formulated in Section 2. Section 3 constitutes the main
part of the paper where the attainability of the minimum average
data rate via logarithmic quantization is proved. Concluding
remarks are drawn in Section 4. A technical lemma is given in the
Appendix.

2. Problem formulation

Consider a discrete linear time-invariant unstable system

xk+1 = Axk + Buk + wk, ∀k ∈ N, (2)

where xk ∈ Rn is the measurable state, uk ∈ R is the control input,
andwk ∈ Rn is a uniformly bounded disturbance input, i.e., ‖wk‖∞

≤ d, ∀k ∈ N, where ‖·‖∞ is the l∞ norm for vectors or the induced
matrix norm for matrices. Without loss of generality, assume that
A ∈ Rn×n has two distinct real Jordan blocks, i.e., A = diag(J1, J2),
where Ji ∈ Rni×ni corresponds to one unstable real eigenvalue λi ∈

R or a pair of unstable complex conjugate eigenvalues λi, λ
∗

i ∈ C
and |λ1| ≠ |λ2|. Moreover, (A, B) is a controllable pair.

Remark 1. There is no loss of generality to focus on the system of
the form (2). In fact, consider a system as follows:
xk+1 = Axk + Buk + wk,
yk = Cxk + vk,

∀k ∈ N, (3)

where xk ∈ Rn is the state, uk ∈ Rl is the control input, yk ∈ Rp

is the output, wk ∈ Rn and vk ∈ Rp are bounded additive dis-
turbances. (A, B) and (C, A) are stabilizable and detectable pairs,
respectively, and rank(B) = l ≤ n.

Assume that all the eigenvalues of A lie outside or on the unit
circle. Otherwise, thematrix A can be transformed to a block diago-
nal form diag{As, Au} by a coordinate transformation, where As and
Au respectively correspond to the stable and unstable (including
marginally unstable) subspaces. State variables associatedwith the
stable block As will converge to a bounded region for any bounded
control sequence. Thus, without loss of generality, we assume that
A has all eigenvalues lie outside or on the unit circle and (A, B, C)
are controllable and observable.

Then, a deadbeat observer (Chen, 1984) can be constructed to
estimate the state of the system. The estimation error will be uni-
formly bounded after n steps and independent of the initial state.
Hence, it is sensible to focus on the state feedback case.

By applying the Wonham decomposition to (3) (Chen, 1984),
one can convert the multiple inputs system to l single input ones.
More specifically, there is a nonsingular real matrix T ∈ Rn×n

such that Ā = T−1AT and B̄ = T−1B take the form: Ā =
A1 A12 · · · A1l
0 A2 · · · A2l
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · Al

 , B̄ =


B1 B12 · · · B1l
0 B2 · · · B2l
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · Bl

, where (Ai, Bi)

with Ai ∈ Rni×ni and Bi ∈ Rni , i ∈ {1, . . . , l}, is a controllable
pair and

∑l
i=1 ni = n. For illustration and brevity, let l = 2

and assume that the state feedback system is already given by
xk+1 = Āxk + B̄uk +wk. By partitioning the state xk , [(x1k)

′, (x2k)
′
]
′

in conformity with the upper triangular form of Ā, two single input
subsystems are written as

x1k+1 = A1x1k + B1u1
k + A12x2k + B12u2

k + w1
k ; (4)

x2k+1 = A2x2k + B2u2
k + w2

k . (5)

If x2k is stabilized with a communication data rate greater than∑
λ(A2)

log2 |λ(A2)|, then ‖x2k‖∞ will be uniformly bounded and
can be treated as a bounded disturbance input to subsystem (4),
which can be stabilized similarly with a data rate greater than∑

λ(A1)
log2 |λ(A1)|. As in Nair and Evans (2004, Section 3), it is con-

venient to put A2 into real Jordan canonical form so as to decouple
its unstable dynamicalmodes. Consequently, it is sufficient to focus
on the system of form (2) since the extension of system (2) to the
case with more than two Jordan blocks can be easily carried out.

We now recall logarithmic quantizers.

