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Abstract-This paper investigates the robust nonlinear H- 
filtering problem for nonlinear systems with uncertainties 
which are described by integral functional constraints. The 
objective is to design a dynamic filter such that the &-gain 
from an exogenous input to an estimation error is minimized 
or guaranteed to be less or equal to a prescribed value 
for all admissable uncertainties. We establish the intercon- 
nection between the robust nonlinear H, filtering problem 
and the nonlinear 3f, filtering problem for known systems, 
i.e. systems without uncertainties. Using the existing non- 
linear ?f, filtering results for known systems, we solve the 
robust nonlinear 3& filtering problem in terms of Hamilton- 
Jacobi inequalities. Copyright 01996 Elsevier Science Ltd. 

1. Introduction 

Over the past several years, the problem of ?fm filtering for 
linear systems has received considerable attention. A number 
of approaches have been proposed (for example, Kwakemaak, 
1986; Grimble, 1988; Limebeer and Shaked, 1991). This prob- 
lem can be stated a$ .follows: given a dynamic system with 
exogenous input and measured output, design a filter to esti- 
mate an unmeasured output such that the mapping from the 
exogenous input to the estimation error is minimized or no 
larger than some prescribed level in terms of the 3f, norm. 
In Nagpal and Khargonekar (1991) and Basar (1991), it has 
been shown that the existence of a solution to the 31, filtering 
problem is in fact related to the solvability of an appropriate 
algebraic Riccati equation. This result is then extended in Fu 
et al. (1992) to a class of linear systems which are subject to 
parametric uncertainty. A sufficient condition for the existence 
of a solution is derived also via algebraic Riccati equations. 

At the same time, the problem of the nonlinear 3f- con- 
trol problem has been studied by a number of authors (see, 
for example, Ball and Helton, 1989; Basar and Olsder, 1982; 
van der Schaft, 1991; Isidori and Astolfi, 1992; Isidori, 1991). 
There are two commonly used approaches for providing so- 
lutions to nonlinear 3f- control problems. One is based on 
the dissipativity theory and theor; of differential games (see 
Basar and Bernhard, 1991; Ball and Helton, 1989). Another is 
based on the nonlinear version of the classical Bounded Real 
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Lemma as developed by Willems (1972) and Hill and Moy- 
Ian (1980) (see, for example, van der Schaft, 1991; Isidori and 
Astolfi, 1992; Isidori, 1991). Both of these approaches convert 
the problem of nonlinear !& control to the solvability of the 
so-called Hamilton-Jacobi eauation (HJE). A nice feature of 
these results is that they are parallel to th; linear 3&., results. 
Further research along the line of the dissipativity theory and 
theory of differential games has been attempted (see, e.g. Ball et 
al., 1993; Isidori and Astolfi, 1992; Isidori, 199 1) where results 
on disturbance attenuation for nonlinear systems via state feed- 
back and/or output feedback have been provided. In Nguang 
and Fu (1994) and Berman and Shaked (1995) solutions to the 
nonlinear %., filtering problem have been obtained. 

The motivation of this paper stems from the fact that all 
the nonlinear & results cited above assume that the model 
is perfectly known (without uncertainty). We consider nonlin- 
ear systems subject to uncertainties that are described by an 
integral functional constraint and input disturbance. The prob- 
lem addressed here is to design a nonlinear dynamic estimator, 
such that the estimation error dynamics are Lyapunov stable, 
and achieve a prescribed level of disturbance attenuation for 
all admissiable uncertainties. 

Our first main result establishes the equivalence between 
a robust nonlinear & filtering problem and nonlinear 3f, 
filtering for a system without uncertainty. This allows us to 
solve the robust nonlinear 3f- filtering problem via existing 
nonlinear ?f, filtering techniques (I$&ang and Fu, 1994; 
Berman and Shaked, 1995). The second main result Drovides a 
complete solution to.the robust nonlinear 3fm flterin’g problem 
in terms of two ‘scaled’ HJEs. This result can be viewed as a 
generalization of robust linear 3&, filtering results in Fu et al. 
(1992) to a class of nonlinear systems with uncertainties. 

