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Abstract—This paper has three contributions. The first involves
polytopes of matrices whose characteristic polynomials also lie
in a polytopic set (e.g. companion matrices). We show that this
set is Hurwitz or Schur invariant iff there exist multiaffinely
parameterized positive definite, Lyapunov matrices that solve
an augmented Lyapunov equation. The second result concerns
uncertain transfer functions with denominator and numerator
belonging to a polytopic set. We show all members of this
set are strictly positive real iff the Lyapunov matrices solving
the equations featuring in the Kalman-Yakubovic-Popov Lemma
are multiaffinely parameterized. Moreover, under an alternative
characterization of the underlying polytopic sets, the Lyapunov
matrices for both of these results admit affine parameterizations.
Finally, we apply the Lyapunov equation results to derive stability
conditions for a class of linear time varying systems.

I. INTRODUCTION

HIS PAPER CONSIDERS the existence of parameterized

Lyapunov functions arising in the stability and passivity
analysis of linear time invariant (LTI) uncertain systems and
demonstrates their application to the stability analysis of a
class of linear time varying (LTV) systems. Both discrete
and continuous time settings are investigated. By way of
background, we begin by citing two fundamental results from
linear systems theory.

The first is relevant to the stability of LTI systems. In
the sequel we call an n x n matrix A o-Hurwitz if all its
eigenvalues lie in the open half plane Re[s] < —a, for some
o > 0. In other words, a o-Hurwitz matrix has a continuous
time stability margin of ¢. Then a given matrix A is o-Hurwitz
iff there exist symmetric positive definite P,  [1] such that

AP+ PA < -20P - Q. (1.1

Similarly, a n X n matrix A is said to be p-Schur, for some

0 < p < 1, if all its eigenvalues lie in the open disc < p.
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Then A is p-Schur iff there exist symmetric positive definite
P and @ for which
APA-P < -(1-p9)P-Q. (12)

Thus, the stability analysis of LTI systems whose zero input
dynamics is governed by A can be accomplished by using
the Lyapunov function V(z) = 2 Pua; (1.1) and (1.2) are
accordingly called Lyapunov equations. In the sequel, the P
and () appearing in (1.1) and (1.2) will be respectively referred
to as a continuous and discrete time Lyapunov pair associated
with A, while the matrix P itself will be called a Lyapunov
matrix associated with A.

The second result of relevance here concerns ascertaining
the strict passivity of a LTI system characterized by the
transfer function T(s) = 1 — ¢ (sI — A)~'b, with [A, ]
completely observable and [A, b] completely reachable. (For
ease of presentation, we have excluded the case where T'(s)
is strictly proper. The continuous time results derived here,
however, apply to the strictly proper case as well.) Recall that
such a LTI continuous time system is strictly passive iff for
some o > 0, it is continuous time strictly positive real with
margin o (o-CSPR): i.e T(s — o) is minimum phase, stable
and obeys for all real w

Re[T(jw — o)] > 0. (1.3)

Similarly in discrete time, strict passivity is equivalent to

the existence of 0 < p < 1 for which T(ps) is minimum
phase, stable and obeys for all w € [—m,7)

Re[T(pe?)] > 0. (1.4

Such a T'(s) will henceforth be referred to as being p-DSPR,
(D signifies discrete time). Then the celebrated Kalman-
Yakubovic-Popov (KYP) Lemma states that T(s) is o-CSPR
[2] iff there exist symmetric positive definite matrices I” and
Q@ and a vector ¢ such that

AP+ PA+qq < -20P-Q (1.5)

and
Pb = —¢— V2. (1.6)

Likewise p-DSPR is equivalent to the existence of P, Q and
q as above and a real scalar w such that

APA=-P+qf < —(1-p)P-Q (1.7)
APb = —¢ + wq (1.8)
w? = 2 — b Pb. (1.9)

1057-7122/94%04.00 © 1994 IEEE



94 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 41, NO. 2, FEBRUARY 1994

As before P, Q will be called the Lyapunov pair associated
with T'(s) and P by itself will be called a Lyapunov matrix
corresponding to T'(s).

In this paper we consider two problems related to the
existence of appropriately parameterized Lyapunov pairs for
systems that admit parameterized uncertainities. The first prob-
lem concerns (1.1) and (1.2) and involves the family of
matrices described below where g and h(k) are n—vectors,
F is an n X n matrix:

Q= {A(k) = F + gh'(k) € RV*" : ke K}
with

(1.10)

K = {k=[ki, ... km] : kI <k <k} (1.11)

and h(k) affine in the elements of k. Thus, 2 is a polytope
of matrices. Further, it is a trivial matter to show that the
coefficients of the characteristic polynomial of these matrices
also depend affinely on the &;; i.e., the characteristic polynomi-
als are themselves in a polytope of polynomials. An example
of such a set of matrices is a set of affinely parameterized
companion matrices in the controllable form [8].

