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Robust output feedback stabilization of a class of time-varying
non-linear systems

Sing Kiong Nguangy* and Minyu Fuz

This paper deals with the problem of robust output feedback stabilization of a class of
time-varying non-linear systems. This class of systems involves two kinds of time-
varying uncertainties: those norm-bounded and those bounded by a smooth non-linear
function of the output. Under the assumption that the zero dynamics of the system are
uniformly asymptotically stable and some additional mild conditions, we show via a
Lyapunov function approach that the uncertain system can be robustly stabilized by a
time-varying non-linear output feedback controller. The order of this controller turns
out to be one less than the relative degree of the uncertain system. A systematic design
procedure is given for constructing the controller. Illustrative examples are given. Note
that the results generalize several previous results on robust output feedback stabiliza-
tion.

1. Introduction

Over the past several years, a great deal of research has

been devoted to adaptive stabilization of uncertain non-
linear systems with stable zero dynamics (e.g. Sastry and
Isidori 1989, Taylor et al. 1989, Kanellakopoulos et al.
1991a±c, Praly et al. 1991, Marino and Tomei 1993a,b,

Huang 1995, Khali 1996, Byrnes et al. 1997, Isidori
1997, Isidori et al. 2000). Common assumptions
employed in these adaptive schemes are that the
unknown parameters are time-invariant (or varying

su� ciently slowly) and must enter the state equation
linearly. Although these assumptions allow the con-
ventional parameter estimation theory for linear systems
to be generalized to non-linear systems, most non-linear
systems do involve non-linear and/or time-varying

parameters.
The assumption of linear parameters has been

removed by Marino and Tomei (1993b). The key di� er-
ence between that paper and the papers cited above

(Sastry and Isidori 1989 and Taylor et al. 1989 in par-
ticular) is that the design procedure proposed in Marino

and Tomei is not based on parameter estimation. That
is, the controller does not attempt to achieve exact non-

linearity cancelation. Rather, only stabilization of the

system is of concern.
This paper is motivated by the fact that the adaptive

scheme proposed in Marino and Tomei (1993b) is not
suitable for systems with fast time-varying uncertainty.

Since adaptive control schemes in general have di� -

cultly with fast time-varying systems, we will be inter-
ested in designing robust stabilizers.

More precisely, this paper deals with robust output
feedback stabilization of a class of time-varying non-

linear systems. This class of systems is represented by
what we call a generalized output feedback form, which

involves two types of uncertainty. The ®rst type is a set
of time-varying parameters, which have uniform bounds

on themselves and their derivatives. The second type
includes smooth non-linear functions of the output

that are uniformly bounded by a known non-linear

function of the output. This generalized output feedback
form is extended from Kanellakopoulos et al. (1991a). It

turns out that many non-linear systems, including those
studied in Kanellakopoulos et al. (1991a) and Marino

and Tomei (1993a,b), can be represented by this form.

The main assumption we take is that the zero
dynamics of the system are uniformly asymptotically

stable. We call this condition the minimum phase con-
dition. Under this assumption and a few other mild

assumptions, we show that a robust output feedback
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stabilizer exists. For the case when the relative degree r
of the uncertain system is one, this stabilizer is static,
time-varying and non-linear. For system with a higher
relative degree, r > 1, the stabilizer is dynamic with its
order equal to r ¡ 1.

Apart from the aforementioned existence result for
robust stabilization, we propose a simple procedure
for constructing such a stabilizer. For the case r ˆ 1,
this stabilizer involves three tuning parameters. For
r > 1, a two-step design procedure is employed. The
®rst step involves setting up an auxiliary system with
r ˆ 1 and robust stabilization of this system. This con-
troller, when applied to the original system, requires the
derivatives of the output. The second step constructs a
dynamic ®lter in order for the robust stabilizer to be
physically realizable. This dynamic ®ltering is similar
to the ®ltered-transformation in Marino and Tomei
(1993b). However, the construction of the ®lter is quite
di� erent because the method in Marino and Tomei relies
on the time-invariant nature of the system, and hence it
is inappropriate for time-varying systems. Rather, we
use a method similar to the back-stepping method.

The rest of this paper is organized as follows. Section
2 de®nes the uncertain system to be considered. A coor-
dinate transformation is introduced in Section 3 to iso-
late the zero dynamics of the system for the case of
r ˆ 1. We then move on presenting our main results
on robust stabilization in Sections 4 and 5 for r ˆ 1
and r > 1, respectively. Illustrative examples are given
in Section 6, and some concluding remarks in Section 7.

2. System description and de®nitions

We consider a class of non-linear systems that can be
transformed into the following generalized output feed-
back form:

_xx…t† ˆ A…³…t††x…t† ‡ B…³…t††¼…y; t†u…t† ‡ f …y; ³…t†; t†
y…t† ˆ Cx…t†;

…2:1†

where x…t† 2 n is the state; u…t† 2 is the input;
y…t† 2 is the output; ³…¢† 2 « ˆ ‰«1

…¢† ¢ ¢ ¢ «p
…¢†Š is a

set of functionals representing time-varying unknown
parameters, each element ³…¢† 2 « is a su� ciently
smooth function; f …y; ³…t†; t† is an n £ 1 vector repre-
senting the non-linear uncertainty in the autonomous
part of the plant; ¼…y; t† is a known non-linear time-
varying scalar function; A…³…t†† and B…³…t†† are su� -
ciently smooth uncertain matrix functions of ³…¢† with
appropriate dimensions; and f …0; ³…t†; t† ˆ 0; 8³…¢† 2 «
and ¼…y; t† 6ˆ 0 for all y 2 .

The objective of robust output feedback stabilization
is to ®nd either a static controller of the form

u…t† ˆ K…y; t† …2:2†

or a dynamic compensator of the form

_¹¹…t† ˆ Ac
…¹; y; t†

u…t† ˆ Cc
…¹; y; t†

…2:3†

such that the closed loop is robustly asymptotically
stable.

De®nition 2.1: The system …2:1† is said to have in-
variant relative degree r if there exists some ° > 0 such
that

CA
k…³…t††B…³…t†† ˆ 0; 8 0 µ k µ r ¡ 1; ³…¢† 2 «; t ¶ 0

jCA
r…³…t††B…³…t††j ¶ ° 8 ³…¢† 2 «; t ¶ 0;

where Ak denotes the kth power of A.

