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a b s t r a c t 

The iterative closest point (ICP) algorithm has the advantage of high accuracy and fast speed for point set 

registration, but it performs poorly when the point sets have a large number of outliers and noises. To 

solve this problem, in this paper, a novel robust scale ICP algorithm is proposed by introducing maximum 

correntropy criterion (MCC) as the similarity measure. As the correntropy has the property of eliminating 

the interference of outliers and noises compared to the commonly used Euclidean distance, we use it 

to build a new model for scale registration problem and propose the robust scale ICP algorithm. Simi- 

lar to the traditional ICP algorithm, this algorithm computes the index mapping of the correspondence 

and a transformation matrix alternatively, but we restrict the transformation matrix to include only ro- 

tation, translation and a scale factor. We show that our algorithm converges monotonously to a local 

maximum for any given initial parameters. Experiments on synthetic and real datasets demonstrate that 

the proposed algorithm greatly outperforms state-of-the-art methods in terms of matching accuracy and 

run-time, especially when the data contain severe outliers. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As a fundamental technique in computer vision, pattern recog-

nition and image analysis, image registration [1,2] has been an

increasingly important research topic. Many tasks in image regis-

tration, such as medical image registration [3,4] , can be formulated

as matching two sets of feature points, more specifically, as a point

set registration problem. The feature points are typically the edge

points sampled from a shape contour or the locations of sparse

points extracted from an image. The goal of point set registra-

tion is to determine the correct correspondence and recover the

underlying transformation between two point sets. 

In general, point set registration can be separated into two sub-

tasks: (1) establish the index matching between two point sets,

and (2) find the spatial transformation that aligns the two point

sets. It is easy to solve each of these subtasks once the solution

to the other is known. Nevertheless, it is much more difficult and

challenging to solve both of them concurrently. Thus, many re-
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earchers have devoted great efforts to solve this problem in the

ast few decades. 

One of the best known point set registration approaches is

he iterative closest point (ICP) algorithm proposed by Besl and

cKay in [5–7] . At each iterative step, the algorithm utilizes the

earest-neighbor relationships to assign a binary correspondence

nd then compute the spatial transformation based on the current

orrespondence. The method solves the correspondence and trans-

ormation alternatively until it reaches a local minimum. Once a

roper initial value is given, the ICP algorithm can perform well in

igid registration. However, it deteriorates quickly in the presence

f non-Gaussian noises and cannot complete non-rigid registration.

In practice, the scale factor exists universally in registration. For

xample, the range data set usually has different scanning reso-

utions determined by the distances from the sensor to the object

urfaces. And images acquired by real digitizers differ greatly

n viewpoints. This requires that the registration algorithms be

ble to estimate the scale parameter, as well as the rotation and

ranslation parameters between images. To deal with the scale

egistration problem, the original ICP algorithm was extended to

cale ICP algorithm where the scale factor is taken into account. By

sing extended signature images (ESIs) to establish index match-

ng between two image objects even though they are different

n scale, Zha et al. [8] thus estimated the scale with this index
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atching and applied it to traditional ICP for registration. Consider

t is time-consuming, Ying et al. proposed the scale ICP algorithm

hich integrates the scale factor directly into the least squares

LS) problem [9] . 

It should be pointed out that the above-mentioned approaches

an not handle the point sets with a large number of outliers and

oises which exist widely in most applications. For example, it is

lways difficult to extract the contour of an object in most real

orld applications and the acquired data may have different pre-

isions and random noise due to the precision of the acquisition

quipment. To solve such a complex point set registration problem,

ome scholars used thresholds [10,11] or probability of distance to

iscard outliers [12–15] , but these methods need an appropriate

hreshold which depends on the structure of point sets and thus

s hard to choose. Another approach attempts to reject outliers

y adopting a coarse to fine process [16] , but the methods often

erform poorly in the case of a large number of outliers in the

oint sets. In addition, the geometrical method [17–19] is used

o eliminate noise and outliers, but this would require additional

nformation of the point sets. 

Different from the work mentioned above, in this paper, we

se correntropy [20–23] to substitute the mean square error

MSE) as the new similarity measure to improve the accuracy and

obustness of traditional scale ICP algorithm. Correntropy, which

s proposed recently, is directly related to the probability of how

imilar two random variables are in the joint space controlled

y the kernel bandwidth, and yields solutions that are robust

o non-Gaussian or impulsive noise. Firstly, we formulate the

cale registration problem into an equality constraint optimization

roblem by applying the maximum correntropy criterion (MCC)

24–28] . To solve such an optimization problem, we imitate the

rocess of ICP and design a fast and accurate iterative procedure

ased on the half-square technique [24] and singular value de-

omposition (SVD) method [15] . We also give several comparative

xperiments to verify that the proposed algorithm is very fast and

obust for scale registration with noisy point sets. 