Suppose now one has to determine the o-Hurwitz (or p-
Schur) invariance of this set of matrices via Lyapunov-based
techniques. Clearly, the o-Hurwitz or p-Schur nature of each
individual member of 2 is equivalent to the existence of
member specific Lyapunov pairs that satisfy the appropriate
Lyapunov equation. The question is whether these Lyapunov
pairs can be collectively described by simple functions of the
uncertain parameters k;.

It is shown here that €2 is o-Hurwitz (respectively p-Schur)
invariant iff there exists a o-Hurwitz (respectively p-Schur)
matrix A, compatibly dimensioned vector w and a Lyapunov
pair P(k), Q(k) depending multiaffinely on the elements of
k, which satisfies the Lyapunov equation (1.12) [respectively
(1.13)] for all k € K.

II'(k)P(k) + P(E)II(E) < —20P(k) — Q(k)  (1.12)

I'(k)P(k)TI(K) — P(k) < (1~ p*)P(k) - Q(k) (1.13)
where

A “’hl(k)]. (1.14)

=[5 4

Here a multiaffine function is one that is affine in each
individual argument. We note that the fact that the para-
metric Lyapunov pair thus constructed displays a multiaffine
dependence on k& has certain appealing characteristics to be
highlighted in the sequel.

Polytopic sets such as (1.10-1.11) can equivalently be
described by the convex combination of their comers. In
particular, for some M and suitable hq,...,hy;, one can
express {2 as the set

M M
Q= {AN) = F+g(D>_ ki) : 3 Ai=1,%>0}
i=1 i=1

(1.15)
We will show that Lyapunov pairs under this slightly differ-
ent parameterization are in fact affine rather than multiaffine

in the A;. This surprising difference in the underlying param-
eterization, despite the clear equivalence between (1.10-1.11)
and (1.15), will be explained in Section 3.

The second question we address relates to the KYP lemma,
specifically with respect to transfer functions whose numer-
ator and denominator belong to two independent polytopes
with defining parameter vectors k = [kq,...,k,] and [ =
[41, ..., Lr)’, respectively. Then we show that under a suitable
choice of state variable representation, the Lyapunov pairs one
obtains depend multiaffinely on the elements of k£ and [. As
with the Lyapunov equation problem, a convex combination-
based representation is also considered.

We demonstrate the significance of the Lyapunov function
results by extending certain linear time varying (LTV) system
stability results reported in [3], [4]. We expect similar exten-
sions of results connected with the stability of nonlinear time
varying systems [4], [5], to be made possible by comparable
techniques.

The first application of the KYP results is that they are
used to derive the Lyapunov results that we present here.
The second application is in the area of adaptive systems
where the use of the KYP Lemma in proving convergence
and obtaining robustness measures is all pervasive {2]. In
particular, as will be argued in Section 3 the results of this
paper provide a vehicle for ascertaining robustness measures
for adaptive output error identification algorithms.

There are several results to be found in the literature that
address the issue of Lyapunov matrices for uncertain systems.
To our knowledge, the earliest such is implicit in the work
of Parks [15] who shows that the Hermite matrix serves as
a natural Lyapunov matrix for companion matrices, though
with a rank-1, positive semidefinite Q. Given that the Hermite
matrix itself is bilinear in the elements of its associated
companion matrix, it is evident that companion matrices
with elements that vary in independent intervals automatically
admit a bilinearly parameterized Lyapunov matrix P with an
associated rank-1 Q. This bilinear dependence is, however,
destroyed when one allows, as is the case in this paper,
dependent variations in the companion matrix. The next result
that we are aware of is due to Thatachar and Srinath {9] who
consider a family, (), depending on a single parameter and
claim that such a family is Hurwitz invariant iff there exists a
Lyapunov matrix P(k), affine in the single parameter k, such
that for all k € K, A’(k)P(k) + P(k)A(k) < 0. We believe,
however, the proof given in [9] to be in error. Specifically,
the errors in [9] appear as follows (the equation numbers and
the variables are those of [9]): The affineness of the Lyapunov
function in its equation (8) requires O, vk, k = 1,2, - to be
constant (independent of the parameter K'). This implies that
the coefficients Cy in (15) must not be constants. Therefore,
the application of a result by Brockett and Willems [12],
critical to the proof in [9], is not possible.