Throughout, the uncertain matrix functions A…³…t†† and
B…³…t†† will be assumed to have the following properties.

Assumption 2.1: The system …2:1† has invariant relative
degree r > 0 and

sup
³…¢†2«;t¶0

kA
…j†…³…t††k µ Mj; j ˆ 0; . . . ; r ¡ 1 …2:4†

sup
³…¢†2«;t¶0

kB
…j†…³…t††k µ Hj; j ˆ 0; . . . ; r ¡ 1; …2:5†

where
…j† denotes the jth time derivative, Mj and Hj are

constants.

The non-linear function f …y; ³…t†; t† is assumed to be
smooth, satisfying the following assumption.

Assumption 2.2: There exists a CaratheÂodory function

»…y; t† such that

f …y; ³…t†; t†
y

®®®®

®®®® µ »…y; t†; 8 …y; ³…¢†; t† 2 £ « £ ‡;

…2:6†

where k ¢ k denotes the Euclidean norm. Also
limt!1 »…y; t† < 1 for all y 2 .

A function V : £ p 7! q
is called CaratheÂ odory if :

(1) V…¢; z† is Lebesque measurable for each z 2 p
; (2)

V…t; ¢† is continuous for each t 2 ; (3) for each compact
set U » £ p, there exists a Lebesque integrable func-
tion mu

…¢† such that kV…t; z†k µ mu
…t† for all …t; z† 2 U .

This type of function is needed primarily for ensuring
the existence and continuity of the solution to a di� er-
ential equation; see Corless et al. 1984, passim.

3. Coordinate transformation for r ˆ 1

The notion of zero dynamics of the system plays a cru-
cial role in deriving our main result. We consider the
case r ˆ 1 and de®ne a coordinate transformation
which isolates the zero dynamics. Before doing so, we
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assume, without loss of generality, that B…³…t†† and C
are in the following form:

B…³…t†† ˆ ‰b1
…³…t†† b2

…³…t†† ¢ ¢ ¢ bn
…³…t††Št …3:1†

and

C ˆ ‰1 0 ¢ ¢ ¢ 0Š: …3:2†

Remark 3.1: If B…³…t†† and C are in a di� erent form,
we can always transform them into …3:1† and …3:2†, re-
spectively.

Using Assumption 2.1, we have

b1
…³…t†† ¶ b1

ˆ ° > 0 8³…¢† 2 «; t ¶ 0 …3:3†

to satisfy the invariant relative degree condition. To
simplify our notation, we partition A…³…t†† into

A…³…t†† ˆ A11
…³…t†† A12

…³…t††
A21

…³…t†† A22
…³…t††

µ ¶
; …3:4†

where A11
…³…t†† 2 1£1

, A12
…³…t†† 2 1£…n¡1†

,
A21

…³…t†† 2 …n¡1†£1
and A22

…³…t†† 2 …n¡1†£…n¡1†
. De®ne

B*…³…t†† ˆ b2
…³…t††

b1
…³…t††

b3
…³…t††

b1
…³…t††

¢ ¢ ¢ bn
…³…t††

b1
…³…t††

³ ´
T

:

…3:5†

Following [15, 13], we de®ne a change of coordinates as
follows:

z1

²1

..

.

²n¡1

0

BBBB@

1

CCCCA
ˆ Tx ˆ 1 0

¡B*…³…t†† In¡1

³ ´
x: …3:6†

Obviously, the transformation matrix T is non-singular.
Further, Assumption 2.1 assures that both jjT jj and
jjT¡1jj are uniformly bounded.

Applying the transformation in (3.6) to the system
(2.1), its zero dynamics (obtained by setting z1

ˆ 0 and

_zz1
ˆ 0) are given by

_²²…t† ˆ ¡…³…t††²; …3:7†

where

¡…³…t†† ˆ A22
…³…t†† ¡ B*…³…t††A12

…³…t††: …3:8†

In the sequel, the following de®nition of minimum phase
will be adopted.

De®nition 3.1: The system …2:1† with invariant relative
degree r is said to be invariant minimum phase if its zero
dynamics are uniformly asymptotically stable for all

³…¢† 2 «.

The following lemma establishes the equivalence
between the uniformly asymptotically stability and the
existence of a quadratic Lyapunov function.

Lemma 3.1: (see Kalman and Betram 1960 for proof.)
Consider the dynamic system

_xx ˆ A…t†x; …3:9†

where x 2 n
; A…t† is a su� ciently smooth and uniformly

bounded matrix function. Then the following propositions
are equivalent:

(P1) The equilibrium state x ˆ 0 is uniformly asympto-
tically stable.
(P2) The system …3:9† admits a quadratic Lyapunov
function, i.e. there exists a symmetric matrix function
P…¢† : 7! n£n such that:

(1) P…¢† is continuous;
(2) ¬I µ P…t† µ ­ I , for all t 2 , and some positive

¬ and ­ ;
(3) The following Lyapunov derivative satis®es:

L…x; t† :ˆ x
t

P…t†A…t† ‡ A
t…t†P ‡ _PP…t†

£ ¤
x

µ ¡¶kxk2 …3:10†

for all x 2 n
, t 2 ‡, and some positive constant ¶.

In view of Lemma 3.1, we make the following assump-
tion.

Assumption 3.1: There exist a positive-de®nite matrix
function P…³…t†† (which is not necessarily known to the
designer) and known positive constants a, ¬ and ­ such
that ¬I µ P…³…t†† µ ­ I and the di� erential inequality

¡
t…³…t††P…³…t†† ‡ P…³…t††¡…³…t††† ‡ d

dt
P…³…t†† µ ¡2aI

…3:11†

holds for all ³…¢† 2 «; t ¶ 0.

4. Robust output feedback stabilization: r ˆ 1

We propose a non-linear control design procedure for
robust stabilization of the system (2.1) with relative
degree r ˆ 1.

De®ne

F*…y; t† ˆ

f2
…y; ³…t†; t†

f3
…y; ³…t†; t†

..