2. System description and problem formulation 

Consider a smooth uncertain nonlinear system modeled by 
equations of the form 

1(r) = A(x) + AA(x) + B(x)w(t), x(O) = 0. 
y(t) = C(x) + AC(x) + D(x)w(t). 11) 
Z(l) = L(x). 

where x(t) E Iw” is the state, y(t) E Rm is the measured 
output, w(t) E R” is the exogenous input noise, z(t) E w is 
the signal to be estimated, A(x),B(x), C(x),D(x) and L(x) 
are known C2 matrix functions with appropriate dimensions, 
A(O) = 0, C(O) = 0, and L(O) = 0. M(x) and AC(x) represent 
the uncertainties in the system. 

Assumption 1 

where HI (x9, H2 (x) and E(x) are known matrix functions that 
characterize the structure of the uncertainties and E(0) = 0. 
Further, the following integral functional constraint 

I 
cm (IIEW II2 - IIF(x, 0EW l12)dt > 0 (3) 

holds and [D(x) H2(x)l[D(x) HZ(X)]’ > 0, Vx E UP. 
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We use the same definition of finite &-gain as in van der 
Schaft (1992) 

Definition 1. Given any y > 0, the mapping from co(t) to z(t) 
is said to have &-gain less than or equal to y if 

I,’ Ilztt) ll’dt I r’ lo’ IIwW l12dt, 

for all T 2 0 and all w E fz(O, T), where 11 . II denotes the 
Euclidean norm. 

In analogy to the robust linear H- filtering theory (see, e.g. 
Fu et al., 1992), we define the robust nonlinear 3&, filtering 
problem as follows. 

Robust nonlinear 3&, filtering problem. Given any y > 0, find 
a filter of the form 

E(t) = a(5) + b(z)y(t), 5(f) E B”, 5(O) = 0, 
B(t) = Z(5), i(r) E IlP, (5) 

where z(t) E UP is the state of the filter, i(r) E WP is the 
estimate of z(t), a(z), b(z) and Z(z) are C2 matrix functions 
with appropriate dimensions, a(O) = 0 and Z(0) = 0. The 
objective is such that the &-gain from the disturbance w(t) to 
the estimation error z(f) - i(t) for the augmented system (1) 
with (5) is less than or equal to y, i.e. 

I 
T 

Ilz(t) - i(t) ll’dt I y2 
0 

for all T 2 0, all w E &(O, T) and all admissible uncertainties. 
Without loss of generality, we assume y = 1 in the sequel. 

Before imposing the second assumption on system (1) with 
(5), we need the following definition. 

Definition 2. A system 

NO = j-(x(t). u(t)). x(O) = 0, 

VU) = h(x(t)) (7) 

is said to be responsive if there exists some u(a) such that 
n(T) + ~(0) for some T > 0. 

Assumption 2. The following two systems generated from (1) 
with (5) are responsive: 

.i= A(x) + B(x)w(t). x(O) = 0, 

rl = E(x) (8) 

i= A(x) +Hl(x)v, x(0) =O, 

E = a(g) + b(z)C(x) + b(z)Hz(x)v, 80, = 0. 

rJ = r(5) - L(x). (9) 

Remark 1. Note that the assumption above is very mild. In 
particular, (8) being responsive is natural because otherwise the 
disturbance terms in (1) vanishes. Also, (9) being responsive 
roughly means that v can influence the state (x, 5) through 
HI (x) and Hz(x). Note that v represents the uncertainty. If (9) 
is not responsive then the uncertainty terms in (1) will vanish. 

3. Review of nonlinear 3fW filtering 

The following nonlinear system has been considered in 
Nguang and Fu (1994): 

n(t) = A(x) + B(x)w(tL x(O) = 0. 
y(t) = C(x) + D(x)w(tL (10) 
z(t) = L(x). 

which is the same as (1) except that M(x) and AC(x) are void 
here. The following theorem provides sulIicient condition for 
the existence of a solution to nonlinear 3&, filtering problem. 