Subsequent work in this area has been largely confined to
the quadratic stabilizability literature (see [10] and the refer-
ences therein) where the issue has been one of determining a
single Lyapunov matrix P that satisfies the Lyapunov equation.
Most necessary and sufficient conditions for such quadratic
stabilizability of uncertain matrices are confined to norm
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bounded uncertainties as opposed to polytopic uncertainities.
The exception is a result by Boyd and Yang [11], who for
a given matrix A and two vectors b and ¢ show through
a direct application of the KYP Lemma, that there exists a
single Lyapunov matrix P for which both A’P + PA < 0
and cb'P + Pbd < 0 iff ¢/(sI — A)—lb is positive real.
This result thus provides a condition for the family of single
parameter Hurwitz matrices {A + Abc’ : A € [0, 00)} to have
a single Lyapunov matrix.

The rest of this paper is organized as follows. In Section 2
we present certain preliminary results that facilitate subsequent
analysis. Section 3 gives a constructive proof for the result
concerning uncertain passive systems. Section 4 considers the
existence of multiaffine solutions to the Lyapunov equations,
for the continuous and discrete time cases. Again, both the
proofs are constructive and draw upon the result of Section 3
and an SPR construction result given in [S]. Sections 6 and
7, respectively, present the continuous and discrete time LTV
stability results. Section 8 contains concluding remarks.

II. PRELIMINARIES

This section provides certain preliminary results and as-
sumptions. The first result concerns a state variable realization
(SVR) of a cascade combination of biproper transfer functions.
In the sequel § refers to the degree of a polynomial.

Lemma 2.1: Consider the monic polynomials
b(s), a(s), B(s) and a(s) such that §(b(s)) = &(a(s))

and §(B(s)) = 6(a(s)). Suppose for matrices and vectors
of suitable dimensions,
b(S) _ ' -1
and
ﬁ(s) - ’ -1
as) = 14+v(sI-D) w 2.2)
Then with
D 0
¢ = [gv’ F} 2.3)
r=j,gV 2.4)
and
U = [+, =k, (2.5)
b(s) B(s) _ ) -1
a(s) as) ~ 14+ U(sI-9)"T. 2.6)
Proof: Trivial. O
The second result is as follows.
Lemma 2.2: With b(s) as in (2.1)
b(s) = det(sI — F — gh’) 2.7

Proof: Results from a trivial application of the fact that

det(I + AB) = det(I + BA). O

The KYP results of this paper will be derived for sets of
transfer functions

-Yi, bi(k)s"‘f
- a(l)sn

ckekK,leL
(2.8)

T = {T(s,k,z) =7
Sn

with K as in (1.11),

L={=[,..L) 1y <<}, 2.9
and the b;(k) and a;(l) affine in their respective arguments.
Lemma 2.3 below shows that for suitably chosen F €
R*m g € R, hi(l) € R™ and hy(k) € R™, with [F,g]
a completely reachable pair and /;(.) affine in their respective
arguments, 7" can equivalently be described by

T={1+(h1(l)—ha(k)) (sI-F—ghi (1)) 'g: k€ K, l € L}

(2.10)
Since hi(l) and hy(k) lie in independent polytopes, it follows
that 7' can also be expressed as

7= {1+ () = oV (sT = F = ghi ()9} 2.11)

where

N N
hi(p) = Zuihli;Zuizl; u; >0 (2.12)
=1 =1

M M
ha(A) = Y Nihais Y Xi=1;42>0 (2.13)
i=1 i=1

Observe that {1+ (hy; — ﬁzj)’(sl — F —gh,;)"1g} represents
the comners of the set 7. In the sequel we will denote
= [y, un] and A = [Aq,...,Ap])" (note N = 2™ and
M = 27).
Lemma 2.3: Every set of the form in (2.8) can be expressed
as in (2.10) and vice versa.
Proof:
1) Showing (2.10) = (2.8): This follows by the application
of the matrix inversion lemma, which yields

1+ (h1—hy) (sI ~ F — gh})" g

=1+ (h1 — hg)’
o, (ST — F) ighl(sT - F)!
o1 =P+ R ]
14 (= by (sl — F)ig

1-hi(sI-F)lg
_1—hy(sI - F)~lg
T1-hi(sI—F) g

(2.14)

2) Showing (2.8) = (2.10): For a given F define

f(s)=5s"+)_ fis" ™" = det(sI - F). (2.15)
=1
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For arbitrary completely reachable [F, g], there exists T’

such that
0 In—l
T7IFT =F = (2.16)
~fan . —h
and § = T7'g = [0,..,0,1)". Then with f
[fn- EAal fll?
a(l) = [an(l), ..., a1 ()], (2.17)
b(k) = [ba(k), ., D1 (R)]', (2.18)
it is easy to verify that
s" = Z?=1 a;(£)s"" 17 =15
) =1-hi(€)(sI - F) (2.19)
and
st =30 bi(k)sm 5 el
75) =1—ho(k)(sI - F) g (220)
where k1 (£) = a(£)— f and ha(k) = b(k)— f. Therefore,

using (2.14), 7(s, k, £} is expressible as

7(s,k, 1) = 1+ (Rha(l) — ho(K))'(sI — F — ghi(1))"'g.
2.21)

Then choosing h;(.) = (T~1)h;(.) yields the result. (I
The next set of results concern certain multiaffine functions.
Specifically, we consider a set of functions U:

U = {u(k) € ™™ : ke K} (2.22)

where u(k), the elements of U, are multiaffine, possibly
matrix, functions of &.