.

fn¡1
…y; ³…t†; t†

fn
…y; ³…t†; t†

2

66666664

3

77777775
: …4:1†

Under the transformation (3.6), system (2.1) becomes
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_²² ˆ …A22
¡ B*A12

†² ‡ …A22B* ¡ B*A11
¡ B*A12B

¤

‡ A21
¡ _BB*†y ‡ F* ¡ B*f1

7 ¡…³…t††²…t† ‡ ¥…³…t††y…t† ‡ F*…y; ³…t†; t†

¡ B*…³…t††f1…y; ³…t†; t† …4:2†

_yy ˆ A12² ‡ …A11
‡ A12B*†y ‡ f1

‡ b1¼u

7 ¤…³…t††²…t† ‡ ¦…³…t††y…t† ‡ f1
…y; ³…t†; t†

‡ b1
…³…t††¼…y; t†u…t†; …4:3†

where all the new matrix functions are de®ned in an
obvious way. By Assumption 2.2, the following func-
tions are well-de®ned and smooth:

¿…y; ³…t†; t† ˆ F*…y; ³…t†; t† ¡ B*…³…t††f1
…y; ³…t†; t†

y
…4:4†

Á…y; ³…t†; t† ˆ f1
…y; ³…t†; t†

y
: …4:5†

Hence, (4.2) and (4.3) can be rewritten as

_²²…t† ˆ ¡…³…t††²…t† ‡ ¥…³…t††y…t† ‡ y…t†¿…y; ³…t†; t† …4:6†

_yy…t† ˆ ¤…³…t††²…t† ‡ ¦…³…t††y…t† ‡ y…t†Á…y; ³…t†; t†

‡ b1
…³…t††¼…y; t†u…t†: …4:7†

Also implied by Assumption 2.2 is that there exist two
CaratheÂ odory functions »1

…y; t† and »2
…y; t† such that

k¿…y; ³…t†; t†k µ »2
…y; t† …4:8†

jÁ…y; ³…t†; t†j µ »1
…y; t†: …4:9†

for all …y; ³…t†; t† 2 £ « £ ‡.
Let P…³…t†† be the Lyapunov matrix in Assumption

3.1. De®ne

q…³…t†† ˆ ¤…³…t†† ‡ ¥
t…³…t††P…³…t††: …4:10†

We know from Assumptions 2.1 and 3.1 that
kq…³…t††k µ ·qq and j¦…³…t††j µ ·¦¦ for all ³…¢† 2 « and
t ¶ 0, where ·qq and ·¦¦ are some known positive con-
stants. Further choose constants

K1 > ·¦¦ ‡ ·qq
2

2a

Á !

=b1; K2 >
1

b1
; K3 >

­
2

2ab1
; …4:11†

where a; ­ are as in Assumption 3.1 and b1 in (3.3) which
follows from Assumption 2.1.

Our main result is as follows.

Theorem 4.1: Suppose the system …2:1† has invariant
relative degree r ˆ 1, is invariant minimum phase and
satis®es Assumptions 2.1, 2.2 and 3.1. Then there exists
a static global robust output feedback stabilizer of the
form …2:2†. In particular, one can choose the following
stabilizer

u…y; t† ˆ ¡¼
¡1…y; t† K1

‡ K2»1
…y; t† ‡ K3»

2
2
…y; t†

¡ ¢
y…t†;
…4:12†

where »1
…¢† and »2

…¢† are given in …4:8† and …4:9†, respect-
ively; Ki; i ˆ 1; 2; 3 are in …4:11†.

Proof: Let P…³…t†† be the positive de®nite matrix func-
tion in Assumption 3.1. A suitable choice of Lyapunov
function for the system (4.6) and (4.7) with (4.12) is
given by

V…y; ²; t† ˆ 1

2
y

2 ‡ 1

2
²

t
P…³…t††²: …4:13†

Then the time derivative of V…y; ²; t† along the trajec-
tories of system (4.6) and (4.7) with (4.12) reads:

_VV ˆ yf¤² ‡ yÁ ‡ ¦y ¡ b1
…K1

‡ K2»1
‡ K3»

2
2
†yg

‡ f¡² ‡ ¥y ‡ y¿gt
P² ‡ 1

2
²

t _PP²

µ yf¤² ‡ yÁ ‡ ¦y ¡ b1
…K1

‡ K2»1
‡ K3»

2
2
†yg

‡ f¥y ‡ y¿gt
P² ¡ a²

t
²: …4:14†

The last step above uses (3.11). Using the triangular
inequality

y¿
tP² µ a

2
²

t
² ‡ 1

2a
y2

¿
tP2

¿

and recalling the de®nition of q…³…t†† in (4.10), we
further bound (4.14) and rewrite it in a more compact
form:

_VV µ ¡
y

²

" #
t b1K1

¡ ¦ ¡ q…³…t††
2

¡ q
t…³…t††

2

a

2
I

2

664

3

775
y

²

" #

¡ b1
…K2»1

‡ K3»
2
2
† ¡ 1

2a
¿

t
P

2
¿ ¡ Á

» ¼
y

2
:

Recall the de®nition of »i
…y; t† in (4.8) and (4.9) and Ki

in (4.11). The choice of K1 ensures that the ®rst term in
_VV above is strictly negative. Similarly, the choice of K2

and K3 together with »1 and »2 guarantee that the
second term above in _VV is non-positive. It follows that

_VV µ ¡a…jyj2 ‡ k²k2† …4:15†

for some positive a. Using (4.13) and P…³…t†† ¶ ¬I ,
(4.15) implies _VV µ ¡âaV for some âa > 0. Since V…y; ²†
is radially unbounded, we have shown that the system
(2.1) is globally asymptotically stable with (4.12). &

Remark 4.1: If the non-linear terms ¼…y; t† and
f …y; ³…t†; t† in the system …2:1† disappear, we have a
linear system with time-varying uncertainty. In this
case, Theorem 4.1 can be specialized to a known result
in ‰17Š as follows.
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Corollary 4.1: Consider the following uncertain linear
time-varying system

_xx…t† ˆ A…³…t††x…t† ‡ B…³…t††u…t†
y…t† ˆ Cx…t†

…4:16†

satisfying the following conditions:

L1) it has invariant relative degree r ˆ 1 and satis®es
Assumption 2.1; and
L2) it is invariant minimum phase and satis®es
Assumption 3.1.

Then there exists a linear static output feedback con-
troller of the form

u…t† ˆ ¡Ky…t† …4:17†

with some constant K which globally robustly stabilizes
(4.16).