Theorem 1. Consider the system (lo), then the nonlinear H- 
filtering problem has a solution if there exist a nonnegative 
scalar function E(X, 5) : I" x Rn - R and a matrix function 
b(z) : R” - Wnxm for (5) satisfying the following condition: 

HJ(r 5) e AHJ(x, ‘$1 + b,(x, S)e(x)b’,(x. 5) 5 0. (11) 

for all x, z E R”, where AHJ(x, $1 is defined as 

with 

A,(r E) = 
A(X) - B(x)d(x)e-‘(x)[C(x) - C(C)1 

A(5) 
L&c, 5, = -c(x) - U5). 

F,(x, 5) = 

e(x) = D(x)D’(x), 

C,(x, 5) = C(x) - C(E). 

B’,(x, 5) = [B(x)lZ- D’(x)e-‘(x)D(x)lf 0 1 

b:(x, 5, = $‘je(x, z)b(&f) + (;V;E(X, E)B(x)D’(x) 

+d(x) - C(z))e-‘(x). 

If this is the case, then a suitable filter of the form (5) is given 

by 

a(z) = A($) - b(E)C(E), 

Z(5) = L(5). 

(13) 

(14) 

Remark 2. Under some mild assumptions on E(X, c), 
AHJ(x, .Ej) I 0 Vx, 5 E Wn is a necessary condition for 
the existence of a solution to nonlinear LJ& filter problem, 
where AHJ(x, 5) is defined in (12) (for details, see Nguang 
and Fu, 1994). The gap between the necessary condition and 
sufficient condition is well recognized and is due to the nature 
of nonlinear systems. This gap disappears for linear systems. 

4. Main result 

In this section, we show that the problem of the robust non- 
linear Hm filtering problem is solvable if and only if the non- 
linear L& filtering problem for a scaled system is solvable. This 
in fact leads to the solvability of some scaled Hamilton-Jacobi 
inequalities. Our solution is obtained using a recent result on 
S-procedure for nonlinear systems (Savkin and Petersen, 1993). 
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4.1. Review of S-procedure for nonlinear systems. Recently 
Savkin and Petersen (1993) have extended the so-called S- 
procedure (Yakubovich, 1971) to a very general set of integral 
functionals defined over the space of solutions to a stable 
nonlinear time-invariant systems. The nonlinear time-invariant 
systems they consider are of the form 

i(l) = b(x(t). w(t)). (15) 

where x(t) E Ok” is the state and w(t) E Wm is the input. 
Associated with (15) is the following set of integral functionals: 

fs(x(.), WC,)) = jam ps(x(th w(t))dt, s = 0,. , k (16) 

which satisfy the following assumptions: 
A.1 The function $J(., a) is continuous. 
A.2 For all {x(e), w(s)} E Lr(O, m), the corresponding inte- 

gral functionals defined in (16) are finite. 
A.3 For any given E > 0, there exists a constant 6 > 0 such 

that for any w(m) E &(O, W) and any initial condition 
_Q E (~0 E R” : llxoll I a}, the following condition 
holds: 

Ifsh(~L WC.)) - fs(x2(-). w(.))l < E, 

s=o,1,2 ,..., k, (17) 

where xt (e) and x2( .) are the trajectories of the sys- 
tem (15) corresponding to the initial conditions x(0) = 
.Q and z(O) = 0, respectively. 

Lemma 1. Savkin and Petersen (1993) consider the sys- 
tem (15) and suppose the associated fitnctionals (16) satisfying 
conditions A.l-A.3. Then fo(x(.),w(.)) t 0 for all pairs 
{x(a). w(m)) E !R” x Rm subject to f,(x(-), w(a)) h 0, s = 
1,. , . , k, if and only if there exist T,* > 0, s = 0,. , k with 

&t T.s > 0, such that 

Tofo (X(*)s w(*)) 2 Tlfi(X(*), wt.)) 

+Tzfz(x(.). w(*)) + + Tkfk(X(.), w(*)), 

(18) 

for all w(m) E Lz(0.00) and x(a) satisfying (15). 