In the sequel, a parameter vector k, is said to lie on an
r— face of K if all but r elements of & are at extreme values.
Corners constitute the 0 — faces of K. Members of the set
U will be said to lie on an m — face of the respective set if
the corresponding & is on an m — face of K. We note the
following fact concerning U.

Facr 2.3: Suppose U in (2.22) is multiaffine in k. Then,
for every k on an r — face of K there exist k(1) and k(®
on certain (r — 1) — faces of K such that: (1) ¥V, ¥®
differ from each other in only one element; (2) There exists
z € [0,1], such that k = (1 — 2)k™ + 2k® and u(k) =
(1 = 2)u(kD) + zu(k?®).

The following Lemma from [18] shows that U is uniquely
defined by its corers.

Lemma 2.4: Suppose, the value of the comers of U (see
(2.22)) are known. Then there exists a unique multiaffine func-
tion u(k), which assumes the given values at the respective
corners.

We next present a generalized version of the mapping
theorem of Zadeh and Desoer [16], a result that we consider
as being of independent interest. To this end, we introduce
the notion of objects O and convex properties P, which these
objects may or may not satisfy. In the sequel any quantity
will be called an object if it is a member of a set over
which the operations of addition (+) among its members and

multiplication (.) by real scalars are well defined. Thus, rational
functions and matrices are examples of objects. A property P
acting on an object maps this object to either 0 or 1. For
a given object O, if P(O) = 1 then we say O satisfies P,
else it does not satisfy P. A property P defined over a set of
objects O will be said to be convex if for any O1, O3 € O,
P(0O1) = 1 and P(O2) = 1 implies that for all z € [0, 1],
P((1 - 2z)O01 +203) = 1. Then the following theorem holds.
Theorem 2.1: With real scalars k; and the set K as defined

in (1.11), define the set of objects
0 = {O(k) :

ke K} (2.23)

where O(k) is a multiaffine function of k. Suppose P is a
convex property defined on O. Then every member of 0
satisfies P iff each comer of O satisfies P.

Proof: We use induction. From fact 2.3 and the convexity
of P, if P is satisfied on each r — face of O, then it is also
satisfied on each (r + 1) — face. Then provided it is satisfied
at each corner it must be satisfied everywhere in O. O

By way of application for Theorem 2.1, we present the
following result.

Coroliory 2.1: Suppose in (2.22), u(k) is a symmetric
multiaffine matrix function of k. Then the maximum and
minimum eigenvalues of u(k) occur at the comers of U.
Consequently, all members of U are positive definite iff all
comers of U are positive definite.

To conclude this section on preliminaries, we impose certain
restrictions on various matrices of interest.

Assumption 2.1: The pair [F,g| is completely reachable.
Further, for (2.10) [F, hq(I) — ho(k)] is completely observable
almost everywhere in K x L, including at every corner of L
and K. Likewise, for Q, [F,h(k)] is completely observable
almost everywhere in K, including at every corner of K.

We note that the comer observability conditions can be
assumed without loss of generality, possibly through an in-
finitesimal expansion of L and/or K.

Recall, that 2 will be examined for o-Hurwitz (or p-Schur)
invariance. Thus, to avoid trivialities we will assume that
at least one member of §2 is o-Hurwitz (or p-Schur). Then,
through a simple affine transformation in the parameter vector
k if need be, one can make the following assumption without
loss of generality.

Assumption 2.2: Under continuous (respectively discrete)
time settings, F' is o —Hurwitz (respectively p-Schur).

III. ON THE KALMAN-YAKUBOVIC-POPOV LEMMA

In this section we will address the issue of parameterized
Lyapunov pairs for -CSPR and p-DSPR parameterized trans-
fer functions as defined in (2.10) and (2.11). Before presenting
the main results of this section, we wish to present the
continuous and discrete time linear matrix inequality (LMI)
[15]. In continuous time it is known that the satisfaction of
(1.5-1.6) is equivalent to:

~(A'P+ PA)—20P - Q (Pb+c)
>0 (3.1

(Pb+c) 2
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Likewise in discrete time (1.7)—(1.9) are equivalent to
—~A'PA+p*P - Q (A’Pb+c)
>0 3.2)

(A'Pb+c) 2-bPb

Indeed, henceforth we will work exclusively with the two
LMTI’s. The first set of results concerns the parameterization
in (2.11)-(2.13).