Definition 1 (Fu & Xie, 2005). A quantizer is called a logarithmic
quantizer if it has the form:

Q∞(v) =


u(i), if

1
1 + δ

u(i) < v ≤
1

1 − δ
u(i), v > 0;

0, if v = 0;
−Q∞(−v), if v < 0

(6)

where u(i), i ∈ N, are from the set:

U = {±u(i)
: u(i)

= ρ iu(0), i = ±1, ±2, . . .} ∪ {±u(0)
} ∪ {0},

0 < ρ < 1, u(0) > 0, (7)

ρ represents the quantizer density and δ =
1−ρ

1+ρ
.

However, the logarithmic quantizer in (6) has an infinite number
of quantization levels and needs an infinite number of bits to
represent the quantizer output. Define a (2N+2)-level logarithmic
quantizer with density ρ ∈ (0, 1) as follows:

QN(v) =


ρ i(1 − δ), if ρ i+1 < v ≤ ρ i, 0 ≤ i ≤ N − 1;
0, if 0 ≤ v ≤ ρN−1

;

−QN(−v), if − 1 ≤ v < 0,
1, otherwise.

(8)

In the above, we have chosen u(0)
=

2ρ
1+ρ

in (6) and for any v ∉

[−1, 1], the alarm level 1 is used to indicate the overflow of the
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Fig. 1. Configuration I (left) vs. Configuration II (right).

Fig. 2. Encoder/decoder pair for a digital channel: g > 0 is a scaling factor.

quantizer. Thus, the number of bits to represent each quantizer
output is ⌈log2(2N+2)⌉, where ⌈·⌉ is the standard ceiling function,
i.e., ⌈x⌉ = min{l ∈ Z|l ≥ x}.

Two basic network configurations shown in Fig. 1 are to be
studied. Configuration I refers to the scenario where the downlink
channel has limited bandwidthwhile in Configuration II, the uplink
channel has limited bandwidth. Thus, the output of the controller
inConfiguration I, which is a scalar for system (2), is to be quantized.
In Configuration II, the vector state measurement is quantized. As
in Tatikonda and Mitter (2004), the encoder/decoder pair for the
limited data rate communication is described in Fig. 2. The first
stage of the encoding process consists of designing a scaling factor
g−1 such that the quantizer input z/g is within the quantization
range. The output of the finite-level logarithmic quantizerQN(z/g),
which takes values from the set {±ρ i(1 − δ) : i = 0, . . . ,N −

1} ∪ {0, 1}, is encoded into a binary sequence and transmitted via
a limited data rate communication channel. The decoder receives
the binary sequence and decodes it as QN(z/g) since we neglect
transmission errors of the channel. The quantizer output is then
scaled back by g , i.e., ẑ = gQN(z/g) to recover z if QN(z/g) ≠

1. In Configuration I, z and ẑ respectively correspond to f sk and
us
k. While in Configuration II, z is a vector and corresponds to

xsk, which is the state of the system after down sampling. Thus,
the quantizer in Fig. 2 is a product quantizer and consists of n
finite-level logarithmic quantizers. The above notations will be
defined in what follows. Note that, there is no separate channel
to communicate the gain value g . The main task is to jointly design
the scaling factor g , the finite-level logarithmic quantizer and the
corresponding control law to approach theminimum average data
rate of the channel, for stabilizing the unstable system in (2). We
mention that an earlier attempt has been made on scalar systems
under Configuration I in Fu, Xie, and Su (2008).

Remark 2. The two configurations differ in the way that Config-
uration II quantizes the state first and use the quantized state to
construct the control signal whereas in Configuration I, the control
signal is constructed using the unquantized state and then quan-
tized by a finite-level logarithmic quantizer. From the information
preservation point of view, Configuration II appears to generate
worse control actions because quantization (or information loss)
happens earlier. However,whatwe show in the paper is that for the
purpose of stabilization, the two configurations require the same
minimum average data rate, if variable rate logarithmic quantiza-
tion is used.

Remark 3. The two configurations have been widely adopted in
the literature. For example, Elia and Mitter (2001), Fu and Xie
(2005) and Tsumura et al. (2009) focus on Configuration I while
Brockett and Liberzon (2000), Nair and Evans (2004) and Tatikonda
and Mitter (2004) are restricted to Configuration II. The differences
in the present paper are that the quantizer in the encoder of
Fig. 2 is limited to a finite-level logarithmic quantizer and we aim
to approach the minimum average data rate of the channel for
stabilizing system (2).