4.2. Analysis for the robust nonlinear L% jiltering problem. 
Given the system (1) satisfying Assumption 1, we define the 
following scaled system: 

i(t) = A(f) + [B(f) +H, (f)]Kdt), Z(O) = 0. 

jql) = C(f) + [D(f) ~H2(P)ld(r). 

L(i) 
I(f) = TE(jz) s 

[ 1 (19) 

where I?(t) E W” is the state, G(t) E Wm+i is the input noise, 
T > 0 is a constant and i(t) is a function of the state to be 
estimated. The associated estimator for i(t) is the same as in 
(5) except that the estimate of .$t) is given by 

IQ3 t(t) = o 

[ 1 . (20) 

Note that the second block of %t) is restricted to be zero. 
Using Lemma 1, we obtain the following result (see Appendix 
A for the proof). 

Theorem 2. Consider system (1) and a filter of the form (5) 
satisfying Assumptions 1 and 2. The property (6) holds for (1) 
with (5) for all admissible uncertainties if and only if there 
exists a positive constant T, such that (6) holds for (19) with 
the same filter. 

4.3. Solution to global robust nonlinear 3& filleringproblem. 
In view of Theorem 2, the remaining task is to solve the 
scaled nonlinear L&, filtering problem given in (19). Note that 
this problem is not the same as the L& filtering problem in 
Section 2 because of the special structure of the estimate t(t) 
of Z(t) (see (20)). Indeed, the solution to the problem requires a 
Hamilton-Jacobi inequality as given in the following theorem. 

Theorem 3. Consider the uncertain system (19) satisfying As- 
sumptions 1 and 2. Given a scaling function T > 0, suppose 
there exist a nonnegative function E(X, 5) and a matrix func- 
tion b(z) for (5) satisfying 

UHJ(x, 5) +6(x, Zj)e(x)&(x, 5) 5 0, 

for all x, 5 E W”, where 

(21) 

-c,(x, FL?-‘(xG(x. 5) 

+L:(x, E)L(x, 5) + ;v:E(& ~,~cr,~,‘c~,~-‘cx,rCcX) - C(-5,1 

+T*E’(x)E(x) 

(22) 

with 

‘2,(X> 5) = 
A(x) - &x)@((x)f?-‘(X)[C(X) -c(z)] 

45) 

b(x) = [D(X) +2(x)1. 

t?(x) = b(x)&(x), 

B’,(x, 5, = [ir(x,V- b7x)2-'(x)B(x)lf o] I 

B(x) = [B(x) $H, (x)1. 

L,(x, 5) and Cc(x, 5) are defined in Theorem 1 and 

h(x, z)’ = ; V+(x. E)b(E) + (+;dx, EUWD’(x) 

-i V,e(E. E)B(E)oL(E) + d(x) - C (F))e-‘(x). 

If this is the case, then there exists a filter of the form (5) with 
functions a(z) and r(E) det’ined as 

a(E) = A(E) + ;&x)&x)v,~(S. 6) 

-b(5)[C($) + ;&x)i%x)%45.5)1, (23) 

r(E) = L(5), (24) 

which will render (6) for all x, 5 E W” 

Proof By Theorem 2 the robust nonlinear LJf= filtering prob- 
lem is converted into a nonlinear 3f, filtering problem for a 
‘scaled’ known system. Using Theorem 2 for a known system 
we obtain our result. 0 

Remark 3. Similar to Remark 2, under some assumptions on 
E(X, c), CJHJ(x, 5) 5 0 Vx, 5 E BP, is a necessary condition 
for the existence of a solution to the robust nonlinear 3& 
filtering problem. 
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Remark 4. For linear systems, it can be shown (Nguang and 
Fu, 1994) that the condition given in Theorem 3 reduces to 
the same conditions as given by Fu et al. (1992). 