The rest of this paper is organized as follows. In Section 2 , the

efinition of correntropy is introduced and the difference between

he MSE and the MCC is analyzed. In Section 3 , an optimization

roblem based on the correntropy is derived, and a new scale ICP

lgorithm is given to solve the optimization problem. Following

hat is Section 4 in which the proposed technique is evaluated on

he experiments and a conclusion is finally drawn in Section 5 . 

. Maximum correntropy criterion 

Recently, the concept of correntropy was proposed for infor-

ation theoretic learning (ITL). It is derived from the generalized

orrelation function of random processes and is directly related to

he information potential (IP) of Renyi’s quadratic entropy in which

arzen windowing method is used to estimate the data’s probabil-

ty distribution. Similar to MSE, the correntropy can be a general-

zed similarity measure between two arbitrary random variables.

ere, we firstly introduce the definition of correntropy briefly and

resent some of its most important properties. After that, we will

ave a comparison between MSE and correntropy and point out

heir differences to demonstrate the superiority of correntropy. 

.1. Definition and properties of correntropy 

A general form of correntropy between two arbitrary scalar ran-

om variables A and B is defined as follows: 

 σ (A, B ) = E 

[ κσ (A − B )] (1)

here κσ (.) is a symmetric positive definite kernel with the ker-

el width being σ and E(.) denotes the mathematical expectation.
he kernel bandwidth controls the “window” in which similarity is

ssessed and the kernel function maps the input space to a higher

imensional space which has much advantages. 

For simplicity, the Gaussian Kernel following is the only one

onsidered in the paper. 

σ (A − B ) = 

1 √ 

2 πσ
exp 

(
− (A − B ) 

2 

2 σ 2 

)
(2) 

In practice, the joint probability density function is often un-

nown and only a finite number of data { ( a i , b i ) } N i =1 are available,

eading to the sample estimator of correntropy as follows. 

ˆ 
 N,σ (A, B ) = 

1 

N 

N ∑ 

i =1 

1 √ 

2 πσ
exp 

(
− ( a i − b i ) 

2 

2 σ 2 

)
(3) 

The maximum of correntropy of the error in (3) is called the

aximum correntropy criterion. 

Next, we present two important properties which will be used

ater in this paper. 

roperty 1. Correntropy is positive definite and bounded, that is, 0 <

 σ (A, B ) ≤ 1 √ 

2 πσ
. It reaches its maximum if and only if A = B . 

roperty 2. Correntropy involves all the even moments of the differ-

nce between A and B: 

 σ (A, B ) = 

1 √ 

2 πσ

∞ ∑ 

n =0 

(−1) 
n 
/ ( 2 

n n !) E 

[ (A − B ) 2 n / σ 2 n ] (4)

The properties above have already been mentioned and proved in

ef. [20] . 

.2. Comparison between MSE and correntropy 

The MSE is probably the most widely utilized methodologies for

uantifying how similar two random variables are and we know its

xpression is 

SE (A, B ) = E 

[ (A − B ) 2 ] . (5)

In order to make comparison between MSE and correntropy

ore intuitive, the cost function of them in the joint space of vari-

bles A and B are displayed in Fig. 1 . 

We can easily find that MSE is a quadratic function with a val-

ey along the a = b line. Fig. 1 (a) intuitively explains the behav-

or of MSE in the joint space where for the values away from the

 = b line, it takes values that increase quadratically due to the

econd order moment. The quadratic increase for large error has

 net effect of amplifying the contribution of samples that are far

way from the mean value of error distribution and it is why MSE

orks well for data with rapid-decay distributions such as Gaus-

ian. Meanwhile, it is also the reason why other data distributions

ill make the MSE nonoptimal, especially if the error distribution

as big outliers. 

MSE includes all the samples in the input space to estimate the

imilarity of two random variables while correntropy is mainly de-

ermined by kernel function along a = b line as Fig. 1 (b) shows.

hat is to say, MSE is global whereas correntropy is local. It shows

hat correntropy can be used as a new cost function, which is

alled the maximum correntropy criterion. And because of the lo-

ality of correntropy, it has great advantages in non-Gaussian and

onlinear signal processing as a similarity measure, in particular if

he error distribution has large outliers. 

