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Abstract— Phasor measurement units (PMUs) become impor-
tant to state estimation for power systems by providing globally
synchronized measurements of real-time phasors of voltage
and currents with a high sampling rate. However the large
quantities of measurement data produced by PMUs brings a
serious burden to the communication system, which aggravates
communication constraints such as the packet loss rate. In this
paper, a novel optimization criterion for choosing PMU place-
ments is proposed, considering random communication packet
losses. Based on this criterion, a simplified optimal solution
searching algorithm is given. Finally numerical simulations are
given to test the validity of this algorithm. The dependence of
the optimal PMU placement solution on the packet loss rate is
indicated as well.

I. INTRODUCTION

State estimation in power systems is traditionally done
using static estimation methods, i.e., ignoring previous mea-
surements. This is due to the low sampling rate of traditional
SCADA measurements. The new phasor measurement unit
(PMU) devices permit obtaining synchronous measurements
(via global synchronous time stamps) at a much higher
sampling rate [1]. Hence, when using these measurements,
dynamic estimation, i.e., using a dynamic model of the power
system and a Kalman filter, yields a better performance [2],
[3].

A number of papers have recently studied the problem
of choosing the optimal placement of PMUs. Generally
speaking, these methods aim at minimizing the number
of PMUs under the constraint that the whole system is
topologically observable. Roughly speaking, topological ob-
servability requires the state of the system at any time
instant k to be uniquely computable directly from noise-free
measurements obtained at time k. The optimal placement
can be searched using simulated annealing optimization [4],
[5] or integer linear programming [6], [7], [8]. Also some
papers study the optimal PMU placement issue of making the
system topologically observable considering communication
constraints [9], [10], [11]. In general, these algorithms pro-
vide a set of feasible solutions which guarantee topological
observability using minimum number of PMUs. Hence a
criterion is needed to choose among these solutions. For the
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case of dynamic estimation, the authors of [12] proposed
to use the steady state estimation error covariance of the
Kalman filter as a criterion to clear the ambiguity left from
the initial optimization problem.

The methods described above implicitly assumes that
the communication channel is ideal. When random packed
drops occur, the solutions provided by these results are not
necessarily optimal. Hence, a different selection criterion
needs to be chosen to find the optimal PMU placement.
Notice that packet loss is a particularly serious issue for
wireless communication in noisy environment where the loss
rate can often reach up to 35%.

In this paper we propose a method for optimally choosing
the placement of PMUs, when measurements are subject
to random communication packet losses. As in previous
works, we also require the solution to guarantee topological
observability. However, due to random packet drops, the state
estimation error covariance becomes stochastic. Hence, a
natural extension of the criterion used for the ideal channel
case is to choose the optimal location so that the asymptotic
value of the expected value of the norm of this covariance
is minimized. A difficulty in doing so is that, to the best of
our knowledge, there is no exact expression to compute this
asymptotic value. To go around this, we derive a sequence
of upper and lower bounds on it, which become mono-
tonically tight. Using these bounding sequences, we derive
an algorithm to find the optimal solution. The proposed
algorithm is sequential: At each step it chooses a set of
tighter bounds; it then eliminates, from the set of candidate
solutions, those which are no longer candidate to become the
optimal solution, and it stops when the set of candidates has
only one solution left.

We present numerical experiments based on the IEEE 9-
bus test system. Our experiments show that the proposed
method is able to find the optimal PMU locations in a
relatively small number of iterations. We also show that the
optimal solution depends on the given packet loss rate.

II. PROBLEM FORMULATION

A. System Modeling

The dynamic behavior of a power system is described by
the following model

xk+1 = Axk +Bx̄+ωk, (1)

where xk is the state vector at sample time k, whose entries
are the complex phasors of all bus voltages. The matrix B
is given by B = I−A, where I is the identity matrix, so that
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limk→∞ E(xk) = x̄ (E(·) denotes expectation). The noise ωk is
a white Gaussian vector random process with zero mean and
covariance matrix Σω . We also assume that the initial state
x0 has Gaussian distribution with mean x̄ and covariance Σx0 .