3. Attainability of the minimum average data rate via logarith-
mic quantization

In this section, we shall design finite-level logarithmic quantiz-
ers and the corresponding control laws to approach the minimum
average data rate for stabilizing the unstable system (2) under Con-
figurations I and II, respectively.

3.1. Stabilization using quantized control feedback

Theorem 4. Consider system (2) and network Configuration I
of Fig. 1, stabilization can be achieved based on quantized control
feedback with a finite-level logarithmic quantizer if and only if the av-
erage data rate R of the channel exceeds Rmin, i.e., R > n1 log2 |λ1| +

n2 log2 |λ2|.

Before giving the proof, the controller and the quantizer are first
proposed. Note that |λ1| ≠ |λ2|, define the subset L(A) ⊂ N by

L(A) =


N, if λ1, λ2 ∈ R,

{i ∈ N|λi
1 ≠ (λ∗

1)
i
}, if λ1 ∈ C, λ2 ∈ R;

{i ∈ N|λi
2 ≠ (λ∗

2)
i
}, if λ1 ∈ R, λ2 ∈ C;

{i ∈ N|λi
j ≠ (λ∗

j )
i, j = 1, 2}, otherwise.

Obviously, L(A) has infinitely many elements. Since (A, B) is
a controllable pair, it is readily verified that (Am, Am−1B) is a
controllable pair if m ∈ L(A). By applying the control input umk+t
= 0, if 1 ≤ t ≤ m − 1, the down-sampled system of (2) with a
down-sampling factorm is expressed as

xm(k+1) = Amxmk + Am−1Bumk + dk, (9)

where dk =
∑m−1

t=0 Am−1−twmk+t . Due to the controllability of
(Am, Am−1B), (9) can be transformed into a controllable canonical
form, i.e., there exists a nonsingular real matrix P ∈ Rn×n that
transforms (9) into the controllable canonical form:

xsk+1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn −αn−1 −αn−2 · · · −α1

 xsk

+


0
0
...
0
1

 us
k + ws

k. (10)

Here, we define xsk , Pxmk, us
k , umk and ws

k , Pdk.
It is clear from (10) that if we can stabilize the last element of

the vector state xsk, denoted by xsk(n), then xsk is stabilized, which
further implies the stabilization of (2) due to m < ∞. Thus, a
deadbeat controller is proposed whose output is then quantized
by a finite-level logarithmic quantizer and applied to the down-
sampled system. Specifically, the quantized control input to the
down-sampled system is given by

us
k = gQN(f sk /g);

f sk =


0, if k < n;
n−1−
j=0

αj+1xsk−j(n), if k ≥ n,
(11)
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where the quantization level parameter N and scaling factor g > 0
are to be designed.

Denote |A| = |λ1|
n1 |λ2|

n2 , it follows that there exists an α0 > 0
such that |αk| ≤ α0|A|

m, ∀k ∈ {1, . . . , n} since |λj| ≥ 1, ∀j ∈

{1, 2}.
Proof of Theorem 4. The necessity part has been well established
inNair and Evans (2004) and Tatikonda andMitter (2004). Only the
sufficiency needs to be elaborated.

First, note that given any R > log2 |A|, there exists an α > 1
satisfying R ≥ log2(α|A|). Based on Lemma 9 in the Appendix and
by choosing β1 = 0, β2 = nα0, it is possible to select a pair of
m ∈ L(A) and N > 0 such that ∀ϵ > 0,

log2


1 +

2 log2(nα0|A|
m)

log2
nα0|A|m+ϵ+1
nα0|A|m+ϵ−1


< log2(2N + 2)

≤ m log2 α + log2 |A|
m

− 1. (12)

The quantizer level parameter N is determined by (12) and the
number of bits required to represent each quantizer output is
⌈log2(2N + 2)⌉. The quantizer works as follows. At time k, the
quantizer first detects the overflow of xsk(n) and then proceeds to
detect the overflow of f sk /g . Precisely, if |xsk(n)| > △ is detected,
it generates the alarm level 1 and in this case there is no need
to further check f sk /g . Here the parameters g and △ are to be
determined later. Otherwise, it continues to check f sk /g . If |f

s
k /g| >

1 is detected, the quantizer generates the alarm level 1. Thus, the
alarm level 1 will be generated if either |xsk(n)| > △ or |f sk /g| > 1.