In order to further understand the correntropy, using a Tay-

or series expansion of the exponential function in the Gaussian

ernel as (4) shows in Property 2 . As we can see, correntropy

an be viewed as a generalized correlation function between two

andom variables, including second and higher order moments of

he error between them. Therefore, we can know that correntropy
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Fig. 1. The distance in the joint space of variables A and B . (a) Mean square distance. (b) Correntropy. 
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also quantifies higher order moment of the probability distribu-

tion function (PDF) within a small neighborhood determined by

the kernel width, which reflects its great advantage in processing

signals with impulsive noise and outliers, especially comparing to

second order measures. 

Furthermore, correntropy has a close relationship with m-

estimators, which is a generalized maximum likelihood method

performing well in impulsive environments. However, there is no

threshold in correntropy and its properties are all controlled by

kernel size. 

Through the analyses above, we conclude that MCC is a use-

ful measure to handle nonzero mean and non-Gaussian noise with

large outliers. We now describe how correntropy can be used as

a similarity measure in scale registration to eliminate the effect of

outliers. 

3. Robust scale ICP algorithm based on correntropy 

In this paper, we introduce correntropy and use MCC as similar-

ity measure between two point sets to build a new objective func-

tion for scale registration problem. This new algorithm is robust

to noises and outliers due to the outlier-reject property of cor-

rentropy, which is called robust scale ICP algorithm in this paper.

Similar to the traditional scale ICP algorithm, we integrate the scale

estimation into the iterative process so that rotation, translation

and scale factor are estimated simultaneously in every iteration. 

3.1. Scale registration problem 

The scale registration of m -D point sets is a difficult problem.

To solve this, a general statement is first described as follows. 

Given two point sets in R 

m , one denotes a model shape X 

�=
{ � x i } N x i =1 

and the other is a data shape Y 

�= { � y i } N y i =1 
. The registration

between two m -D point sets is to find the spatial transformation T ,

with which X is in the best alignment with Y. To solve this prob-

lem, we firstly define an index mapping C : j = c(i ) ; j ∈ 1 , 2 , . . . , N y

which indicates the matching point pairs { � x i , � y c(i ) } N x i =1 
. Then, we

find the existing scale transformation between X and Y based on

the known point pairs. Moreover, the scale transformation consists

of a rotation, a translation and a scale factor. We know that the ro-

tation transformation is an orthogonal transformation (i.e., R 

T R = I )

with its determinant is 1. Therefore, our robust scale ICP problem
s now formulated based on the maximum correntropy criterion as

ollows: 

max 
, R , � t ,c(i ) ∈{ 1 , 2 , ... , N y } 

N x ∑ 

i =1 

exp (−|| (s R 

�
 x i + 

�
 t ) − �

 y c(i ) || 2 2 / (2 σ 2 )) 

.t. R 

T R = I m 

, det (R ) = 1 

(6)

here s is a scalar scale factor, R ∈ R 

m ×m is a rotation matrix and
 

 ∈ R 

m is a translation vector. � y c(i ) is the corresponding point of � x i .

Finally, the scale registration problem can be expressed as an

ptimization problem for the objective function (6) when corren-

ropy is used to measure. 

.2. Robust scale ICP algorithm 

Actually, we can solve this problem in the similar way as the

CP algorithm by iteration. In each iteration, index matching is set

p by searching the point in data point set which is the closest

o that of the model point set first; then, a scale transformation

s computed based on the current index matching. The main two

teps of scale ICP algorithm are detailed as follows. 

Step 1: Establish the index matching { � x i , � y c k (i ) } for these two

oint sets based on the scale transformation ( s k −1 , R k −1 , � t k −1 ) in

he previous iteration by maximizing the objective function (6) . Ac-

ually, it is equivalent to find the closest point in Y for every point

n X as the first step of the traditional ICP algorithm. 

 k (i ) = arg min 

c k (i ) ∈{ 1 , 2 , ... , N y } 
|| (s R k −1 � x i + 

�
 t k −1 ) − �

 y c k (i ) || 2 2 

f or i = 1 , . . . , N x 

(7)

Step 2: Compute the transformation ( s k , R k , � t k ) based on the

urrent index matching { � x i , � y c k (i ) } N x i =1 
. 

( s k , R k , � t k ) = arg max 
R T R = I m , det (R )=1 ,s, � t 

N x ∑ 

i =1 

exp 

(
−|| (s R � x i + � t ) −y c k (i ) || 2 2 

2 σ 2 

)
(8)

The iterations continue until one of the following two condi-

ions is satisfied: 

1. 
∑ N x 

i =1 
|| ( s k R k � x i + 

�
 t k ) − �

 y c k (i ) || 2 2 
≤ ε , where ε is a sufficiently

small positive number. 

