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Abstract. Mixture of local principal component analysis (PCA) has attracted attention due to a
number of benefits over global PCA. The performance of a mixture model usually depends on the
data partition and local linear fitting. In this paper, we propose a mixture model which has the prop-
erties of optimal data partition and robust local fitting. Data partition is realized by a soft competition
algorithm called neural ‘gas’ and robust local linear fitting is approached by a nonlinear extension of
PCA learning algorithm. Based on this mixture model, we describe a modular classification scheme
for handwritten digit recognition, in which each module or network models the manifold of one of
ten digit classes. Experiments demonstrate a very high recognition rate.
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1. Introduction

Principal component analysis (PCA) is a general purpose tool in pattern recognition
for extracting average features that reflect global statistical properties of the pattern
space. PCA essentially performs singular value decomposition (SVD) of data co-
variance matrix6 and projects data onto the subspace spanned by those eigenvec-
tors corresponding to the largest eigenvalues of6. This transformation decorrelates
the signal components and the projection minimizes an average squared residual
between the original signal and its dimension-reduced approximation. The well-
known subspace pattern recognition method [1–2] is set up on PCA, in which each
pattern class is represented by a subspace spanned by a group of basis vectors.
Subspace approach has a number of advantages, for example, it is scale-invariant,
and the two phases of most classification systems, i.e., feature extraction and class
representation, are actually combined.

Despite some useful properties of PCA, its applications are limited by its re-
liance on second-order statistics and linear projection. Geometrically, PCA models
the data as a hyperplane embedded in the data space. This has motivated various de-
velopments of nonlinear PCA, for example, principal curve analysis, independent
component analysis, etc. Among these techniques, appropriate mixture models of
local PCA have some attractivenesses [3–6, 8–10], which partition a data set into a
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number of nonoverlapping regions and each region is represented not by its central
point as in clustering but by a localized linear subspace.

Intuitively, mixture of local PCA has no unique definition and the performances
of such a model depend on global partition and local linear fitting. In this
article, we propose a mixture model which has the following two features. First,
the data manifold is described by an optimal partition algorithm called neural ‘gas’
[13]; Second, the local principal component analysis is robust to outliers due to
introducing sigmoidal nonlinearities to the projections [12].

We illustrate the performance of our proposed mixture model by applying it to
handwritten digit recognition problem. Handwritten digits recognition is a typical
multiclass classification problem, where each pattern belongs to exactly one ofK

(K = 10) classes. Many previous works including neural network methods utilize
a single classifier or network. A better alternative is to apply an appropriate mod-
ularity method. In a modular classification system, modules learn to specialize in
different subtasks, for example, a modular architecture proposed in [16] reduces a
K-class problem to a set ofK two-class problems. In this paper, we present a mod-
ular classification scheme from a different perspective, in which each module is a
single layer network for modeling the manifolds of images of one of the ten classes.
Each unit in a network corresponds to a subspace in the respective class and the
network is trained only by the digits belonging to the class. During classification,
upon presenting a test pattern, each module provides an individual reconstruction
according to a population decoding principle and the overall decision is determined
by comparing all of the ten reconstruction errors. Our modular classification system
shares certain similarities with some previously proposed decision-based networks
[9]. The most famous one is Kohonen’s Learning Vector Quantization (LVQ) algo-
rithm [7], which finds a set of cluster centers for each class and the classification
is performed by first finding the closest center and then assigning the associated
class. In a similar way, our approach finds a set of subspaces for each class and
the classification is performed by first finding the closest (averaged) reconstruction
from subspace projections and then assigning the associated class. Our results show
that the mixture model is very effective in the recognition accuracy.

2. Learning Algorithm for Principal Components Analysis

Given an input data samplex, weight vectorw, a linear neuron’s output can be
written asy = wTx. The largest principal component optimizes the reconstruction
mean-square-error by choosing the best one dimensional subspace to project the
input vector onto, i.e., the following objective:

minimizeJ = E
{||x− x̂||2}

= E
{||x− yw||2} (1)
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will result in the largest component direction of the distribution ofx. In other
words,w converges to a unit eigenvector corresponding to the largest eigenvalue of
6. In the above equation,x̂ = yw is the reconstruction of input. The corresponding
stochastic gradient descent learning rule is

wt+1 = wt + µt (yet + eTt wtx), (2)

whereet = x− ywt , t is a time scale andµt is a learning rate.
A number of unsupervised learning algorithms for extracting multiple principal

components or their subspace have been proposed, which can be developed from
the objective (1) and the following consideration: the second largest principal com-
ponent also statisfies the minimal reconstruction property with restriction that the
second principal component direction must be orthogonal to the first component
direction, and so on for the remaining principal component directions.