Theorem 3.1: All members of the set (2.11)-(2.13) are o-
CSPR iff there exist symmetric Py, A) and Q(p, ), which
obey the following:

1) Vu;, A; obeying the constraints in (2.12) and (2.13),

(3.3) at the bottom of this page holds.
2) For fixed p (respectively M), both P(u, A) and Q(u, A)
are affine in the elements of A (respectively u).
3) P(u,A) > 0 and Q(p, A) > 0 Vu, X obeying (2.13) and
(2.12).
Proof: The ““if”’ part of the theorem is straightforward.
We focus instead on the ‘‘only if*’ part. Suppose all members
of the set T"in (2.11) to (2.13) are indeed o-CSPR. Then since
for each ¢ € {1,..,N} and j € {1,..., M}

Tij =1 (hy; — hui) (s = F — gh1;)™'g (G4

Defining
M M
P =)"XPi:  QN=)_XQ; (36
j=1 j=1

one obtains from (3.5) and the convexity of the positive def-
initeness property, for all ¢ € {1, ..., N }the inequality shown
in (3.7) at the bottom of this page. Pre- and postmultiplying
(3.7) by the nonsingular matrices 71 (A, ¢) and 77(}, ) with

I, hy — ha(})
Ti(A\) = (3.8)

0 1

one obtains (3.9), shown at the bottom of this page. Define

N N
P(p,X) =Y wPi())  and Q. A) = mQi(N)
i=1 P

(3.10)
Observe from (3.6)~(3.10) that P(u, ) and Q(p, A) so ob-
tained obeys (2). Then using yet again the underlying convex-
ity, one has the inequality shown in (3.11) at the bottom of
this page. Then pre- and postmultiplying (3.11) by T>(p, A)
and T3(p, A) with

is o-CSPR and in view of Assumption 2.1 and the fact that I, ,‘7’2( A) — I (1)
hi; and hy; represent the respective comers of the polytopes To(p, A) = (3.12)
to which h(l) and hj(k) belong, we have the existence of 0 1
positive definite symmetric P;;, (;; such as are displayed in
(3.5) at the bottom of this page. yields the result. O
—(F + gh (1)) P(, A) = P(u, \)(F + gkl (1) = Qs A) = 20P(u, X), P, N)g + ha(N) = b (1)
) ) >0 (33
(P(p, A)g + ha(A) = ha(p)) 2
—(F + ght;)' Py — Pij(F + ght;) — Qi — 20Pyj,  Pijg + haj — ha
- . >0 3.5)
(Pijg + hoj — h;) 2
~(F + ghy;) Pi(3) = BA)(F + ght;) = Qi) = 20Pi(X),  Pi(M)g + ha(A) — ha
. . >0 (3.7
(Pi(A)g + ha(A) = has)’ 2
—(F + ghb(N) Pi(A) = BOF + ghiy(3) = Qi(A) = 20Pi(V),  Pi(N)g + hai = ha(Y)
. R >0 3.9
(Pi(A)g + hai — ha(A)) 2

[—(F + ghh(N) P, ) = P, A)(F + ghy(N) = Q(u, A) — 20P(1t, ), P, N)g + ha(p) — ha(2)

(P(, \)g + ha(p) — ha(N))

>0 @11
2
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Several remarks are in order.
Remark 3.1: It is interesting to note that in the above, (3.7)
expresses the o-CSPR property of

1 — (ho(X) — hyi) (sI — F — ghys) g (3.13)

while (3.9) expresses the o-CSPR property of the inverse of
1= (ha(A) = h1s) (sI — F — ghys) g (3.14)

with clearly the same P, Q pair.

Remark 3.2: Observe that the proof given above is con-
structive. In particular, one must construct the Lyapunov pairs
[P;j, Qij] (using possibly the spectral factorization method
outlined in [14]), which work with the corner represented by
hy = hy; and hy = iLlj , and then apply (3.6) and (3.10) to
obtain the desired Lyapunov pairs [Py, A), Q(p, A)].

Remark 3.3: The special cases of (2.8) and (2.9) corre-
sponding to the situations where the numerator is fixed and the
denominator is uncertain, and where the converse holds, are
of particular interest in adaptive systems and the development
to be outlined in Section 4. In the case where the numerator
is fixed, one can assume that

ha(k) = h Vk. (3.15)

Likewise, the converse case of denominator fixed allows one
to assume without loss of generality, that

hy(£) =0 V2. (3.16)

In either case, P(y, A) and Q(u, A) are af fine in the underly-
ing parameters. We next present the discrete time counterpart
of theorem 3.1.

Theorem 3.2: All members of the set (1.12) are p-DSPR
iff there exist symmetric P(u, A) and Q(x, A) which obey (ii)
and (iii) of Theorem 2 and (3.17), shown at the bottom of
this page.