Typically, a PMU is able to measure not only the voltage
phasor of the bus where it is installed, but also the current
phasors of all lines connecting to this bus. Hence, there is
a linear relationship between PMU measurements and the
system state variables. Thus, the measurement equation can
be written as

yk =Clxk +υk, (2)

where

Cl =

[
Re(Hl) −Im(Hl)
Im(Hl) Re(Hl)

]
, Hl =

[
I
Yl

]
and yk being the PMU measurement vector, which includes
bus voltage and branch current phasors. The matrix Cl
depends on the chosen PMU placement, hence we use the
subscript l to denote different PMUs placements. Also, Yl is
the branch admittance matrix. υk is the measurement noise,
assumed to be white and Gaussian with zero mean and
covariance matrix Συ . We further assume that x0, ωk and
υk are uncorrelated.

The packet loss behavior of the system communication
channel is described by

zk = Γkyk (3)

where zk is the measurement vector received by the estima-
tor. The random matrix Γk = diag

[
γ1

k , γ2
k , · · · , γm

k

]
models the packet drops on each channel (i.e., γ i

k = 1 when
a packed is received and 0 otherwise). We assume that the
binary random variables γ i

k are i.i.d., with pi = Pr(γ i
k = 0)

being the packet drop rate of channel i.

B. Topological Observability

As mentioned above, our proposed method searches the
optimal PMU placement from a set of candidates guaran-
teeing topological observability. In this paper we use the
definition given in [4]. That is, a power system is topologi-
cally observable if each node is either directly measured, or
connected to a measured node through at least one branch
with a metered or calculated current phasor. Mathematically,
topological observability means that the matrix Cl has full
column rank.

C. State Estimation

State estimation of the system (1)-(3) is done using a
Kalman filter [13]. This is given by the following recursions

x̂k|k = x̂k|k−1 +Gk
[
zk −ΓkCl x̂k|k−1

]
x̂k+1|k = Ax̂k|k +Bx̄
Gk = Σk|k−1C′

lΓ
′
k

(
ΓkClΣk|k−1C′

lΓ
′
k +ΓkΣυ Γ′

k

)−1

Σk|k = Σk|k−1 −GkΓkClΣk|k−1
Σk+1|k = AΣk|kA′+Σω

(4)

which are initialized by Σ0|−1 = Σx0 and x̂0|−1 = x̄.
Equation (4), shows that the estimation covariance Σk|k is

a function of the PMU placement l as well as the packet
losses matrix Γk. Hence, Σk|k is a random matrix sequence
which depends on the PMU locations.

III. OPTIMIZATION CRITERION FOR CHOOSING
PMU PLACEMENTS

The natural criterion for choosing the PMU placement
is to minimize the asymptotic expected covariance norm
limk→∞ E(||Σk|k||)1, where ||Σk|k|| denotes the largest eigen-
value of Σk|k. A difficulty in doing so is that there is no exact
expression for computing this limit. However, it turns out
that we can still find the optimal locations by using instead
a sequence of lower and upper bounds for this value. We
derive these bounds below. To simplify the notation we use
Σk = Σk|k.

The next lemma introduces the starting point for obtaining
the desired bounds.

Lemma 1: Let

Σ = sol
Σ
{Σ = AΣA′+Σω −AΣC′(CΣC′−1CΣA′}

Σ = sol
Σ
{Σ = AΣA′+Σω}.

Then, if Σ0 ≥ Σ, for all k,

Σ ≤ Σk ≤ Σ. (5)
Proof: Notice that Σ is the steady state solution for

the standard Kalman filtering problem when no packet drop
occurs, and Σ is the same solution obtained when all the
measurement are lost.

The bounds in Lemma 1 are too loose to be used for
our optimization problem. Below we explain how they can
be refined to make them arbitrarily tight, at the expense of
increased computational effort.