2. A maximum number of iterations is reached. 

Step 1 can be easily solved by many methods such as k -d

ree [29] and the nearest point search based on Delaunay tes-

ellation [30] . Studies shows that k -d tree is more applicable
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o high-dimensional data while the nearest point search based

n Delaunay tessellation is more efficient for two-dimensional

r three-dimensional data. Therefore, step 2 of computing the

ew scale transformation becomes the key for implementing the

lgorithm. In the following we will solve this difficult problem. 

.3. Computation of transformation 

Consider the independence of translation, we can first take the

erivative of the objective function F (s, R, � t ) with respect to � t to

liminate the translation transformation. 

∂F 
∂ � t 

= 

N x ∑ 

i =1 

(
− s R � x i + � t −�

 y c k (i ) 

σ 2 exp (−|| (s R 

�
 x i + 

�
 t ) − y c k (i ) || 2 2 / (2 σ 2 )) 

)
(9) 

In (9) , we use ( s k −1 , R k −1 , � t k −1 ) to substitute ( s k , R k , � t k ) in expo-

ential term and treat it as the weight, which denotes w i . Because

t is quite close between the current transformation and previous

ransformation, we can do such a approximation and it will not

ffect the final result. Then we can obtain 

 

 = 

N x ∑ 

i =1 

( � y c k (i ) − s R 

�
 x i ) w i / 

N x ∑ 

i =1 

w i . (10) 

Let �
 p i 

�= 

�
 x i −

∑ N x 
i =1 

�
 x i w i / 

∑ N x 
i =1 

w i , �
 q i 

�= y c k (i ) −
∑ N x 

i =1 
�
 y c k (i ) w i / 

 N x 
i =1 

w i , Therefore, 

 ( s , R ) = 

N x ∑ 

i =1 

exp (−|| s R 

�
 p i − �

 q i || 2 2 / (2 σ 2 )) (11)

To maximize (11) , we can recover the following partial differen-

ial equations to compute scale and rotation transformation: 

∂F (s, R ) 

∂R 

= 0 (12) 

∂F (s, R ) 

∂s 
= 0 (13) 

.3.1. Rotation computation 

In ITL, the half-quadratic technique [31–34] is a good method

o solve nonlinear ITL optimization problem. Based on the theory

f convex conjugated functions [34] , we can easily derive the fol-

owing proposition. 

roposition 1. Suppose g(x ) 
�= exp (−x 2 / 2 σ 2 ) , there exists a convex

onjugated function ϕ of g ( x ) such that 

(x ) = max 
u ′ 

(
u 

′ ‖ 

x ‖ 

2 

σ 2 
− ϕ( u 

′ ) 
)

(14) 

here u ′ is a scalar variable, and for a fixed x, the maximum is

eached at u ′ = −g(x ) [25 , 32] . 

Let x = s R 

�
 p i − �

 q i , we have the augmented objective function in an

nlarged parameter space 

ˆ 
 ( R , � u ) = 

N x ∑ 

i =1 

(
u i || s R 

�
 p i − �

 q i || 2 2 / σ
2 − ϕ( u i ) 

)
(15) 

here � u = [ u 1 , . . . , u N x ] 
T is storing the auxiliary variables introduced

n the Half-Quadratic optimization. 

 i = − exp 

(
−|| s R 

�
 p i − �

 q i || 2 2 / 
(
2 σ 2 

))
(16) 

In each iteration, we can use the previous scale and rotation to

cquire the value of u i . 

Expanding (15) , we get 

ˆ F ( R , � u ) = 

N x ∑ 

i =1 

(
u i 

(
s 2 � p T 

i 
�
 p i − 2 s � q T 

i 
R 

�
 p i + 

�
 q T 
i 
�
 q i 
)
/ σ 2 − ϕ( u i ) 

)
(17) 
F  
Therefore, maximizing F ( R ) is equivalent to maximizing the follow-

ng function. 

 ( R ) = − 1 

σ 2 

N x ∑ 

i =1 

( u i s � q T i R 

�
 p i ) 

= − 1 

σ 2 
tr( u i R 

�
 p � q T i ) = −tr( RH ) (18) 

here H = 

1 
σ 2 

∑ N x 
i =1 

u i � p i � q T 
i 
, tr (.) stands for trace of matrix. 

As a result, for any given s, maximizing F ( s , R ) is equivalent to

aximizing F ( R ) as (18) shown. We solve it similar to what Du has

roposed [15] . But there are something different for the choose of pa-

ameter D , so we show the derivation process here. 

Let the SVD of H be: 

 = U�V (19) 

here U and V are orthonormal matrices, and � is a 3 × 3 diagonal

atrix with eigenvalues which are ordered from largest to smallest

nd all nonnegative. 