The extension of (1) to a nonlinear unit has been proposed in many papers
[11–12]. With a nonlinear neuronz = f (wT x), the learning objective is

minimizeJ = E
{||x− x̂||2}

= E
{||x− zw||2} . (3)

In this paper, we takef as a sigmoidal function bounded between 0 and 1. Accord-
ingly, the learning rule is

wt+1 = wt + µteTt wtxg + zet ), (4)

whereet = x− zwt , g is the derivative off , andg = f ′(wT
t x).

Algorithm (4) has the following properties [12]. First, the weight vector con-
verges towards the true nonnormalized eigenvectors of6, even though a sigmoidal
nonlinearity is used; Second, learning is robust to noise or outliers due to nonlinear
neuron’s selectiveness; Third, though input patternsx are still represented in a
linear basis, the coefficients of the expansion are generally nonlinear.

3. Mixture Model of Principal Component Representation

A globalM principal components representation of anL-dimensional datax can
be simply written as

y =WT x, (5)

whereW is anL×M matrix whoseith column is theith principal eigenvector of
6. The corresponding reconstruction

x̂ =Wy (6)
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will result in minimal reconstruction error in least mean square sense. Such a global
representation of data constitutes the basis of subspace methods of pattern recogni-
tion, in which a class is represented by a linear subspace within the original pattern
spaceRL. A set ofm linearly independent basis vectorsu1, . . . ,um in RL spans
a subspaceL,L = L(u1, . . . ,um). The basic operation to determine whether a
vectorx belongs toL is the projection ofx onL, which is given bŷx = Px, where
P is the projection matrix ofL. For an arbitraryx, its distance toL can be defined
as||x− x̂||, which measures the efficiency of representing the data by the subspace.

Being different with PCA or subspace methods, in data analysis, clustering or
VQ techniques provide discrete representations, which use one of a number of
Voroni centers for each input vector. For a set of M centers,{w1, . . . ,wM}, an
input vectorx is represented by thek-th center such that the reconstructed vectorx̂
is

x̂ = wk, if ||x− wk|| = min
l=1
||x− wl||. (7)

While the global PCA representation is a linear transform of the data, the repre-
sentation under vector quantization is highly nonlinear function of the input vector.
Between these two representations, some kind of nonlinear distributed representa-
tions are more desirable [3–6], which combine the advantages of the both PCA and
VQ. Intuitively, we can introduce a mixture of local principal component trans-
form, which partitions the data set into a number of regions and each region is
represented by a respectiveMk-dimensional linear subspace. In other words, each
input vector is assigned to the most appropriate partition and then represented by
theMk basis vectors of the region. This representation can be expressed as

z= f (WT
k x
)
, if x ∈ Ck, (8)

wheref is a sigmoidal nonlinearity,Wk is anL ×Mk matrix whose columns are
theMk principal components of the partitionCk. In the following, we denotemth
column vector ofWk asw(k) (m). The reconstruction vectorx̂k is calculated as

x̂k = Wkz

=
Mk∑
m=1

w(k)(m)zm, if x ∈ Ck. (9)

As there are many algorithms for realizing PCA, clustering of VQ can be also
approached by numerious ways. Here we prefer to an efficient learning algorithm
called neural ‘gas’ [13], which can be briefly outlined as follows.

Our startpoint is to partition the input space by competition and at the same
time record the relationships among the local subspaces based on a distance metric
defined in the input space. In a simple way, the metric can be the reconstruction
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error provided by a subspace. The information about the relationship among the
subspaces is provided by a set of reconstruction errorsEx = {||x − x̂m||2, m =
1, · · · ,Mk}, Mk is the number of subspaces inkth partition. Each time an inputx
is presented, we first make an ordering of the elements ofEx and then determine
the adjustment ofmth subspacew(k)(m) within kth region,m = 1, · · · ,Mk, k =
1, · · · ,K. In other words, we make a ranking

(
Ex(m0), Ex(m1), · · · , Ex(mMk−1)

)
of the reconstruction error set, withx̂m0 being closest tox, x̂m1 being second closest
tox, x̂mk , k = 0, · · · ,Mk−1, being the reconstructed vector for which there aremk
vectorsx̂j with ||x− x̂j || < ||x− x̂mk ||. Specifically, each neuron adjusts its weight
via a dynamical learning rate which depends on the ranking of its reconstruction
error. Denote the numberd associated with each neural unitm bydm. The following
learning rule generalizes the neural ‘gas’ algorithm in [13].