Let GN describe the measurements received from time k−
N to k−1, i.e.,

GN
k = {Γk−N+1, Γk−N+2, . . . , Γk−1}. (6)

Also, we let SN
m, m = 1, . . . ,2Ng denote all 2Ng possible

arrival patterns in a time interval of length N. Let Pr(SN
m)

be the probability that SN
m = GN

k , i.e., that the sequence SN
m

was observed from times k−N to k−1. Also, let ϕ(·, ·) be
the function describing the evolution of the error covariance
according to a given sequence, i.e., Σk = ϕ(Σk−N ,GN

k ). Then,
we define

CN =
2Ng

∑
m=1

Pr(SN
m)||ϕ(Σ,SN

m)|| (7)

CN =
2Ng

∑
m=1

Pr(SN
m)||ϕ(Σ,SN

m)||. (8)

The next lemma shows that CN is monotonically increas-
ing and CN is monotonically decreasing.

1Conditions for the existence of this limit are given in [14, §2.2]
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Lemma 2:

CN+1 <CN (9)
CN+1 >CN (10)

Proof: We will only show the monotonicity of the
lower bound. That of the upper bound follows from the same
argument. Consider the following partition of the sequence
SN+1

j :

SN+1
j = {S1

n,S
N
m}. (11)

Then,

CN+1 =
2Ng

∑
m=1

2g

∑
n=1

Pr(SN
m)Pr(S1

n)||ϕ
(
Σ,{S1

n,S
N
m}

)
|| (12)

=
2Ng

∑
m=1

Pr(SN
m)

2g

∑
n=1

Pr(S1
n)||ϕ

(
ϕ(Σ,S1

n),S
N
m
)
||(13)

≥
2Ng

∑
m=1

Pr(SN
m)||ϕ

(
Σ,SN

m
)
|| (14)

= CN (15)

where the inequality in (14) follows since

ϕ(Σ,S1
n)≥ Σ. (16)

Now, it follows from [14, Th. 2.4] that the bounds CN
and CN approach the asymptotic expected norm of the error
covariance as N → ∞, i.e.,

lim
N→∞

CN = lim
k→∞

E(||Σk||) (17)

lim
N→∞

CN = lim
k→∞

E(||Σk||). (18)

Hence, from Lemma 2, we have that

CN ≤ E(||Σk||)≤CN , (19)

i.e., CN and CN are bounds on limk→∞ E(||Σk||), which
become monotonically tight on the limit.

IV. OPTIMAL PMU PLACEMENT ALGORITHM

In this section we use the bounds CN and CN to propose
an algorithm for finding the optimal PMU placement in
the sense of minimizing limk→∞ E(||Σk|k||). In principle, this
could be done by choosing N large enough that both bounds
are “sufficiently close”. However, in a large power system,
this approach is numerically unaffordable. To avoid this, we
propose an alternative algorithm. The main idea is to proceed
sequentially, for N = 1,2, · · · . For each N, the bounds CN and
CN are computed for all candidate PMU placements. Then,
all placements whose lower bound is greater than the smallest
upper bound of all candidate placements, are eliminated from
the set of candidates, before continuing to the next step. The
steps proceed until only one candidate is left. To reduce the
numerical complexity, the initial set of candidates is formed
by those PMU placements which result in systems being

Fig. 1. IEEE 9 bus system

topologically observable. This can be the done using any
available method [7].

We summarize the proposed algorithm below.
(a) Set N = 1, and obtain the initial set of candidate

solutions. To this end we use the integer linear programming
algorithm proposed in [7].

(b) Compute the upper bound CN for all candidate solution
and let CN be the smallest among them.

(c) For each candidate solution compute the lower bound
CN , and if this value is greater than CN , remove this candidate
from the set of candidates.

(d) If the set of candidates has only one solution, stop the
iterations. Otherwise, put N = N +1 and go to (b).

Because, for each candidate, the lower bound and upper
bound converge as N → ∞, we know that the algorithm
above will terminate at some finite N. As we will show in
simulations, this value is typical small.

V. SIMULATION RESULTS

To test the proposed method we use the IEEE 9-bus test
system, shown in Fig. 1. The associated dynamical system
model is summarized in Table I. To obtain the initial set of
candidate solutions, we use the linear integer programming
method in [7], which gives all PMU placements leading
to topologically observable systems, using the minimum
number of PMUs. The resulting set has four solutions, each
of them using three PMUs. The installation buses of these
four solutions are {1,6,8}, {2,4,6}, {3,4,8} and {4,6,8},
respectively. We point out that the solution {4,6,8} has two
extra current measurements, in comparison with the other
three solutions. This makes the comparison somehow unfair,
since this solution consumes more communication resources
than the others. Hence, we cancel two current measurements
from the fourth solution, so that all solutions have the same
number of measurements.