Proof: Follows exactly as in Theorem 3.1. O

Remarks 3.2 and 3.3 apply to this situation as well. Having
dispensed with the parameterization contained in (2.11), we
now turn our attention to its counterpart in (2.10).

Theorem 3.3: All members of (2.10) are o-CSPR iff there
exist symmetric P(k,!) and Q(k,!), multiaffine in [k, 1]’ that
obey (3.18), shown at the bottom of this page.

Proof: Define hy; and hyj ¢ = 1,..,N, 5 =1,.. M
as the corners of the respective polytopes to which h; (1) and
ha(k) belong. In the sequel, we will refer to the corresponding
values of I and k as the ith comer of L and the jth
corner of K, respectively. Define [P;;,Q;;] as the Lyapunov
pair that “‘works’” with the comer 1 + (hy; — hoj;)/(sI —
F — gh!;)"'g. Define P(k,1),Q(k,l) as the unique matrix
function, multiaffine in the k and [, that assumes the value P;;
at the corresponding corners of K and L (see (2.10)).

Observe that P(k,1)(Q(k, 1)) can equivalently be viewed in
the following terms. Define for each j and with [ fixed at the
jth comer of L, P;(k)(Q;(k)) to be the unique multiaffine
function that assumes the value P;;(Q;;) at the ith corner
of K. Then for each k € K, P(k,l)(Q(k,!)) is the unique
multiaffine function that assumes the value P;(k)(Q;(k))
whenever [ is fixed at the jth corer of L.

For each j, define the set

0; = {0;(k) = [P;(k),Q;(k)] : k € K}. (3.19)
0;(k) is of course multiaffine in £. Define the property P; as
being satisfied iff (3.18) holds for all £ € K and with [ fixed
at the jth comer of L (recall, for this j, [P(k,), Q(k,1)] =
[P;(k),Q;(k)]). Then by Theorem 3.1, the property P; is
convex. Since, it is satisfied, by hypothesis, at the corners
of K, it holds for all £ € K.
Likewise, with any fixed k£ € K, define,

0 = {O(k,l) = [P(k,1),Q(k,1)] : k€ K,l € L}. (3.20)

As before, for every k, O(k,l) is multiaffine in /. Define the
property P as being satisfied iff (3.18) holds for this chosen
k and each I € L. Again from Theorem 3.1, this property is
convex, from the above it holds at the corners of L, and hence
Theorem 2.1 establishes the result. 0O

In a similar vein we can prove the following result.

Theorem 3.4: All members of (2.10) are p-DSPR iff there
exist symmetric P(k,l) and Q(k,!), multiaffine in [k',1')
which obey (3.21), shown at the bottom of this page.

Remark 3.4: A self-evident modification of Remark 3.3
applies here as well.

[—(F + gL (1)) P(i, \)(F + ghty (1)) — Q(u, A) + 02 P (1, ), (F + ghy (1)) P, N)g + ha(X) — ha(p)

. . . >0 (3.17)
((E + ghy (1)) P, A)g + ha(A) — Rap)) 2—g'P(p,A)g
[-(F + ghi (D)) P(k,1) — P(k,1)(F + ghi()) — Q(k,1) — 20 P(k,1) P(k,l)g+ ho(k) — hl(l):l
>0 (3.18)
(P(k,D)g + ha(k) — ha (1)) 2

{— (F + ghi(D)) P(k, )(F + ghy (D) — Q(k, 1) + p* P(k, 1)

((F' + ghi (1)) P(k, l)g + ha(k) — i (1))’

(F + ghy (D)) P(k,1)g + ha(k) — hl(l)}
>0 3.21)
2—-¢'P(k,l)g
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Remark 3.5: Here also the proof is constructive. As in Re-
mark 3.2, we must now construct the Lyapunov pairs [P;;, Q]
(see Remark 3.2 on the construction of these pairs) that work
with the transfer function that represents the combination of
the ¢-th and j-th comers of K and L, respectively. Then the
required [P(k,£), Q(k,£)] is. the unique multiaffine function
that assumes the value [P;;,@Q;;| at the apropriate corner
combination (See Lemma 2.4).

Remark 3.6: Observe, that Theorems 3.1 and 3.2 deal with
parametrizations that are equivalent to those used in their
respective counterparts Theorems 3.3 and 3.4. However, while
for fixed A (respectively 4) the Lyapunov pairs of Theorems
3.1 and 3.2 are collectively affine in the p (respectively A)
parameters, even for a fixed k (respectively £ ) the Lyapunov
pairs of Theorems 3.3 and 3.4 are multiaffine in the £ (respec-
tively k) parameters. This apparent paradox can be understood
in terms of the following example. Consider the multiaffine
function

p(kl,k2)=1+k1+k2+k‘1k2 Ofklsl,ogkzgl.