1w(k)
t (m) = µthλ(dm)

(
eTt w(k)

t (m)xgm + zmet
)

m = 1, · · · ,Mk

k = 1, · · · ,K (10)

wherehλ(dm) is 1 for dm = 0 and decays to zero for increasingdm. In the simu-
lation we choose the same one as in [13],hλ(dm) = exp(−dm/λ), with λ being a
decay constant. In Equation (10), all the quantities are specific tokth partition.

In this paper, we do not discuss the topological relationships among the sub-
spaces, which can be described by a dynamically adapted graph called Delaunary
triangular (DT) [13]. Using a connectivity matrix to represent the graph structure
with nonnegative elements, the adaptation of the connections can be executed in
the exactly same way as in the ‘gas’ algorithm.

In summary, the learning process can be outlined as concurrently performing
the following steps:

1. Specify a network among a number of candidates according to the given class
label, which is the same in spirit as the strategy in LVQ [7]. This is the basis of our
modular classification scheme which will be further expounded in detail in next
section.

2. Determine a winner unitc in the specified network, the subspaceL(c) of
which is closest to the pattern space of inputx. Note a unit in each network
can be replaced by a subnetwork which represent a subspace with more than one
dimension.

3. Adjust the projection matrix of subspaceL(m) of unit m, m = 1, · · · ,Mk ,
according to their closeness to a given patternx. In one-dimensional subspace
situation, the algorithm is equation (10). Extension to more than one-dimensional
subspace is straight-forward.

After the learning completes, a critical problem is to define a ‘distance’ between
an inputx and a number of subspaces which describe the same class, as there
is no overall projection matrix as in the original subspace method. Based on a
biologically inspired concept of population decoding [14], we proposed in section
4 a generalized distance and the corresponding classification scheme.
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4. Handwritten Digit Recognition Based on Generalized Subspace Pattern
Classification

In recent years, neural networks have been often applied to handwritten digit recog-
nition. In most of previous works, a neural network model is mainly used as a
classifier which is trained to output one of the ten classes. The shortcomings of
such a paradigm have been pointed out in [5]. Another approach is to train an indi-
vidual autoencoder network on examples of each digit class and then to recognize
digits by deciding which autoencoder offers the best reconstruction of the data.
Any network can be defined as an autoencoder provided that it has a meaningful
internal representation which can be used to appropriately reconstruct input. In this
sense, our proposed mixture of local principal component analysis is an efficient
autoencoder model which can be used to construct a modular classification system
for recognizing handwritten digits. Specifically, an individual network is trained on
examples of each digit class and then a digit bitmap is classified by deciding which
net offers the best reconstruction of the data.

We exploited 20000 digits from the segmented handwritten digit database pro-
duced by the U.S. National Institute of Standards and Technology (NIST). Some
digit bitmaps are illustrated in Figure 1. 10,000 samples were used for training and
another 10,000 samples from different forms for testing. The binary images have
been scaled to a 25× 20 pixel grid. Each network hasL = 500 input units andM
output units. Learning is proceeded in three cycles with the training samples. The
parameterµ in Equation (1) is initially set to 1 and then dynamically decreases to
0.1. The deacy constantλ in Equation (10) changes from 20 to 0.1.

The trained networks can then be directly used as classifiers, with scheme shown
in Figure 2. In this architecture, each module is a bidirectional single layer network,
as shown in Figure 3. In each network, the local principal component projections
provide a population of representations and an overall reconstruction can be es-
timated based on the principle of population decoding [14]. In each network, we
regardmth reconstruction̂xm from zm as a partial description of inputx and a
complete reconstruction̂x is the center of gravity of̂xk, k = 1, · · · ,M. Specifically,
the reconstruction vector̂x for each network can be expressed as

x̂ = 6kakx̂k
6kak

, (11)

whereak is an interpolating function. A simple form is the following Gaussian
kernel function, i.e.,

ak = exp

(
−||x− x̂k||2

2ρ2
k

)
, (12)

whereρk is the width ofkth unit’s receptive field, which should be chosen relatively
sharp [14]. When a test samplex is presented to all the ten networks, reconstruction
errorserrl , l = 1, · · · ,10, are obtained,

errl = ||x− x̂(l)||2, l = 1, · · · ,10 (13)
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Figure 1. Some typical examples of handwritten digits.