It is verified from (12) that the average data rate of this protocol
satisfies
⌈log2(2N + 2)⌉

m
≤ log2(α|A|) ≤ R.

Since R is any given number greater than log2 |A|, the average data
rate of the proposed quantizer can be made arbitrarily close to
log2 |A|. Thus, what remains to be proved is the stability.

Mathematical induction arguments are adopted to show that
lim supk→∞ |xsk(n)| < ∞ for any given initial condition.

First, assume |xsk(n)| ≤ △, ∀k ∈ {0, . . . , n − 1}, which will be
relaxed later. Then, for any k ≥ n, assume that |xsj (n)| ≤ △, ∀j ≤ k,
it is obvious that ∀j ∈ {n, n+ 1, . . . , k}, |f sj | = |

∑n−1
t=0 αt+1x

(n)
j−t | ≤

nα0|A|
m
△ , g . Since |f sj /g| ≤ 1 and |xsj (n)| ≤ △, ∀j ≤ k, no

alarm level 1 occurs before time k. From (10), there exist vectors
cj ∈ Rn, j ∈ {0, . . . , n − 1}, such that ssk =

∑n−1
j=0 cTj ws

k−j and the
down-sampled system is expressed by

xsk+1(n) = −

n−1−
j=0

αj+1xsk−j(n) + us
k + ssk, k ≥ n. (13)

Moreover, |ssk| ≤
∑n−1

j=0 ‖cTj ‖∞‖ws
k−j‖∞ , s̃, ∀k ∈ N. Choose the

quantizer density parameters δ =
1

nα0|A|m+ϵ
, ρ =

1−δ
1+δ

and △ > 0
to satisfy that

△ > max


s̃
1 − (nα0|A|m)2ρ2N+1

,
s̃

1 − nα0|A|mδ


. (14)

In light of (12), it is easy to verify that
(nα0|A|

m)2ρ2N+1 < 1
nα0|A|

mδ < 1. (15)

Inserting the quantized control in (11) into system (13) results in

|xsk+1(n)| ≤


|f sk | + s̃, if |f sk /g| ≤ ρN

δ|f sk | + s̃, if ρN < |f sk /g| ≤ 1

≤


nα0|A|

mρN
△ + s̃, if |f sk /g| ≤ ρN

nα0|A|
mδ△ + s̃, if ρN < |f sk /g| ≤ 1

≤ △ due to the selection of △ in (14) and (15).
Inductively, |xsk(n)| ≤ △, ∀k ∈ N. Next, assume that the assump-
tion that |xsj (n)| ≤ △, ∀j ∈ {0, . . . , n− 1} is violated, which can be
detected by the decoder via the alarm level. Denote the first time
of receiving the alarm level 1 by k. Choose a scaling factor

γ =

n−
j=1

αj + 1 (16)

to dynamically update the scaling factor. Specifically, set △k = △

and update the scaling factor as follows:

△k+j+1 =


γ △k+j, alarm level 1 occurs,
△k+j, otherwise,

which is simultaneously processed on both sides of the channel.
Set us

k+j = 0, the increasing speed of △k+j is thus faster than that
of xsk+j(n) by (10) and (16). △k+j will eventually capture xsk+j(n) or

limj→∞

xsk+j(n)

△k+j
= 0. Let the scaling factor be gk+j = nα0|A|

m △k+j, it
follows that limj→∞ f sk+j/gk+j = 0, implying that there exists a fi-
nite k0 ≥ n−1 such that the signals receivedwithin the timeperiod
{k+k0−n+1, . . . , k+k0}donot give rise to the alarm level 1,which
suggests that |xsk+j(n)| ≤ △k+k0 , ∀j ∈ {k0 − n + 1, . . . , k0}. Then,
repeating the above proof as the bounded case at time k+k0+n−1
yields that |xsk+j(n)| ≤ △k+k0 , ∀j ≥ k0 + n − 1.

Finally, it follows that lim supk→∞ |xsk(n)| < ∞, which eventu-
ally leads to lim supk→∞ ‖xk‖∞ < ∞. �

The following corollary gives the corresponding result for
asymptotic stabilization, i.e., limk→∞ ‖xk‖∞ = 0.