(3.22)
Clearly, in the given range of [k1, k2], p(k1,k2) cannot be
expressed as an affine function of two variables. Yet each
member of this set can be expressed as a convex combination
of the four corners p(0,0), p(0,1), p(1,1) and p(1,0). This
latter representation, though, will be nonunique. As shown
in Lemma 2.4 this example reflects a general property of all
multiaffine mappings. Indeed similar considerations apply to
the results of Section 4 also.

We conclude this section by explaining the utility of these
results to the adaptive output error identification of an un-
known system with denominator polynomial a(s). To guar-
antee convergence, one needs to construct a single error
filter E(s) such that E(s)/a(s) is biproper and SPR. Further
the minimum and maximum eigenvalues of the P, @ pair
associated with E(s)/a(s), together with the adaptation gain
and the degree of excitation of the input signals, constitute the
major determinants of the extent to which such an algorithm
is robust to modeling inadequacies.

We now argue that the results of this paper readily apply to
the determination of the extreme eigenvalues of the P and @
matrices associated with E(s)/a(s). To this end observe that
a(s) being the denominator of the system to be identified,
is itself unknown. One may assume, however, that prior
knowledge supplied by the physical modeling processes allows
one to obtain a polytope to which the true value of a(s)
belongs. Denote by k& the defining parameters of this polytope.
Then in [6], [7] are formulated methods for constructing a
single operator E(s) of the required relative degree, whose
product with every potential value of 1/a(s) is SPR. The
KYP result derived here then provides multiaffine Lyapunov
pairs, P(k) and Q(k) corresponding to all possible values
of E(s)/a{s). The multiaffine nature of P(k) and Q(k)
then directly provides tight bounds on their eigenvalues. This
is so (see corollory 2.1) because the extreme eigenvalues
of multiaffine symmetric matrices, defined over a polytopic
set in the parameters, are the eigenvalues of the matrices

5 s g st SRS ——

corresponding to the corners of this polytope. Thus the needed
robustness margins can be readily obtained.

IV. SoLuTioNs To THE LYAPUNOV EQUATION

In this section, we restrict our attention to the set ) as
represented in both (1.10) and (1.15) and consider suitable
Lyapunov pairs for this set. The main results of this section
are first formally stated.

Theorem 4.1 Consider 2 as in (1.10), with assumptions
2.1 and 2.2 in force. Then, all members of  are o-Hurwitz
(respectively p-Schur) iff there exist o-Hurwitz (respectively
p-Schur ) A, a vector w and positive definite symmetric P(k)
and Q(k), multiaffine in k, such that for all k¥ in K , (1.12)
(respectively (1.13)) holds with II(k) as in (1.14)

Theorem 4.2 With Q as in (1.15), the statement of
Theorem 4.1 stands with P(k),Q(k),II(k) replaced by
P(A), Q(A),II(X), TI(A) obviously defined and P(A),Q(X)
affine in A.

We will prove Theorem 4.1 in detail. The proof of The-
orem 4.2 being similar, is omitted. The proofs to be given
will be constructive, and as will become clear presently, the
construction of the Lyapunov pairs can be accomplished by
only considering the corners of 2. The key results to be
used fall into two categories. The first is the main result of
Section 3. The second result we use is a minor variation of
a construction result given in {7]. This result in [7] considers
polytopes of polynomials and gives necessary and sufficient
conditions under which there exists a single stable LTI operator
whose product with all the members of this polytope is o-
CSPR (respectively p-DSPR). The variation in question is
summarized in Theorem 4.3 below. In presenting this theorem,
we specialize it to the needs of the present paper. Specifically,
the polytope of polynomials we consider here is the set of
characteristic polynomials of the members of (2. Recall from
Lemma 2.2, this is a polytope as

det(sI — (F +gh'(k))) = det(sI—F) — h'(k)Adj(sI — F)g

@.n

Theorem 4.3 Consider the set £ as in (1.10). This set is o-

Hurwitz (respectively p-Schur) invariant iff there exist monic

polynomials ¢(s) and d(s), with d(s) o-Hurwitz(respectively
p-Schur) such that the transfer function

det(sl — (F + gh'(k)))c(s)
d(s)

(4.2

is biproper and o-CSPR (respectively p-DSPR) for all k € K.
Proof: The proof follows from [7] and the transformation

s — s — o in continuous time and z — pz in discrete time.[J
A few comments about this result are called for. Since in
the continuous and discrete time settings of our problem F is
respectively o-Hurwitz and p-Schur with
f(s) = det(sI — F) 4.3)

for sufficiently small €, o- Hurwitz or p-Schur invariance of
2 is equivalent to the existence of monic c(s) and d(s) as
above, such that the transfer function below is o-CSPR and



100 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 41, NO. 2, FEBRUARY 1994

p-DSPR for all £ € K.

det(sI — (F + gh'(k)) f(s + €)c(s)

f(s) d(s)

Further, as there are only a finite number of corners of Q and
as Lemma 2.2 and Assumption 2.1 assure that det(sI — (F +
gh'(k))) and f(s) are coprime for all comners of K, through
an arbitarily small perturbation in c(s) and d(s), if need be,
one can ensure that the transfer function in (4.4) is free from
any pole-zero cancellations at the corners of K. In the sequel
we will assume

4.4)

6(f(s)d(s)) = N.