Remark 4.2: If all the non-linear functions in the
system …2:1† are Lipschitz bounded (i.e, »i

…y; t† ˆ µi

for i ˆ 1; 2 and ¼…y; t† ˆ µ3, where µi > 0 for all
i ˆ 1; 2; 3†, then clearly the controller given in …4:12† is
a linear gain. If the uncertainty ³…t† in system …2:1† is
time-invariant then Theorem 4.1 reduces to Marino and
Tomei’s (1993b) result.

5. Robust output feedback stabilization: r ¶ 2

We now generalize Theorem 4.1 to systems with invar-
iant relative degree r > 1. In this case, a dynamic stabi-
lizer of the form (2.3) will be used. The design involves
two steps. In the ®rst, we consider an auxiliary system
which is a cascade of (2.1) with an …r ¡ 1†th

order di� er-
entiator at the input (®gure 1). The purpose of this
cascading is that the auxiliary system has invariant rela-
tive degree equal to 1. Therefore, Theorem 4.1 applies

and a static output feedback stabilizer u*…t† ˆ K…y; t†,
where u*…t† is the input to the auxiliary system.

However, this controller, if viewed as a mapping from
the output y…t† to u…t†, is non-casual because the di� er-
entiator (5.2) is not physically realizable. In the second
step, we show that the di� erentiator can be replaced by a
suitable ®ltered approximation without destroying the
stability properties of the corresponding closed-loop
(see ®gure 2). The ®ltered mapping from y…t† to u…t†
will be casual and forms a suitable dynamic stabilizer.
The details are given below.

Step 1: We consider the following auxiliary system

_xx…t† ˆ A…³…t†††x…t† ‡ B…³…t††P…t† ‡ f …y; ³…t†; t†
y…t† ˆ Cx…t†;

…5:1†

where

P…t† ˆ p0u*…t† ‡ p1u*
…1†…t† ‡ p2u*

…2†…t† ‡ ¢ ¢ ¢

‡ pr¡2u*
…r¡2† ‡ u*

…r¡1†…t† …5:2†

u*…t† is the control input to (5.1), and the scalars
p0; p1; . . . ; pr¡2 are arbitrarily chosen as long as the poly-
nomial

P…s† ˆ sr¡1 ‡ ¢ ¢ ¢ ‡ p1s ‡ p0
…5:3†

is Hurwitz. Now we show that the auxiliary system (5.1)
is causal and has invariant relative degree equal to 1.
This is revealed by a sequence of coordinate transforma-
tions so that the transformed system does not contain
the derivatives of u*…t†. To this end, let

·xx…t† ˆ x…t† ¡ B…³…t††fp1u*…t† ‡ p2u*
…1†…t† ‡ ¢ ¢ ¢

‡ pr¡2u*
…r¡3†…t† ‡ u*

…r¡2†…t†g; …5:4†

then
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_·xx·xx…t† ˆ A…³…t††x…t† ‡ B…³…t††¼…y; t†u…t† ‡ f …y; ³…t†; t†

¡ _BB…³…t††fp1u*…t† ‡ p2u*
…1†…t† ‡ ¢ ¢ ¢

‡ pr¡2u*
…r¡3†…t† ‡ u*

…r¡2†…t†g

‡ B…³…t††fp1u*
…1†…t† ‡ p2u*

…2†…t† ‡ ¢ ¢ ¢

‡ pr¡2u*
…r¡2†…t† ‡ u*

…r¡1†…t†g

ˆ A…³…t††·xx…t† ‡ B…³…t††p0u*…t† ‡ ‰A…³…t††B…³…t††

¡ _BB…³…t†† ‡ B…³…t††Š

£ fp1u*…t† ‡ p2u*
…1†…t† ‡ ¢ ¢ ¢ ‡ pr¡2u*

…r¡1†…t†

‡ u*
…r¡2†…t†g ‡ f …y; ³…t†; t† …5:5†

y…t† ˆ C·xx…t†: …5:6†

As we can see in (5.5) the highest order of derivative of
u*…t† is …r ¡ 2†. Now rede®ne the state variables

··xx·xx…t† ˆ ·xx…t† ¡ ‰A…³…t††B…³…t†† ¡ _BB…³…t††Šfp2u*…t†

‡ p3u*
…1†…t† ‡ ¢ ¢ ¢ ‡ pr¡2u*

…r¡4†…t† ‡ u*
…r¡3†…t†g:

…5:7†

Repeat the procedure as described above until all the
derivatives of u*…t† disappear in the state equation.
Eventually, we can write the system (5.1) as

_xx*…t† ˆ A…³…t††x*…t† ‡ D…³…t††u*…t† ‡ f …y; ³…t†; t†

y…t† ˆ Cx*…t†; …5:8†

where D…³…t†† is determined by the recursive procedure
described above. It can shown that D…³…t†† contains the
terms A

i
B; i ˆ 0; 1; . . . ; r ¡ 1 and their derivatives as well

as ArB. Therefore the system (5.8) has invariant relative
degree 1 following from Assumption 2.1. Further, (5.8)
satis®es Assumptions 2.2 and 3.1. In particular, the zero
dynamics of (5.8) consist of the inverse dynamics of the

di� erentiator and the zero dynamics of the original
system. Since both of them are uniformly asymptotically
stable, the overall zero dynamics are also uniformly
asymptotically stable. Employing Theorem 4.1, a static
controller of the form u*…t† ˆ K…y; t† as in (5.8) can be
constructed which globally robustly stabilizes the system
(5.8).

Step 2: Suppose we have found a smooth static stabi-
lizer u* ˆ K…y; t† as in (4.12). Our job here is to ®nd a
nonlinear dynamic ®lter depicted in ®gure 2 such that
the ®ltered compensator is also a stabilizer and has rela-
tive degree equal to …r ¡ 1†. Inspired by Marino and
Tomei (1993b), we claim that the required ®lter can be
of the following form:

u*…t† ˆ ¡¹1

_¹¹1
ˆ ¡¹1

‡ ¹2

_¹¹2
ˆ ¡¹2

‡ ¹3

..