We assume that a packet loss affects all the measurements
of a PMU. In other words, when a packet loss occurs, all the
measurements of the corresponding PMU will be lost. Hence,
there are 23 packet loss patterns at each sample time.

To illustrate the convergence of the bounds CN and CN , we
show in Figs. 2 and 3 their values for different values of N,
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A diag(0.8,0.8,0.95,0.8,0.95,0.95,0.8,0.95,0.8)
B diag(0.2,0.2,0.05,0.2,0.05,0.05,0.2,0.05,0.2)

Σω diag(0.12, · · · ,0.12)

Συ diag(0.12, · · · ,0.12)

Σx0 diag(0.12, · · · ,0.12)

TABLE I
SIMULATION VALUES OF PARAMETERS

1 2 3 4 5
0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0.03

Time N

 

 

CN

C
N

Fig. 2. Bounds of limk→∞ E(∥Σk∥), PMUs located in buses {4,6,8}, pi =
0.05.

corresponding to the fourth solution {4,6,8}. The packet loss
rates are 0.05 and 0.35 respectively. We can see how both
bounds converge monotonically to the same limit value and
that different packet loss rates lead to different convergence
rates.

The bounds of the four candidate solutions, for packet
loss rates of 0.05 and 0.35, are shown in Figs. 4 and 5,
respectively. From the two figures, we get the following
observations: 1) The optimal PMU placements for both cases
can be found after 4 iterations. Even if the gap between the
upper bound and lower bound at sample time 4 shown in
Fig. 2 (or Fig. 3) is still visible, the optimal solution can
already be identified. 2) The two different packet loss rates
lead to two different optimal solutions. When the packet loss
rate has a lower value, pi = 0.05, the third candidate solution
{3,4,8} has the best state estimation performance. However
when pi increases to 0.35, the second candidate solution
{2,4,6} becomes the optimal placement. In addition, we
find that when pi = 0, the optimal placement is {3,4,8}
(the lower/upper bound evolutions are not shown). These
simulations indicate the dependence of the optimal PMU
placement on the given communication packet loss rate. In
other words, we point out that the steady Kalman filter error
covariance used in [12] is only a particular case with pi = 0.
The candidate solutions should be re-evaluated when the
communication environment changes.

1 2 3 4 5
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Time N

 

 

C
N

CN

Fig. 3. Bounds of limk→∞ E(∥Σk∥), PMUs located in buses {4,6,8}, pi =
0.35.

0.015

0.03

N
=

1
 

 

0.018

0.023

N
=

2

0.018

0.022

N
=

3

{1,6,8} {2,4,6} {3,4,8} {4,6,8}
0.019

0.021

PMU placements

N
=

4

C
N CN

Fig. 4. Bounds of limk→∞ E(∥Σk∥), pi = 0.05.

VI. CONCLUSIONS

We have proposed a method for determining the opti-
mal PMU placement in power systems, in the presence of
communication packet losses. The proposed method chooses
the locations from a set of candidate PMU placements,
each of them guaranteeing topological observability. Then
the optimal PMU placements is chosen to minimize the
asymptotic expected value of the norm of the state estimation
error covariance. To reduce the computational complexity,
we propose a sequential algorithm which uses a sequence of
lower and upper bounds for the error covariance, which are
monotonically tight. Numerical experiments show that the
proposed method is able to find the optimal locations with a
relatively small amount of computation.
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0.017

0.06
N

=
1

 

 

0.02

0.04

N
=

2

0.021

0.029

N
=

3

{1,6,8} {2,4,6} {3,4,8} {4,6,8}
0.021

0.027

PMU placements

N
=

4

C
N CN

Fig. 5. Bounds of limk→∞ E(∥Σk∥), pi = 0.35.
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