5. Conclusion 

In this paper, we have established an interconnection between 
robust nonlinear rti, filtering and 3fm nonlinear filtering. 
Based on this interconnection, we have provided a sufficient 
condition for the existence of a filter to a nonlinear system with 
uncertainties described by some integral functional constraints. 
Our condition is expressed in terms of a ‘scaled’ Hamilton- 
Jacobi inequality. This result can also be viewed as an extension 
of Fu et al. (1992) which treats linear uncertain systems. It 
can be shown that the result on uncertain nonlinear systems 
can be further extended to treat the case where there are more 
than one block of uncertainties. But for the sake of simple 
bookkeeping, the details are not presented. 

During the revision of this paper, we became aware that the 
robust ti, filtering problem is also considered by Shergei et 
al. (1994). 
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Appendix A. Proof of Theorem 2 

Rewrite the augmented system (1) with (5) as follows: 

P(t) = A(x) + HI (x)v(t) + B(x)w(t), x(O) = 0, 

t(t) = a(5) f b(S)C(x) + b(S)Hz(x)v + 6(5)D(x)w(t). 

5(O) = 0. 

y(t) = C(x) + H2(x)v + D(x)w(t). 

z(t) = L(x). 

i(t) = Z(5). 

where w(.), v(.) E &(O, w) and 

(A.]) 

I 
m 

fl(X(.), 5(.), v(e)) = (IIE(x)I12 - ilWl12)dt t 0. (~4.2) 
0 

The & filtering requirement becomes 

fo(x(*). 5(.). w(.), v(.)) 

= 
I 

o~(llw(t)I12 - Ilz(r) -i(t)l12)dt z 0. (A.3) 

Using Lemma 1, (A.3) holds for all x(a). w(.) and v(.) sat- 
isfying (A.2) if and only if there exist TO 2 0, TI 2 0 with 
TO + ~1 > 0, such that 

Tofo(‘) - Tlfi(.) 2 0 (A.4) 

for all w(m), v(.) E &(O, ~0) and x(e), z(s) satisfying (A.]). We 
show that both TO and ~1 must be positive by excluding the 
following two cases: 

Case 1: 

Case 2: 

~1 = 0. In this case, TO > 0 and fo( a) 1 0. Setting 
w = 0 and using (A.3), we have z(t) - i(t) = 0 for 
all t > 0 and v(.). But this is impossible due to 
Assumption 2. So ~1 > 0. 
TO = 0. Setting v = 0 and using (A.2), we have 
E(x(t)) = 0 for all t L 0 and w(a). Again this 
possibility is excluded by Assumption 2. So TO > 0. 
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Consequently, there exists T > 0 such that 

(A3 

Necessiry: Now suppose (6) holds for the augmented system 
(1) with (5), i.e. 

I 

T 
llz(t) -i(r) il’dt 5 

0 I 

T 

IlwWll*dt VW(.) E LzKJ, 73. 
0 

T > 0. (A.6) 

We need to show that the following inequality holds for the 
system (19) with the same filter: 

I 

T 

I 

T 
Iii(t) -8(t) li*dt 5 IlWlI*d~ VP(-) E L2W. Th 

0 0 

T > 0. (A.7) 

Without loss of generality, we assume 

Choosing 

r?(t) = 0 Vt > T. (A.8) 

we force the state trajectory of the system (A.1) to be iden- 
tical to that of (19) with (5). From the analysis above, we have 

I 
om(lli(r) - bll’- Ii++(t)ll*)dt I 0, (A.10) 

which implies (A.7) because of (A.8). 
Suficiency: Conversely, suppose (A.7) holds for the augmented 
system (19) with (5). Then, for any T > 0 and w( -) E &(O, T), 
we need to show that (A.6) holds for the augmented system (1) 
with the same filter. Indeed, for any T > 0, w( -) E .Lr(O, T) 
and v(m) E &(O, 0~) satisfying (A.2), we can assume that 
w(t) = 0 Vt > T without loss of generality. Choose 

_ w(t) 
w = TV(t) [ 1 VOstsT (A.1 1) 

and G(f) = 0 Vt > T. Then, (A.7) implies that (A.5), and 
then (A.3), i.e. 

I 

00 
( IlzW - 30 II* - IIW ll*)dt 5 0. 

0 
(A.12) 

Since w(e) is truncated, we obtain (A.6). 

= G(m) 