Considering the objective function with equality constraint items,

e use Lagrange multiplier method to solve (18) . We define the La-

range function as follow: 

 (R , K , η) = −tr( RH ) + tr(K ( R 

T R − I n )) + η( det (R ) − 1) (20)

here K is a Lagrange multiplier which is a m × m symmetrical ma-

rix, η is a Lagrange multiplier and a scalar. 

Taking the derivative with respect to R , K and, η we obtain 

∂L 

∂R 

= −H 

T + 2 RK + ηR = 0 (21)

∂L 

∂K 

= R 

T R − I n = 0 (22) 

∂L 

∂η
= det (R ) − 1 = 0 (23)

Let L ′ = 2 K + ηI . From (21) , we obtain 

L ′ = H 

T (24) 

Transpose (24) , 

 

′ T R 

T = H (25) 

Multiplying (24) with (25) on both sides, and because R 

T R = I m 

,

e get 

 

′ 2 = H H 

T = U�V 

T V�U 

T = U V 

2 U (26) 

Obviously, L ′ and L ′ 2 is commutative, that is L ′ 2 L ′ = L ′ L ′ 2 , so we

an use the same orthogonal matrices to simplify it into the form of

iagonal matrix. 

 

′ = U�D U 

T (27) 

here D = diag ( d i ) is a diagonal matrix with d i is 1 or -1. 

From (27) , we know 

et ( L ′ ) = det ( U�D U 

T ) = det (�) det (D ) (28)

From (24) , we know 

et ( L ′ ) = det ( HR ) = det (H ) (29)

Comparing (28) and (29) ,we obtain 

et (�) det (D ) = det (H ) = det (U ) det (�) det (V ) (30)

Because det (�) = λ1 λ2 . . . λn ≥ 0 , if det (H ) > 0 , det (D ) = 1 and

f det (H ) < 0 , det (D ) = −1 . 

On the other hand, 

 (R ) = −tr( RH ) = −tr( HR ) = −tr( L ′ ) (31)
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Substituting (27) into (31) , we have 

F (R ) = −tr( U�D U 

T ) = −tr( �D ) = −
m ∑ 

i =1 

λi d i (32)

Therefore, to get the maximum of F ( R ), Then, when det (H ) > 0 or

det (U ) det (V ) = + 1 , {
d 1 = d 2 = . . . = d m 

= −1 , m is e v en 

d 1 = d 2 = . . . = d m −1 = −1 , d m 

= 1 , m is odd 
(33)

When det (H ) < 0 or det (U ) det (V ) = −1 , {
d 1 = d 2 = . . . = d m 

= −1 , m is odd 

d 1 = d 2 = . . . = d m −1 = −1 , d m 

= 1 , m is e v en 

(34)

Finally, substituting L ′ −1 = ( U�D U 

T ) −1 = U �−1 D 

−1 U 

T into (24) ,

we obtain 

R = H 

T L ′ −1 = ( V�U 

T )(U �−1 D 

−1 U 

T ) = VD U 

T (35)

3.3.2. Scale computation 

For a given R , maximizing F ( s , R ) is equivalent to maximizing

F ( s ) as following shows. 

F (s ) = 

N x ∑ 

i =1 

exp 

(
−|| s R 

�
 p i − �

 q i || 2 2 / 
(
2 σ 2 

))
(36)

Taking the derivative with respect to s , we get 

s = 

N x ∑ 

i =1 

F (s ) (R 

�
 p i ) 

T �
 q i / 

N x ∑ 

i =1 

F (s ) (R 

�
 p i ) 

T 
R 

�
 p i (37)

where F ( s ) can use the scale factor of last step to approximate in

iteration. 

3.3.3. Translation computation 

If rotation and scale transformation are computed, according to

(10) , we calculate � t k : 

 

 k = 

N x ∑ 

i =1 

( � y c k (i ) − s k R k � x i ) w i / 

N x ∑ 

i =1 

w i (38)

From what is discussed above, the scale, rotation and trans-

lation transformations of (8) are all computed. From the whole

algorithm, we know that it is similar to the ICP algorithm. Al-

though the points in the data set may not always be able to find

the correct corresponding points in the model set, they move

to the correct points nearer and nearer in iterations. Hence, the

algorithm can reach the best registration finally. 

3.4. Convergence analysis 

In this section, the convergence of our algorithm will be dis-

cussed. As stated before, our algorithm shares the same procedure

as the ICP algorithm, where the model shape searches the closest

points in the data shape via iteration. It is therefore a locally con-

vergent algorithm, which is formally stated below. 

Theorem 1. The robust scale ICP algorithm based on correntropy

converges asymptotically to a local optimum for any given initial pa-

rameters. 