. …5:9†

_¹¹r¡2
ˆ ¡¹r¡2

‡ ¹r¡1

_¹¹r¡1
ˆ ¡¹r¡1

‡ ¹r*…y; ¹1; . . . ; ¹r¡1; t†;

where ¹r*…¢† is a smooth non-linear function to be chosen
which depends on K…y; t†. Our design method is a recur-
sive procedure similar to the well-known back-stepping
procedure. To show that the ®ltered controller will not
destroy the stability properties of the corresponding
closed loop, we need to introduce a lemma.

Consider the system:

_²²…t† ˆ ¨…³…t††²…t† ‡ yF
1
…y; ³…t†; t†

_yy…t† ˆ ¤…³…t††²…t† ‡ yF
2
…y; ³…t†; t† ‡ b1

…³…t††u…t†;
…5:10†

which satis®es the following conditions:
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C1 : all the matrix functions de®ned in (5.10) are
su� ciently smooth;
C2: jj¨…³…t††jj µ M¡, jj¤…³…t††jj µ M¤ and
·bb1

¶ b1
…³…t†† ¶ b1 > 0 for all ³…¢† 2 «; t ¶ 0, where

M¡ , M¤; ·bb1 and b1 are known constants; and
C3: F

1
…y; ³…t†; t†k k µ %1

…y; t† and F
2
…y; ³…t†; t†k k µ

%2
…y; t† for all ³…¢† 2 «; t ¶ 0, where %1

…y; t† and

%2
…y; t† are known CaratheÂ odory functions.

Lemma 5.1: Consider the system (5.10) with the con-
troller

u…t† ˆ ¡¹1

_¹¹1
ˆ ¡¹1

‡ ¹2

_¹¹2
ˆ ¡¹2

‡ ¹3
…5:11†

..

. ˆ ..
.

_¹¹k
ˆ ¡¹k

‡ ¹k‡1*…y; ¹1; . . . ; ¹k; t†:

Suppose there exist smooth functions ¹*1
…y; t†,

¹*2
…y; ¹1; t†; . . . ; ¹k‡1*…y; ¹1; . . . ; ¹k; t†

satisfying ¹*1
…0; t† ˆ 0 and a Lyapunov function

Vk
…y; ²; ~¹¹1; . . . ; ~¹¹k

† ˆ 1

2
y

2 ‡ 1

2
²

t
P…³…t††² ‡

Xk

iˆ1

~¹¹
2
i ;

…5:12†

where

~¹¹1
ˆ ¹1

¡ ¹*1
…y; t†

~¹¹2
ˆ ¹2

¡ ¹*2
…y; ¹1; t†

..

. ˆ ..
. …5:13†

~¹¹k¡1
ˆ ¹k¡1

¡ ¹*k¡1
…y; ¹1; . . . ; ¹k¡2; t†

~¹¹k
ˆ ¹k

¡ ¹*k
…y; ¹1; . . . ; ¹k¡1; t†:

In addition, assume that the time derivative of …5:12†
along system …5:10† with …5:11† is

_VVk
…y; ²; ~¹¹1; . . . ; ~¹¹k

† µ ¡akVk
…y; ²; ~¹¹1; . . . ; ~¹¹k

†; …5:14†

where ak is a positive constant. Then there exists a smooth
function ¹*k‡2

…y; ¹1; . . . ; ¹k‡1; t† for the system …5:10†,
…5:11† …with ¹

¤
k‡1 replaced by ¹k‡1

† and

_¹¹k‡1
ˆ ¡¹k‡1

‡ ¹k‡2*…y; ¹1; . . . ; ¹k‡1; t† …5:15†

together with a Lyapunov function

Vk‡1
…y; ²; ~¹¹1; . . . ; ~¹¹k‡1

† ˆ 1

2
y

2 ‡ 1

2
²

t
P…³…t††² ‡

Xk‡1

iˆ1

~¹¹
2
i ;

…5:16†

where

~¹¹k‡1
ˆ ¹k‡1

¡ ¹k‡1*…y; ¹1; . . . ; ¹k; t† …5:17†

such that the time-derivative of Vk‡1 satis®es

_VVk‡1
…y; ²; ~¹¹1; . . . ; ~¹¹k‡1

†

µ ¡ak‡1Vk‡1
…y; ²; ~¹¹1; . . . ; ~¹¹k‡1

†; …5:18†

where ak‡1 is a positive constant. Furthermore, we can
choose

¹*k‡2
ˆ ¡ ¡…y; ¹; t† ‡ ak‡1

… †~¹¹k‡1
¡ ~¹¹k

‡ ¹k‡1

‡ D
k‡1

…y; ¹1; . . . ; ¹k‡1; t†; …5:19†

where

D
k‡1

…y; ¹1; . . . ; ¹k‡1; t† ˆ @¹*k‡1

@¹1

…¡¹1
‡ ¹2

† ‡ ¢ ¢ ¢

‡ @¹*k‡1

@¹k

…¡¹k
‡ ¹k‡1

† ‡ @¹*k‡1

@t

…5:20†

and

¡…y; ¹; t† ˆ @¹*k‡1

@y

³ ´
2

1

¬1
M

2
¤

‡ 1

¬2
%

2
2
…y; t†

‡ 1

¬3

·bb2
1

‡ 1

¬4

·bb1
¹*1

…y; t†
y

³ ´
2

…5:21†

for some (small) positive constants ¬1; ¬2; ¬3, ¬4. In the
above, M¤; ·bb1 and %2 are given in Conditions C2 and C3.

Proof: see appendix A. &

Applying the lemma above to the system (5.10), we
start with ¹1*…y; t† ˆ K…y; t†, and then obtain

¹*i
…¢†; i ˆ 2; . . . ; r, recursively. Combining the non-

linear ®lter (5.9) with the di� erentiator (5.2) and the
static compensator (4.12) yields the overall dynamics
compensator as follows:

u…t† ˆ ¡¼
¡1…y; t†‰p0¹1

…t† ‡ p1¹
…1†
1

…t† ‡ p2¹
…2†
1

…t† ‡ ¢ ¢ ¢

‡ pr¡2¹
…r¡2†
1

…t† ‡ ¹
…r¡1†
1

…t†Š

_¹¹1
ˆ ¡¹1

‡ ¹2

_¹¹2
ˆ ¡¹2

‡ ¹3

..