Corollary 5. Consider system (2) with wk = 0 and having network
Configuration I of Fig. 1; asymptotic stabilization can be achieved via
a quantized control feedback with a finite-level logarithmic quantizer
if and only if the average data rate R of the channel is strictly greater
than Rmin, i.e., R > n1 log2 |λ1| + n2 log2 |λ2|.

Proof. Similarly, only the sufficiency part needs to be established.
Define a scaling factor

η , max{(nα0|A|
m)2ρ2N+1, nα0|A|

mδ}, (17)

which is strictly less than one by (15), i.e., η < 1. Let △k+1 = η △k
with an arbitrary △0 > 0, which is assumed to be agreed by both
the quantizer and the decoder. Assume that |xsk(n)| ≤ △0, ∀k ∈

{0, . . . , n − 1}, the control input and quantizer are given in The-
orem 4 with △ replaced by △k. Then, it is straightforward that
|xsk+1(n)| ≤ η △k = △k+1. Thus, xsk(n) can be driven exponen-
tially to zero since limk→∞ |xsk(n)| ≤ △0 limj→∞ ηj

= 0. Due to
m < ∞, it follows that limk→∞ ‖xk‖∞ = 0. The removal of the
boundedness assumption for the initial state is similar to what we
have done in Theorem 4. �

3.2. Stabilization using quantized state feedback

We proceed to validate the attainability of the minimum aver-
age data rate under Configuration II via logarithmic quantization
where the control design solely relies on the quantized state. Intu-
itively, thismight require a larger average data rate since the quan-
tized state contains less information than its unquantized version.
However, the result of this subsection shows that the logarithmic
quantizer can still approach the minimum average data rate.

Theorem 6. Consider system (2) and network Configuration II
of Fig. 1, stabilization can be achieved based on the quantized state
feedback with a finite-level logarithmic quantizer if and only if the av-
erage data rate R of the channel exceeds Rmin, i.e., R > n1 log2 |λ1| +

n2 log2 |λ2|.
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In this case, two scalar logarithmic quantizers with appropriately
chosen parameters are designed and applied to the down-sampled
state xsk of (2), where the down-sampling factor m ≥ 2n is to be
determined later, more precisely, indexing the scalar components
of the state of (2) by an additional superscript h ∈ {1, . . . , n}. At
time t = mk + h − 1, the hth element of xsk will be quantized
by QN1(x

s
k(h)/△) if h ≤ n1 and QN2(x

s
k(h)/△) otherwise, where

the quantization level parameters Ni and △ are determined by the
available data rate. Neglecting the transmission time implies that
the quantized xsk can reach the controller before timemk+n. Since
m ≥ 2n, the control law within one cycle {mk, . . . ,m(k + 1) − 1}
can be proposed as follows:

umk+m−1
...

umk+m−n

 = −1CT (CCT )−1AmQ

xsk
△


,

umk+t = 0, ∀t ∈ {0, . . . ,m − n − 1},

(18)

where the controllability matrix C is defined as C , [B, AB, . . . ,
An−1B] and the product quantizer Q (·) is composed by

Q (·) = [QN1(·), . . . ,QN1(·)  
n1

,QN2(·), . . .QN2(·)  
n2

]
T .

Lemma 7. There is a positive ζ such that for any m ∈ N,

‖Jmi ‖∞ ≤ ζ
√
nimni−1

|λi|
m, ∀i ∈ {1, 2}. (19)

Proof. It is known that there exists a ζ > 0, independent of Ji, ni,
and mi, such that ‖Ji‖ ≤ ζmni−1

i |λi|
m, where ‖ · ‖ is the spectral

norm induced from the Euclidean norm (Nair & Evans, 2004).
Together with the fact that ‖Ji‖∞ ≤

√
ni‖Ji‖, (19) is immediately

inferred. �

Proof of Theorem 6. As in the case of Configuration I, only the
sufficiency part requires to be proved. Given any R > n1 log2 |λ1|+

n2 log2 |λ2|, there exists an α > 1 satisfying R = R1 + R2 and Ri ≥

ni log2(α|λi|), ∀i ∈ {1, 2}. In view of Lemma 9 in the Appendix,
for any ϵ > 0, we can choose a pair of integers m ≥ 2n and Ni
satisfying:

log2

1 +
2 log2 ζ

√
nimni−1

|λi|
m

log2
ζ
√
nimni−1

|λi|m+ϵ+1
ζ
√
nimni−1

|λi|m+ϵ−1

 < log2(2Ni + 2)