Proof. Given two point sets X 
�= { � x i } N x i =1 

and Y 
�= { � y i } N y i =1 

. In the k th

iteration, { s k −1 , R k −1 , � t k −1 } is known. Let � x 
′ 
i,k −1 

�= s k −1 R k −1 � x i + 

�
 t k −1 ,

and we can compute its corresponding closest point � y c k (i ) in the

data shape. Therefor, we get 

F k ( s k −1 , R k −1 , � t k −1 ) = 

N x ∑ 

i =1 

exp 

( 

−
∥∥�

 x 
′ 
i,k −1 

− �
 y c k (i ) 

∥∥2 

2 

2 σ 2 

) 

. (39)
Because { � x 
′ 
i 
} is to register { � y c k (i ) } , we compute the best spatial

ransformation { s k , R k , � t k } . Hence, the objective function now be-

omes 

 k ( s k , R k , � t k ) = 

N x ∑ 

i =1 

exp 

( 

−
∥∥s k R k � x i + 

�
 t k − �

 m c k (i ) 

∥∥2 

2 

2 σ 2 

) 

. (40)

Because { s k , R k , � t k } is obtained by maximizing (8) , it is obvious

hat 

 k 

(
s k −1 , R k −1 , � t k −1 

)
≤ F k 

(
s k , R k , � t k 

)
(41)

Next, in the (k + 1) th iteration, suppose 

  

′ 
i,k 

�= s k R k � x i + 

�
 t k 

nd we find its corresponding point � y c k +1 (i ) in the data shape, too.

hen, 

 k +1 ( s k , R k , � t k ) = 

N x ∑ 

i =1 

exp 

( 

−
∥∥�

 x 
′ 
i,k 

− �
 y c k +1 (i ) 

∥∥2 

2 

2 σ 2 

) 

(42)

For c k +1 (i ) is obtained by minimizing (7) , we know that 

F k ( s k , R k , � t k ) = 

N x ∑ 

i =1 

exp 

( 

−
∥∥�

 x 
′ 
i,k 

− �
 y c k (i ) 

∥∥2 

2 

2 σ 2 

) 

≤
N x ∑ 

i =1 

exp 

( 

−
∥∥�

 x 
′ 
i,k 

− �
 y c k +1 (i ) 

∥∥2 

2 

2 σ 2 

) 

= F k +1 

(
s k , R k , � t k 

)
(43)

Because the maximum of the exponential function here is 1, the

alue of function F (.) will not be larger than N x . Hence, we can

btain 

F 1 ( s 0 , R 0 , � t 0 ) ≤ F 1 ( s 1 , R 1 , � t 1 ) ≤ F 2 ( s 1 , R 1 , � t 1 ) ≤ . . . 

≤ F k ( s k −1 , R k −1 , � t k −1 ) ≤ F k ( s k , R k , � t k ) ≤ F k +1 ( s k , R k , � t k ) 
≤ N x . 

(44)

Finally, According to the Monotonic Sequence Theorem “Every

ounded monotonic sequence of real numbers is convergent”, it

s proved that our algorithm converges monotonically to a local

aximum. �

. Experimental results 

To verify the fast speed and robustness of our presented

ethod, we compare the robust scale ICP algorithm based on

orrentropy with the traditional scale ICP algorithm and CPD algo-

ithm [35] by experiments on simulation and standard data includ-

ng the Part B of CE-Shape-1 [36] and the Stanford 3D Scanning

epository [37] . In order to validate the accuracy our algorithm, the

rrors of the computed transformation and the true transformation

n these three algorithms are calculated in the experiments. The

verage computation times spent on each iteration in these three

lgorithms are examined. A number of registration results are dis-

layed. The experiments are conducted by MATLAB 2014a and run

n PC with AMD A10-5800 K APU 3.8 GHz CPU and 8.0 GB RAM. 

.1. 2D Simulation 

In this section, simulation experiments are conducted to com-

are the registration accuracy of our algorithm with traditional

cale ICP algorithm and CPD algorithm. And the simulation process

s designed as follows. 

First of all, a random scale transformation is generated which

s denoted as { s r , R r , � t r } and we apply it on model point sets to

et the data point sets. After that, we add random noises and out-

iers manually to the data point sets to obtain noisy data point
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Fig. 2. Registration results of 2D simulated point sets. (a) Point sets before registration. (b) Results of scale ICP. (c) Results of CPD. (d) Results of our algorithm. 

