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Abstract Topologically ordered vector quantiza-
tion has attracted attention in recent years. In this
paper, we propose to apply a topology representing
"learning algorithm — neural ‘gas’ model for obtain-
ing topology ordered codebook for the vector quantiza-
tion (VQ) and exploit it on image compression. Com-
pared with the well-known Kohonen’s self-organizing
map (SOM), neural ‘gas’ model has several advan-
tages, including faster convergence and higher signal-
to-noise ratio in reconstruction. We illustrate some
ezperimental results and discuss several relevent re-
search issues.

1. Introduction

Image compression is an essential task for image
storage and transmission. Among various image com-
pression techniques, vector quantization techniques
may be preferable when higher compression rates are
required. A vector quantizer (VQ) is a mapping of in-
put vectors into a finite collection of codevectors and
the problem of the design of a VQ consists in finding
a codebook which minimizes the quantization mean
square error.

In the neural network field, some competitive
learning algorithms can be considered as on-line ver-
sions of the traditional k-means clustering or LBG
algorithm for VQ. An important biologically inspired
model self-organizing map (SOM), which forms a low
dimensional structured representation of input data,
has also been successfully applied to VQ *~5. Topo-
logically ordered codebook has been proven to be able
to bring at least the following advantages®—2: (1) the
coding/decoding process is more robust with respect
to channel errors; (2) a reduced image bit rate and
a faster search phase are available; (3) it provides a
possible progressive transmission (PT) procedure in
communications systems.
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Kohonen’s feature map is a special way for con-
serving the topological relationships in input data,
which also bears some limitaitons. In SOM, the
neighborhood relations between neurons must be pre-
defined. More generally, the neighborhood relations
between neurons should match the topological struc-
ture of the data manifold. On the other hand, SOM
does not minimizes a global cost function and there-
fore is not optimal in approximating the input dis-
tribution. In recent years, developments on SOM
have provided some alternatives. A typical exam-
ple is the topology representing network called neural
‘gas’ model®~3), which has a keypoint of introducing
a neighborhood-ranking within the input space. To
find the neighborhood-rank, each neuron compares
its distance with the input vector to the distances of
all the other neurons. Unlike SOM which requires
a prior defined static neighborhood relations, neural
gas model determines a dynamical neighborhood re-
lations as learning proceeds. Neural ‘gas’ model has
been successfully applied to some pattern recognition
tasks, but its practical applications are still few com-
paring with the famous SOM.

The main purpose of this paper is to illustrate the
advantages of the neural ‘gas’ model over SOM in
constructing a good codebook for image compression.
The exploitation of the topology preservation prop-
erty will not be discussed. The faster convergence
and smaller distortion errors, as pointed out in 23
for time-series prediction and further confirmed by
our experiment on image coding, suggest the prac-
tical significance of neural ‘gas’ model in real data
coding/decoding system.

This paper is organized as follows. In the next
section, we briefly outline the principles of SOM and
neural ‘gas’ model, and the ways of applying them in
constructing codebook in vector quantization. Sec-
tion 3 offers specific image compression experiments
with SOM and neural ‘gas’ algorithm, respectively.
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Concluding remarks are provided in last section.

2.

Self-organizing Map and Neural

‘Gas’ Model for Vector Quantization
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arrangement of the neural units within a prestruc-
tured lattice. Each time an input x is presented, we
first make an (brdering of the elements of a set of dis-
tortions Ex = |{||jx — w(m)|l,m = 1,---,M} and then
determine the%adjustment of reference vector w(m).

The neighborhjood relation is described by a dynamic
graphic structure called Delaunary triangular (DT).

As the weight vectors change, the connectivity of the
underlying DT graph changes dynamically. A con-
nectivity matrix C is defined to represent the graph
structure, with its elements C;; > 0.

For a given data vector x, we determine
a “neighborhood-ranking” (Ex(mg), Ex(m;), ---,
Eyx(mp—1)) of the distortion set, with w,,, being
closest to x, wp,, being second closest to x, Wy, , k =
0,---,M—1 being the reference vector for which there
are k vectors w;j with ||x —wj|| < ||x—wyy, ||- The cre-
ation of a “virtual” connection between mgy and m,
is described by setting Cnom, from zero to one. At
the same time, each neuron adjusts its own weight
via dynamical learning rate which depends on the
ranking of its representation capabilities. Denote the
number k associated with each neural unit m by kn,.
The following learning rule is the simple neural ‘gas’
algorithm in(—3),

Awy(m) = pchr(km)(x — Wi(m)), m=1,---, M
(4)
where hy(kp) is 1 for k, = 0 and decays to zero
for increasing k,, with characteristic decay constant.
In the simulaiton we choose. the same one as in ),

(k) = ezp(—km /).