. …5:22†
_¹¹r¡2

ˆ ¡¹r¡2
‡ ¹r¡1

_¹¹r¡1
ˆ ¡¹r¡1

‡ ¹r*…y; ¹1; . . . ; ¹r¡1; t†:

Equivalently, the stabilizing controller is given by
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u…t† ˆ ¡¼
¡1…y; t†‰p0¹1

¡ p1
…¹1

¡ ¹2
† ¡ ¢ ¢ ¢

¡ pr¡2
…¹r¡2

¡ ¹r¡1
† ¡ ¹r¡1

‡ ¹r*…y; ¹1; . . . ; ¹r¡1; t†Š

_¹¹1
ˆ ¡¹1

‡ ¹2

_¹¹2
ˆ ¡¹2

‡ ¹3
…5:23†

..

.

_¹¹r¡2
ˆ ¡¹r¡2

‡ ¹r¡1

_¹¹r¡1
ˆ ¡¹r¡1

‡ ¹r*…y; ¹1; . . . ; ¹r¡1; t†;

where ¹r*…y; ¹1; . . . ; ¹r¡1; t† given in (5.19) with …k ‡ 1†
replaced by r. Clearly (5.23) is physically realizable.

Now we state our result as follows.

Theorem 5.1: Suppose the system …2:1† has an invariant
relative degree r > 1, invariant minimum phase and satis-
fying Assumptions 2.1 and 2.2. Take any Hurwitz poly-
nomial P…s† as in …5:3† and suppose the auxiliary system
(5.8) satis®es Assumption 3.1. Then there exists an
…r ¡ 1†th

order dynamic output feedback stabilizing con-
troller of the form …2:3†.

Proof: Consequences of Steps 1 and 2. &

If the system under consideration is linear with time-
varying uncertainty, then we have a result in [17] as
follows.

Corollary 5.1: Consider the following uncertain linear
time-invariant system

_xx…t† ˆ A…³…t††x…t† ‡ B…³…t††u…t†
y…t† ˆ Cx…t†;

…5:24†

satisfying the following conditions:

H1) it has invariant relative degree r > 1 and satis®es
Assumption 2.1;
H2) it is invariant minimum phase and its zero
dynamics satis®es Assumption 3.1.

Then there exists a linear dynamic compensator output
feedback controller of the form

_¹¹…t† ˆ Ac¹…t† ‡ Bcy…t†
u…t† ˆ Cc¹…t† ‡ Dcy…t†:

…5:25†

Remark 5.1: Theorem 5.1, can be viewed as a general-
ization of the results in ‰18; 19; 13; 17Š. If all the non-
linear functions of the system …2:1† are Lipschitz
bounded, (i.e, »i

…y; t† ˆ µ for i ˆ 1; 2 and »3
ˆ µ3,

where µi > 0 for all i ˆ 1; 2; 3) then, clearly the con-
troller is a linear time-invariant dynamics compensator
as in …5:25†. If the uncertainty ³…t† in system …2:1† is

time-invariant, then Marino and Tomei’s (1993b) results
follow immediately from Theorem 5.1.

6. Numerical examples

6.1. Example 6.1

Consider the following non-linear uncertain system:

_xx1
ˆ x2

‡ ye³…t†y

_xx2
ˆ x3

_xx3
ˆ u

y ˆ x1
‡ 2x2

‡ x3;

…6:1†

where j³…t†j µ 1. De®ne a transformation

T :

²1
ˆ x1

²2
ˆ x2

y ˆ x1
‡ 2x2

‡ x3;

8
><

>:
…6:2†

which is globally non-singular. Apply (T ) on system
(6.1) we have

_²²1
ˆ ²2

‡ ye³…t†y

_²²2
ˆ ¡²1

¡ 2²2
‡ y …6:3†

_yy ˆ ¡3²2
¡ 2²1

‡ 2y ‡ ye³…t†y ‡ u;

which has invariant relative degree equal to 1. Also, the
zero dynamics are given by

_²²1
ˆ ²2

_²²2
ˆ ¡²1

¡ 2²2;
…6:4†

which are uniformly asymptotically stable. With

P ˆ 1:5 0:5

0:5 0:5

µ ¶
; Az

ˆ 0 1

¡1 ¡2

µ ¶
;

we have

At
zP ‡ PAz

ˆ ¡I : …6:5†

Compared with (4.6) and (4.7), we have

Á…y; ³…t†; t† ˆ ¿…y; ³…t†; t† ˆ e³…t†y

»1
…y; t† ˆ »2

…y; t† ˆ ey
:

Clearly the system (6.3) satis®es all the assumptions in
Theorem 4.1. Subsequently, a stabilizing controller is
given by

u ˆ ¡…285y ‡ 10ye
y ‡ 25ye

2y†: …6:6†

The closed-loop response of the system (6.1) with (6.6)
and the control input are given in ®gure 3 and 4, respect-
ively. We take the initial condition x…0† ˆ …¡2; 5; ¡9†
and the uncertainty ³…t† ˆ sin…t†.
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6.2. Example 6.2

Given the following non-linear system

_xx1
ˆ …2 ‡ ³1

…t††x2
‡ x

…1‡³2
…t††

1

_xx2
ˆ u …6:7†

y ˆ x1;

with j³1
…t†j µ 1, j _³³…t†j µ 1 and 0 µ ³2

…t† µ 1. This
system satis®es the assumptions in Theorem 5.1 with
invariant relative degrees r ˆ 2.