Fig. 3. Registration results of 2D shapes. (a) Point sets before registration. (b) Results of scale ICP. (c) Results of CPD. (d) Results of our algorithm. 
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ets. Then, the model point sets are registered to correspond-

ng data point sets using scale ICP algorithm, CPD and our algo-

ithm respectively and their computed transformation is denoted

s { s method , R method , � t method } . 
Actually, the generated random scale transformation

s the ground-truth of the scale transformation, that is,

 s true , R true , � t true } = { s r , R r , � t r } . Therefore, To quantify the reg-

stration results of three algorithms, their registration errors

re defined as ε s = | s method − s true | , ε R = ‖ R method − R true ‖ 2 and

 �
 t = 

∥∥�
 t method −�

 t true 

∥∥
2 
. All compared results are summarized as

able 1 . From the table, we can find that our algorithm can get
 d  
he least errors including ε s , ε R and ε �
 t , which demonstrates that

ur algorithm is robust in scale registration with outliers. 

To observe the registration results more intuitively, we display

ll the results in Fig 2 . From the figure, we can get the same con-

lusion that our algorithm performs much better than the other

wo algorithms in noisy point set registration. 

.2. 2D Standard database 

In the following experiments, both the model point sets and

ata point sets are acquired from a 2D standard database, the Part
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Table 1 

Comparison of 2D simulation results. 

Data εs εR ε �
 t 

Scale ICP CPD Our algorithm Scale ICP CPD Our algorithm Scale ICP CPD Our algorithm 

Apple 0.0687 0.1061 0.0020 0.3031 0.0889 9.0351e-4 80.0321 32.0936 0.0817 

Pocket 0.4158 0.1631 0.0017 0.3489 0.0163 8.9064e-4 136.0093 34.8762 0.0182 

Ray 0.1170 0.1398 0.0018 0.2397 0.0264 0.0010 59.8777 37.1835 0.1530 

Fig. 4. The convergence of our algorithm. 

 

 

 

 

 

 

 

 

Table 2 

Computation time comparison of 2D point sets 

(unit: second). 

Data Algorithm 

Scale ICP CPD Our Algorithm 

Apple 0.0022 0.0462 0.0083 

Pocket 0.0035 0.0632 0.0183 

Ray 0.0048 0.0943 0.0329 
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B of CE-Shape-1. To test the ability to eliminate outliers or noise

of scale ICP algorithm, CPD and our algorithm, data point sets with

outliers or noise are selected to register to model point sets. 

Fig. 3 displays the registration results of Apple, Pocket and Ray.

From the results of Ray, we can find that CPD and our algorithm

perform well, and both of them reach better registration results

than traditional scale ICP. From the results of Apple and Pocket, it

can be seen that our algorithm get best results compared to the

other two algorithms, which demonstrates that our algorithm has

great advantages in the scale registration of noisy point sets. 
Fig. 5. Registration results of 3D simulation on Happy data. (a) 2D view of point sets be

ICP’s registration results. (d) 2D view of our algorithm’s registration results. (e) 3D view o

(g) Local amplification of scale ICP’s results. (h) Local amplification of our algorithm’s resu
Moreover, to analyze the speed of three algorithms, the aver-

ge performance time of each iterative step of scale ICP, CPD and

ur algorithm is summarized in Table 2 . The table shows that our

lgorithm is slower than scale ICP algorithm for the reason that

ur algorithm has an exponent calculating. However, our algorithm

till has fast speed when comparing with CPD algorithm, which is

early one-third of it. In addition, Fig. 4 shows the curve of our al-

orithm’s objective function respect to Apple, Pocket and Ray data,

hich proves that our algorithm is convergent again. 

.3. 3D Simulation 

In this section, we will test the performance of our algorithm in

D point sets. As the number of 3D data points is quite large and

PD algorithm is time consuming, we only compare our algorithm

ith traditional scale ICP algorithm here. 

Similar to 2D point set registration, we conduct the simulation

rst. The model point set was selected from the Stanford 3D Scan-

ing Repository, and we get the data point sets by applying a ran-

om scale transformation and adding random noise or outliers to

odel point sets. Then, the registration errors can be obtained,

hich is shown in Table 3 . 
fore registration. (b) 3D view of point sets before registration. (c) 2D view of scale 

f scale ICP’s registration results. (f) 3D view of our algorithm’s registration results. 

lts. 
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Fig. 6. Registration results of 3D simulation on Bunny data. (a) 2D view of point sets before registration. (b) 3D view of point sets before registration. (c) 2D view of scale 

ICP’s registration results. (d) 2D view of our algorithm’s registration results. (e) 3D view of scale ICP’s registration results. (f) 3D view of our algorithm’s registration results. 

(g) Local amplification of scale ICP’s results. (h) Local amplification of our algorithm’s results. 