Each connection from node 7 to node j has an age
t;; that is the number of adaptation steps ¢ the con-
nection already exists without having been refreshed.
If the age of a connection exceeds its lifetime T, the
connection is removed. Connections have to die out
because weight vectors that are neighboring at an
early stage might not be neighboring any more at a
more advance stage. However, a connection does not
die out if it is regualrly refreshed.

3. Image Compression Experiments

A VQ based image compression system begins by
mapping the image into a set of vectors, some of
which are chosen as a training set. Next a library
of reference vectors is generated using an appropri-
ate VQ algorithm. Then each input vector is sub-
sequently compared to the codewords in the code-
book and is coded by the closest one, according to
the distortion measure used. The label of the clos-
est codeword in the codebook is transmitted in lieu
of the input vector, thus achieving compression. The
reconstruction of the image is accomplished by sim-
ple table look up. The receiver has an exact copy
of the codebook with associated lables for each code-
word. As the label for each vector is received, it is
replaced by the corresponding reproduction vector in
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the codebook.

The first image used for the simulation is 256 x 256
pixels “Lena” image on a grey scale of 8 bits. The
image was partitioned into a number of blocks of size
4 x 4 which were then arranged into series of one-
dimensional input vectors of size 16. The mean vector
m is calculated beforehand and stored. This mean is
substracted from all randomly chosen subimages in
the training sequence. The data at input layer is
scaled from the original pixel values to continuous
value (0-1). 256 codewords were used, which mean
0.5bpp compressed bit rate according the following
definition
‘ m
where D is the number of codebook entries and m
is- the dimension of training vectors. When train-
ing with SOM algorithm, the 256 output units are
arranged in 16 x 16 lattice and the width ¢ of neigh-
borhood interaction function is initially large (5) and
then shrink to small value (0.5). When experiment-
ing with the neural gas model, the decay constant A
is dynamically changed from 30 to 0.005. Both algo-
rithms are proceeded in 20 cycles, within each cycle
4096 randomly chosen samples participate in learn-
ing. As to the quality of reconstructed images, the
peak signal-to-noise ratio (PSNR)

PSNR = lOloglo —Kzzsssé—

is used as the performance measure, where the MSE
denotes the mean square error over the entirety. Fig-
ure 1 gives a compression result. The original “Lena”
image and the corresponding reconstructed images
from SOM-VQ and Gas-VQ are shown in left column.
The comparison of PSNRs is illustrated in Figure 2

(a)-

Another image we used is a 480 x 500 mandrill
image. To save the computing time, we rescale the
image to a 240 x 250 with 8 bits gray scale. The code-
book with 256 codewords is.constructed in the same
way as for Lena image. The compressed bits rate
is 0.4 in this situation. SOM and the neural ‘gas’
models were also compared with the reconstructed
images shown in the right column in Figure 1 and
PSNR illustrated in Figure 2 (b). It is obvious that
the codebook from neural ‘gas’ model provide much
better reconstruction quality.

4. Discussions and Conclusions

The SOM based codebook could present a topolog-
ical order between the codewords, which is a useful

property especially when an efficient code search is
needed. In this paper, we showed that the neural
‘gas’ algorithm as a topology representing model can
be a beneficial alternative in constructing topologi-
cally ordered codebook for vector quantization and
corresponding image compression. The fast conver-
gence property and high reconstruction quality will
find more significance in establishing a real vector
quantization system. Currently we are further im-
proving the neural ‘gas’ based VQ by combining some
other techniques such as hierarchical VQ, VQ with

‘edges classifiers, etc.
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Figure 1: Left column: original Lena image (top), re-
constructed image by 256 codewords from SOM-VQ
(middle) and reconstructed image from Gas-VQ, also
using 256 cod¢words (bottom). Right column: origi-
nal mandrill itnage (top), reconstructed image by 256
codewords from SOM-VQ (middle) and reconstructed
image by 256 codewords from Gas-VQ (bottom).
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Figure 2: The peak signal-to-noise ratios (PSNR)
vs training cycles for the reconstructed images from
SOM (dot-and-dash line) and neural ‘gas’ model
(solid line), respectively. (top) PSNR for recon-
structed Lena image. In each cycle, randomly chosen
4096 4 x 4 blocks participate in training ; (bottom)
PSNR for reconstructed mandrill image. In each cy-
cle, randomly chosen 3000 4 x 5 blocks are used in
training.
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