≤ m log2 α + log2 |λi|
m

− 1, ∀i ∈ {1, 2}. (20)

The quantization level parameter Ni is selected based on (20).
The average data rate of this protocol is computed by
n1⌈log2(2N1+2)⌉+n2⌈log2(2N2+2)⌉

m ≤ log2(α|A|) ≤ R, implying that the
minimum average data rate can be approached by the above pro-
tocol. Also, the quantizer density parameters for QNi(·) are chosen

by δi =
1

ζ
√
nimni−1

|λi|m+ϵ
and ρi =

1−δi
1+δi

=
ζ
√
nimni−1

|λi|
m

+ϵ−1
ζ
√
nimni−1

|λi|m+ϵ+1
, which

gives that
(ζ

√
nimni−1)2ρ

2Ni+1
i < 1,

δiζ
√
nimni−1 < 1.

(21)

Define the uniform upper bound of dk in (9) by D , d
∑m−1

t=0
‖A‖

m−1−t
∞

, then ‖dk‖∞ ≤ D, ∀k ∈ N. Similarly, the initial state x0
is assumed to be bounded by △ > 0, where △ is selected to satisfy

△ ≥ max
i∈{1,2}


D

1 − (ζ
√
nimni−1)2ρ

2Ni+1
i

,
D

1 − δiζ
√
nimni−1


. (22)
Inserting the control law in (18) into (2) yields that

xsk+1 = Amxsk +

m−1−
t=0

Am−1−t(Bumk+t + wmk+t)

= Amxsk +

m−1−
t=m−n

Am−1−tBumk+t + dk

= Am
[
xsk − △Q


xsk
△

]
+ dk. (23)

Assuming that ‖xsk‖∞ ≤ △, there is no alarm level 1 for the scaled
state xsk(h) by the scaling factor△. Denote by (xsk)

(1) the state vector
consisting of the first n1 elements of xsk while (xsk)

(2) is the state
vector by collecting the remaining elements of xsk. Similar notations
will be given for Q (i) and d(i)

k , i ∈ {1, 2}. Consider system (23), we
obtain:

‖(xsk+1)
(i)

‖∞ = ‖Jmi

[
(xsk)

(i)
− △Q (i)


(xsk)

(i)

△

]
+ d(i)

k ‖∞

≤ ‖Jmi ‖∞

(xsk)
(i)

− △Q (i)


(xsk)
(i)

△


∞

+ D

≤


‖Jmi ‖∞‖(xsk)

(i)
‖∞ + D,

if ‖(xsk)
(i)/△‖∞ ≤ ρ

Ni−1
i

‖Jmi ‖∞δi‖(xsk)
(i)

‖∞ + D,

if ρNi−1
i < ‖(xsk)

(i)/△‖∞ ≤ 1

≤


ζ
√
nimni−1ρ

Ni−1
i △ + D,

if ‖(xsk)
(i)/△‖∞ ≤ ρ

Ni−1
i

ζ
√
nimni−1δi△ + D,

if ρNi−1
i < ‖(xsk)

(i)/△‖∞ ≤ 1.

≤ △ by (21) and (22).

Inductively, ‖xsk‖∞ ≤ △, ∀k ∈ N. Since m < ∞, it follows that
lim supk→∞ ‖xk‖∞ < ∞.

The removal of the boundedness assumption of ‖xs0‖∞ ≤ △ is
similar to the case of Configuration I and is omitted. �

Remark 8. It is worth mentioning that the parallel result in
Corollary 5 can be given under Configuration II. Furthermore,
the attainability of the logarithmic quantization can also be
established for the case where quantization appears in both the
state measurement and in the control signal.