Fig. 7. Registration results of 3D database on Dragon data. (a) 2D view of point sets before registration. (b) 3D view of point sets before registration. (c) 2D view of scale 

ICP’s registration results. (d) 2D view of our algorithm’s registration results. (e) 3D view of scale ICP’s registration results. (f) 3D view of our algorithm’s registration results. 

(g) Local amplification of scale ICP’s results. (h) Local amplification of our algorithm’s results. 

Table 3 

Comparison of 3D simulation results. 

Data εs εR ε �
 t 

Scale ICP Our algorithm Scale ICP Our algorithm Scale ICP Our algorithm 

Happy 0.0114 0.0040 0.0145 0.0035 0.0058 2.7505e-4 

Bunny 0.0314 0.0159 0.1265 0.0398 0.0165 0.0042 

Dragon 0.0290 0.0063 0.1213 0.0035 0.0196 6.8352e-5 
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From Table 3 , we can see that our algorithm has smaller er-

ors including scale factor, rotation and translation than traditional

cale ICP algorithm which demonstrates our algorithm’s high accu-

acy in noisy point set registration. 

In addition, we can observe the registration effect intuitively

rom the results displayed in Figs. 5 and 6 . Figs. 5 and 6 display

he simulation results of Happy and Bunny data respectively. In the

gures, (a) and (b) is 2D view and 3D view of point sets waiting

or registration, in which including a scale transformation. More-

ver, (c) and (d) is 2D view of these two algorithms while (e) and
 d  
f) is 3D view of them. It seems that both two algorithms perform

ell in scale registration. However, when we amplify the local ar-

as marked in (e) and (f), which is shown in (g) and (h) respec-

ively, we can find that the results of our algorithm are better than

cale ICP especially from the margin. 

.4. 3D standard database 

Different with the simulation, both the model point sets and

ata point sets in the following experiments are chose from Stan-
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Fig. 8. Registration results of 3D database on Happy data. (a) 2D view of point sets before registration. (b) 3D view of point sets before registration. (c) 2D view of scale 

ICP’s registration results. (d) 2D view of our algorithm’s registration results. (e) 3D view of scale ICP’s registration results. (f) 3D view of our algorithm’s registration results. 

(g) Local amplification of scale ICP’s results. (h) Local amplification of our algorithm’s results. 
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ford 3D Scanning Repository, a standard 3D database. Two exam-

ples containing Dragon and Happy data are shown here to observe

the registration effect of scale ICP algorithm and our algorithm. 

Fig. 7 displays the results of Dragon data. Because the model

point set can’t match data point set exactly, traditional scale ICP

algorithm is affected by the outliers or noise and performs badly.

However, correntropy is local which means that its value is primar-

ily decided by the most similar point-pairs while the value of noisy

points is too small to be ignored. Therefore, we can see that our al-

gorithm gets better results from the local amplification as Fig. 7 (g)

and 7 (h) shown. 

More examples are displayed in Fig. 8 . For the similarity mea-

sure MSE is global which means that all the points of the model

shape will contribute equal to the value of similarity measure, so

the results of the scale ICP algorithm are worse because of the

noisy points as Fig. 8 (g) shown. And Fig. 8 (h) shows that our al-

gorithm registers well regardless of the interference of noise. 

5. Conclusions 

This paper proposes a robust scale ICP algorithm based on cor-

rentropy for scale registration between two m -D point sets with

large noises and outliers. By making a comparison between corren-

tropy and MSE, it is obvious that correntropy has the capacity to

eliminate the interference of noise or outliers and is more suitable

to deal with registration problem with noisy point sets. Hence, we

introduce correntropy as the similarity measure to build a new ob-

jective function for scale registration. To solve the objective func-

tion, the half-quadratic method is used to derive a robust scale ICP

algorithm. The closed-form solution of the algorithm is given in

each iteration. Similar to the traditional scale ICP algorithm, the al-

gorithm proposed shares the same process. At each iterative step, it

finds the closest points based on the current scale transformation

to establish index matching firstly, and then computes the new

scale transformation based on the known index matching. Besides,

it is proved that our algorithm converges to a local maximum mo-

ronically in theory. Experiment results of 2D and 3D registration

proved that our algorithm can successfully estimate rotation, trans-

lation and scale factor between roughly pre-aligned point sets. And

these experiments demonstrate that our algorithm is more accu-
ate and has fast speed in noisy point set registration in contrast

o traditional scale ICP algorithm and CPD algorithm. 

Although the robust scale ICP algorithm improves the accuracy

nd speed of scale registration, there are still a lot of other prob-

ems needed to be solved. For example, selecting a proper initial

alue to make the algorithm get global optimal solutions or con-

rolling the kernel bandwidth to obtain higher accuracy. 
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