Figure 2. Our proposed modular classification system based on the mixture models of local
principal component analysis.
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Figure 3. One modulenetk in the Figure 2. Each unit represents a 1D subspace for describing
the corresponding subclass.

wherel indicates the number of network. Clearly, the squared reconstruction error
is a measure of how well a module fits a digit’s bitmap, thus can be considered as
an extension of the ‘distance’ in traditional subspace method. We build a classifier
by using a decision module which compares the distances or reconstruction errors
in Equation (13) between the reconstructed vectors and presented pattern. We can
simply associate the class of a model with the smallest error, i.e.,x is assigned to
the classc∗ if

c∗ = arg min
c
errc (14)

For comparison purpose, we experimented with different nonlinearitiesβ and
different receptive field parameterρ. In Figure 4, we demonstrate the converged
weight vectors in ten networks, each with 25 units. The main recognition results are
shown in Table 1 and 2. A rough guideline for choosing widthρk is ρk <

√
M/3,

i.e., the sharping tuning kernel functions. The effect of nonlinearityβ on the recog-
nition rate is not obvious. We also compared different size of each network. As
can be expected, the larger the network, the more accurate the recognition result.
However, as the number of nodes increase in each network, the learning will slow
down and the improvement over the recognition will be small. In Figure 5 we
illustrate some typical digits that have not been recognized.

The minimum operator in Equation (14) is the simplest hard decision rule. A
more reasonable replacement is using a fuzzy decision. Another further improve-
ment of our recognition scheme is to incorporate classification into learning phase,
as discussed in [15]. Pragmatically, we can also combine different kinds of efficient
classifiers to vote for a final decision.
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Figure 4. The converged weight vectors in ten networks, each with 25 units.

Table I. Recognition accuracy for the mixture model with
differentβ andρ. Each network has 36 units. Both training
and testing data set has 10,000 samples.

β 0.5 1

ρ 1 2 1 2

training set 98.68% 98.64% 98.59% 98.68%

testing set 96.07% 96.99% 96.46% 97.1%

5. Discussion and Conclusion

An appropriate mixture of local PCA constitutes a significant alternative to the
standard PCA. In this paper we proposed an efficient mixture model which creates
a set of statistical representations pertinent to different aspects of input. By neural

Table II. Recognition accuracy for the mixture model with
differentβ andρ. Each network has 25 units. Both training
and testing data has 10,000 samples.

β 0.5 1

ρ 1 2 1 2

training set 97.13% 97.66% 98.03% 97.83%

testing set 96.83% 96.41% 96.30% 96.57%
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Figure 5. Some digits in the training set that have not been recognized. Some of them appear
many times.

‘gas’ based soft competitive learning, each representation selectively focus on a
different subclass. By a nonlinear extension of PCA algorithm, the low dimensional
subspace projection is robust.

A major motivation of studying mixture of local PCA is solving some difficult
pattern recognition problem. Regarding handwritten digit images, a high quality
classifier should discover the data generative mechanism or model the images man-
ifolds. From this viewpoint, Hinton et al. were the first to use some mixture models
of PCA or factor analysis (FA) to recognize handwritten digits [5]. Our recognition
scheme is closely related to their work. However, some important differences exist.
First, instead of applying the EM algorithm, we use the neural ‘gas’ algorithm to
directly perform clustering, which has been proved optimal. Second, in Hinton’s
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method, each digit’s manifold is modelled by a number of linear autoencoders
which perform linear subspace projections. In our method, local fitting is provided
by a nonlinear extension of PCA algorithm which is robust to noise and outliers. A
last and most important difference lies in the classification criterion. In our method,
we apply the population decoding concept to define an averaged ‘distance’ be-
tween a test digit and the subspaces describing the same class, whereas in Hinton’s
method, classification is directly set up on the reconstruction errors given by the
autoencoders.

Our modular classification system demonstrates a very high performance on the
handwritten digit recognition task. With moderate module size, 98.68% and 97%
recognition rates have been achieved for training set and testing set, respectively,
without any rejection. This performance is a combined result from (1) a modular
approach (or one-class-one-net); (2) optimal partitioning input space by neural
‘gas’ algorithm and robust local fitting; and (3) population decoding for better
measuring the fidelity of a module’s fitting of digit image, thus offering a better
decision.
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