Step 1: Reduce the relative degree of the system (6.7)
to 1 by cascading the following di� erentiator:

u…t† ˆ u*…t† ‡ _uu*…t† …6:8†

at the input. Clearly the system (6.7) with the di� eren-
tiator (6.8) is

_xx1
ˆ …2 ‡ ³1

…t††x2
‡ x

…1‡³2
…t††

1

_xx2
ˆ u*…t† ‡ _uu*…t† …6:9†

y ˆ x1:

Following the procedure described in Step 1 (in section
5), the system (6.9) can be written as

_·xx·xx1
ˆ …2 ‡ ³1

…t††·xx2
‡ …2 ‡ ³1

…t††u*…t† ‡ ·xx
…1‡³2

…t††
1

_·xx·xx2
ˆ u*…t† …6:10†

y ˆ ·xx1;

where ·xx1
ˆ x1 and ·xx2

ˆ x2
¡ u*…t†. It easy to verify that

system (6.10) has relative degree 1 and the zero
dynamics are the same as the zero of the di� erentiator

(6.8) which are stable. Applying Theorem 4.1, the static
compensator is found to be

K…y; t† ˆ …1 ‡ …2 ‡ y
2† ‡ …2 ‡ y

2†2†y: …6:11†

Step 2: Using Theorem 5.1, the non-linear ®lter is
found to be

u*…t† ˆ ¡¹1

_¹¹1
…t† ˆ ¡¹1

‡ ¹*2
…¹1; y; t†; …6:12†

where

¹*2
…¹1; y; t† ˆ ¡…¡…¹1; y; t† ‡ 10†…¹1

¡ K…y; t†† ‡ ¹1;

…6:13†

with

¡…¹1; y; t† ˆ …7 ‡ 15y
2 ‡ 5y

4†2…36 ‡ …2 ‡ y
2†2

‡ 9f3 ‡ y2 ‡ …2 ‡ y2†2Šg2†: …6:14†

The overall dynamics compensator is given by

u…t† ˆ ¡¹*2
…¹; y; t†

_¹¹1
…t† ˆ ¡¹1

‡ ¹*
2
…¹1; y; t†:

…6:15†

The closed-loop response of (6.7) with (6.15) and the
control input are given in ®gures 5 and 6, respectively.
In the simulation, the initial condition x…0† ˆ ‰1; ¡1ŠT

and the uncertainties ³1
…t† ˆ sin…t† and

³2
…t† ˆ 1

2
…1 ‡ sin…t††.
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7. Conclusion

We solved the robust stabilization problem for systems

that are in the generalized output feedback form. Under
the assumption that the zero dynamics are uniformly

asymptotically stable, together with some other mild
assumptions, we showed that the uncertain system can

be robustly stabilized by a time-varying non-linear
output feedback controller. We presented a new sys-

tematic procedure for constructing the time-varying
non-linear controller. Illustrative examples were given

to illustrate the the design procedure. Finally, the results
given in Kwakernaak (1982), Wei and Barmish (1988),

Marino and Tomei (1993b) and Fu and Li (1992) can be

derived as special cases of our results.
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Appendix A. Proof of Lemma 5.1

Consider system (5.10) with the controller (5.11) and
the Lyapunov function Vk

…y; ²; ~¹¹1; . . . ; ~¹¹k
† in (5.12). We

have

_VVk
ˆ y _yy ‡ 1

2 ²
t _PP…³…t††² ‡ ²

tP…³…t†† _²² ‡ 2
Xk

iˆ1

~¹¹i
_~¹¹~¹¹i

ˆ y¤…³…t††²…t† ‡ y
2F

2
…y; ³…t†; t† ¡ yb1

…³…t††¹1

‡ 1
2 ²

t _PP…³…t††²
‡ ²

tP…³…t†† ¨…³…t††²…t† ‡ yF
1
…y; ³…t†; t†‰ Š

‡ 2
Xk¡1

iˆ1

~¹¹i

»
¡ ¹i

‡ ¹i‡1
¡ D

i
…y; ¹1; . . . ; ¹i; t† :

¡ @¹*i

@y
¤…³…t††²…t† ‡ yF

2
…y; ³…t†; t† ¡ yb1

…³…t††¹1
‰ Š

¼

‡ 2~¹¹k

»
¡ ¹k

‡ ¹*k‡1
¡ D

k
…y; ¹1; . . . ; ¹k; t†

¡ @¹*
k

@y
¤…³…t††²…t† ‡ yF

2
…y; ³…t†; t† ¡ yb1

…³…t††¹1
‰ Š

¼

7 Lk
…y; ²; ~¹¹1; . . . ; ~¹¹k

†; …A:1†

where

D
i
…y; ¹1; . . . ; ¹i; t† ˆ @¹*i

@¹1

…¡¹1
‡ ¹2

† ‡ ¢ ¢ ¢

‡ @¹*i

@¹i¡1

…¡¹i¡1
‡ ¹i

† ‡ @¹*i

@t
: …A:2†
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Note that D
i
…y; ¹1; . . . ; ¹i; t† is a known function.

The time-derivative of (5.16) along system (5.10) with
controller (5.11) and (5.15) is

_VVk‡1
…y; ²; ~¹¹1; . . . ; ~¹¹k‡1

†

ˆ y _yy ‡ 1
2 ²

t _PP…³…t††² ‡ _²²
t
P…³…t††² ‡ 2

Xk‡1

iˆ1

~¹¹i
_~¹¹~¹¹i

ˆ y¤…³…t††²…t† ‡ y2F
2
…y; ³…t†; t† ¡ yb1

…³…t††¹1

‡ 1
2 ²

t _PP…³…t††² ‡ _²²
tP…³…t††² ‡ 2

Xk¡1

iˆ1

~¹¹i
_~¹¹~¹¹i

‡ 2~¹¹k
_~¹¹~¹¹k

‡ 2~¹¹k‡1
_~¹¹~¹¹k‡1: …A:3†

The second last term of (A.3) can be re-expressed as

2~¹¹k
_~¹¹~¹¹k

ˆ 2~¹¹k
¡¹k

‡ ¹k‡1
¡ @¹*k

@y
_yy ¡ D

k
…y; ¹1; . . . ; ¹k; t†

³ ´

ˆ 2~¹¹k

³
¡ ¹k

‡ ¹*k‡1
…y; ¹1; . . . ; ¹k; t†

¡ @¹*
k

@y
‰¤…³…t††²…t† …A:4†

‡ F
2
…y; ³…t†; t† ¡ yb1

…³…t†
´

¹1
Š

¡ D
k
…y; ¹1; . . . ; ¹k; t†† ‡ 2~¹¹k

~¹¹k‡1:

Using (A.1)) and (A.4) we can re-express (A.3) into

_VVk‡1
…y; ²; ~¹¹1; . . . ; ~¹¹k‡1

† ˆ Lk
…y; ²; ~¹¹1; . . . ; ~¹¹k

†

‡ 2~¹¹k
~¹¹k‡1

‡ 2~¹¹k‡1
_~¹¹~¹¹k‡1: …A:5†

Knowing that

_~¹¹~¹¹k‡1
ˆ ¡¹k‡1

‡ ¹*
k‡2

¡ @¹*k‡1

@y
_yy

¡ D
k‡1

…y; ¹1; . . . ; ¹k‡1; t†; …A:6†

the last term in (A.5) can be written as

2~¹¹k‡1
_~¹¹~¹¹k‡1

ˆ 2~¹¹k‡1
¡¹k‡1

‡ ¹*
k‡2

¡ @¹*
k‡1

@y
_yy

³

¡ D
k‡1

…y; ¹1; . . . ; ¹k‡1; t†
´

: …A:7†

Now look at the second last term of (A.7)

SLT…y; ²; ¹; ³…t†; t† 7 ¡ 2~¹¹k‡1

@¹*
k‡1

@y
_yy: …A:8†

Using the system equations (5.10), we have

SLT…y; ²; ¹; ³…t†; t† ˆ 2~¹¹k‡1

@¹*
k‡1

@y
‰¤…³…t††²…t†

‡ yF
2
…y; ³…t†; t† ¡ b1

…³…t††¹1
Š:

…A:9†

We know that ¹1
ˆ ~¹¹1

‡ ¹*1
…y; t†. Using the fact that

¹*
1
…y; t† is a smooth function with ¹*

1
…0; t† ˆ 0, we have

¹1
ˆ ~¹¹1

‡ y¹*
1
*…y; t†, where ¹*

1
*…y; t† ˆ ¹*

1
…y; t†=y is also a

smooth function. Rewrite (A.9) as follows:

SLT…y; ²; ¹; ³…t†; t† ˆ ¡2~¹¹k‡1

@¹*k‡1

@y
‰¤…³…t††²…t†

‡ yF
2
…y; ³…t†; t†

¡ b1
…³…t††…~¹¹1

‡ y¹*
1
*…y; t††Š:

…A:10†

Now applying the triangular inequality

ab µ 1

2¬
a2 ‡ ¬

2
b2 …A:11†

for any given ¬ > 0, we get

¡ 2~¹¹k‡1

@¹*k‡1

@y
¤…³…t††²…t†

µ 1

¬1

@¹*k‡1

@y

³ ´2

jj¤…³…t††jj2 ~¹¹
2
k‡1

‡ ¬1²
t
²

¡ 2~¹¹k‡1

@¹*
k‡1

@y
yF

2
…y; ³…t†; t†

µ 1

¬2

@¹*k‡1

@y

³ ´2

F 2
2
…y; ³…t†; t†~¹¹

2
k‡1

‡ ¬2y2

¡ 2~¹¹k‡1

@¹*
k‡1

@y
b1

…³…t††~¹¹1

µ 1

¬3

@¹*
k‡1

@y

³ ´2

b2
1
…³…t††~¹¹

2
k‡1

‡ ¬3 ~¹¹
2
1

¡ 2~¹¹k‡1

@¹*k‡1

@y
b1

…³…t††y¹*1*…y; t†

µ 1

¬4

@¹*k‡1

@y

³ ´
2

‰b1
…³…t††¹*

1
*…y; t†Š2¹2

k‡1
‡ ¬4y2

:

It follows that

SLT…y; ²; ¹; ³…t†; t†

µ @¹*k‡1

@y

³ ´2
1

¬1

jj¤…³…t††jj2 ‡ 1

¬2

F 2
2
…y; ³…t†; t†

³

‡ 1

¬3
b2

1
…³…t†† ‡ 1

¬4

‰b1
…³…t††¹*

1
*…y; t†Š2

´
~¹¹
2
k‡1

‡ ¬1²
t
² ‡ ¬2y2 ‡ ¬3

~¹¹
2
1

‡ ¬4y
2
; …A:12†
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for any positive constants ¬i; i ˆ 1±4. Using Conditions
C2 and C3, the function SLT…y; ²; ¹; ³…t†; t† is bounded
as follows:

SLT…y; ²; ¹; ³…t†; t†

µ @¹*
k‡1

@y

³ ´2
1

¬1
M2

¤
‡ 1

¬2
%

2
2
…y; t† ‡ 1

¬3

·bb2
1

µ

‡ 1

¬4

… ·bb1¹*
1
*…y; t†2

¶
~¹¹
2
k‡1

‡ ¬1²
t
² ‡ ¬2y

2 ‡ ¬3
~¹¹
2
1

‡ ¬4y2

ˆ ¡…y; ¹; t†~¹¹
2
k‡1

‡ ¬1²
t
² ‡ ¬2y

2

‡ ¬3
~¹¹
2
1

‡ ¬4y
2
; …A:13†

where ¡…y; ¹; t† in de®ned in (5.21). Substituting (A.12)
and (A.7) into (A.3), we have

_VVk‡1
…y; ²; ~¹¹1; . . . ; ~¹¹k‡1

†

µ Lk
…y; ²; ~¹¹1; . . . ; ~¹¹k

† ‡ ¬1²
t
² ‡ …¬2

‡ ¬4
†y2

‡ ¬3
~¹¹
2
1

‡ 2~¹¹k‡1
‰~¹¹k

¡ ¹k‡1
‡ ¹*

k‡2
…A:14†

¡ D
k‡1

…y; ¹1; . . . ; ¹k‡1; t† ‡ ¡…y; ¹; t†~¹¹k‡1

¤
:

Note that from (5.14) we know that

Lk
…y; ²; ~¹¹1; . . . ; ~¹¹k

† µ ¡ak
1

2
y2 ‡ 1

2
²

tP…³…t††² ‡
Xk

iˆ1

~¹¹
2
i

Á !

:

…A:15†

Using (A.14), (A.15) and ¹*
k‡2

as in (5.19), we obtain

_VVk‡1
µ ¡ak

1

2
y

2 ‡ 1

2
²

t
P…³…t††² ‡

Xk

iˆ1

~¹¹
2
i

Á !

‡ ¬1²
t
² ‡ …¬2

‡ ¬4
†y2 ‡ ¬3

~¹¹
2
1

¡ 2ak‡1
~¹¹
2
k‡1:

Take ¬i to be su� ciently small. We can ®nd ak‡1 such
that (5.18) holds.

Finally, we note that D
k‡1

…y; ¹1; . . . ; ¹k‡1; t† and

¡…y; ¹; t† are smooth functions. This implies that ¹*k‡2

is also smooth. &
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