4. Conclusion

We have addressed the attainability of the logarithmic quan-
tizer in the sense of approaching the minimum average data rate
for stabilizing an unstable discrete-time linear system. For any
average data rate greater than the minimum rate, given by the
data rate theorem, a finite-level logarithmic quantizer and a con-
trollerwere constructed to stabilize the systemunder twodifferent
network configurations with different schemes of quantizer bits
assignment. It should be noted that since our main concern is
the attainability of the minimum average data rate by logarithmic
quantization, our proposed control law and quantizermay produce
a poor transient response. The study of performance control via
finite-level logarithmic quantization will be our future work.
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Appendix. A technical lemma

Define κ(m, λ) = (β1mn−1
+ β2)|λ|

m, ∀n ≥ 1, β1, β2 ≥ 0 and
β1 + β2 > 0, we have the following result.

Lemma 9. ∀α > 1, ∀ϵ > 0 and |λ| ≥ 1, there exist positive integers
m and N such that

log2


1 +

2 log2 κ(m, λ)

log2
κ(m,λ)+ϵ+1
κ(m,λ)+ϵ−1


< log2(2N + 2)

≤ m log2 α + log2 |λ|
m

− 1. (24)

Proof. It is trivial if |λ| = 1 and β1 = 0. Assume |λ| > 1 or β1 > 0,
then κ(m, λ) → ∞ as m → ∞. Jointly with the fact that
limx→∞


1 +

1
x

x
= e yields

log2
κ(m, λ) + ϵ + 1
κ(m, λ) + ϵ − 1

∼= 2κ−1(m, λ) log2 e, (25)

ifm is sufficiently large. Next, two cases are discussed.
Case 1: β1 > 0, β2 ≥ 0 and |λ| ≥ 1.
Selecting a largem ≥ 1 such that ln κ(m, λ) ≥ 1, we have

1 + κ(m, λ) ln κ(m, λ)
1/m

=

1 + (β1mn−1

+ β2)|λ|
m ln κ(m, λ)

1/m
≥ |λ|β

1/m
1 (m1/m)n−1(ln κ(m, λ))1/m

≥ |λ|β
1/m
1 → |λ| as m → ∞

due to that limm→∞ x1/m = 1, ∀x > 0. On the other hand, choosing
a large m such that κ(m, λ) ln κ(m, λ) ≥ 1, β1mn

≥ β2 and
2β1mn

≥ ln(2β1mn) gives the following inequalities:
1 + κ(m, λ) ln κ(m, λ)

1/m
≤


2κ(m, λ) ln κ(m, λ)

1/m
≤ |λ|(4β1)

1/m(m1/m)n[m ln |λ| + ln(2β1mn)]1/m

≤ |λ|(4β1)
1/m(m1/m)n[mn ln |λ| + 2β1mn

]
1/m

= |λ|[4β1(ln |λ| + 2β1)]
1/m(m1/m)2n

→ |λ| as m → ∞,

due to that limm→∞ m1/m
= 1.

Case 2: β1 = 0, β2 > 0 and |λ| > 1.
Letm ≥ 1, it immediately follows that

1 + κ(m, λ) ln κ(m, λ)
1/m

≥ |λ|β
1/m
2 (lnβ2 + m ln |λ|)1/m

≥ |λ|β
1/m
2 (lnβ2 + ln |λ|)1/m

→ |λ| as m → ∞.

Also, for a sufficiently large m, e.g., κ(m, λ) ln κ(m, λ) ≥ 1 and
m ≥ lnβ2/ ln |λ|, one can establish that
1 + κ(m, λ) ln κ(m, λ)

1/m
≤ (2β2|λ|

m ln(β2|λ|
m))1/m

≤ |λ|(4β2 ln |λ|)1/mm1/m

→ |λ| as m → ∞.

Consequently, under any situation, we derive the limit

lim
m→∞


1 + κ(m, λ) ln κ(m, λ)

1/m
= |λ|.

In the light of (25), it is clear that

lim
m→∞


1 +

2 log2 κ(m, λ)

log2
κ(m,λ)+ϵ+1
κ(m,λ)+ϵ−1

 1
m

= |λ|, (26)
which further implies that for a sufficiently largem,

log2


1 +

2 log2 κ(m, λ)

log2
κ(m,λ)+ϵ+1
κ(m,λ)+ϵ−1


∼= log2 |λ|

m.

Since α > 1,m log2 α → ∞ as m → ∞, the difference between
the left-hand side and the right-hand side of (24) tends to infinity
if m → ∞. Thus, it is always possible to select m and N to satisfy
(24). �
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