It is clear that the choice of c¢(s) and d(s) ensures that f(s +
€)c(s)/d(s) is biproper. Suppose its minimal state variable
realization is {D,w,v,1}. From Lemma 2.2, {F, g, —h(k), 1}
is a state variable realization of [det(s] — (F+gh'(k)))]/f(s).
Then from Lemma 1 the transfer function in (4.4) has the state
variable realization {®,T', U(k),1} where @, I' and ¥ (k) are
given by (2.3), (2.4) and (2.5) respectively.

From the foregoing discussion the following is obtained.

Lemma 4.1 The set Q as in (1.10) is o-Hurwitz (respec-
tively p-Schur) invariant iff there exist suitably dimensioned
D and v such that with @, I" and ¥(k) as defined in (2.3)
through (2.5)

(4.5)

1+ U(k) (s —®)7'T (4.6)

is o-CSPR (respectively p-DSPR) for all k£ € K. Further (4.6)
is minimal at all corners of K.

Having proved this Lemma we now turn to proving The-
orem 4.1.

Proof of Theorem 4.1: We will only show the ‘‘only if”’

part of the theorem, since the “if” part is trivial.

1) o-CSPR: From Theorem 3.3 and Lemma 4.1, there exist
positive definite, symmetric P(k), Q(k) multiaffine in k,
such that, for all £ € K, the matrix in (4.7) is positive
definite

—®'P(k)—P(k)®-Q(k) —20P(k) P(k)T-T(k)
(P(k)T — ¥(k)) 2
4.7
Then pre- and postmultiplying by 7" and 7" with
_ [T ¥k)
T = [0 I ] (4.8)

one gets (4.9), shown at the bottom of this page. Thus,
from the (1,1) block of (4.9),

(®-TV'(k)) P(k)+P(k)(®-T¥'(k))<—Q(k)—20 P (k).
(4.10)

Noting that, with A = D — wv/, (& — TU/'(k)) is
precisely the matrix II(k) in (1.14), one obtains (1.12).

Moreover, comparing the left- and right-hand sides of
the (1,1) blocks of (1.12), proves that A is o-Hurwitz.
2) p-DSPR: Follows exactly as above.

Observe the procedure for constructing the Lyapunov pairs
is yet again constructive and, assuming that € is o-Hurwitz
invariant, entails the following steps:

Step I: Find the multiplier ¢(s)/d(s) outlined in (4.2) such
that the transfer function (4.2) is biproper and is o-CSPR for
all k € K. This can be done using the techniques of [7] using
corners of {2 alone.

Step II: Find sufficiently small &, such that the transfer
function in (4.4) is minimal at the corners of K and is -CSPR
for all £k € K.

Step I1I: Construct {®,T', U(k), 1}, a state variable realiza-
tion of (4.4), with properties set out in Lemma 4.1.

Step IV: As (4.4) is o-CSPR for all £ € K, use the results
of Section 3 to construct the multiaffinely parameterized pair
[P(k),Q(k)] that obeys (4.7). Again only the corners of K
are needed.

Step V: The required P(k) and Q(k) are those obtained in
Step 4.

Thus, should the set §2 be o-Hurwitz invariant, the Lyapunov
pairs can be constructed from the corners of 2 alone. This
does not imply that o-Hurwitz invariance of the corners of €,
is equivalent to the o-Hurwitz invariance of €. Indeed, the
fact that the comer stability of a polytope of matrices does
not imply the stability of the entire polytope can be gleaned
from counter-examples (e.g. [21]) that show that the stability
of a polytope of polynomials is not implied by the stability
of its corners.

V. STABILITY OF CONTINUOUS TIME
LINEAR TIME VARYING SYSTEMS

In this section, we illustrate the utility of Theorem 3.2 by
employing it in the analysis of a class of linear time varying
(LTV) systems. We begin with a definition.

Definition 5.1: The LTV system

#(t) = A(t)z(t)

is exponentially asymptotically stable (EAS) with degree of
stability v > 0 if 3¢, o > 0 such that for all z(ty) and ¢ > ¢,

llz(2)[le”#%) < cflz(to)][e (=t (5.2)

5.1

If v = 0, we simply say that (5.1) is EAS.

References [3], [4] contain results that through a simple
application of results in [19], [20], yield conditions for the
EAS of a class of LTV systems with time variations confined

to a scalar parameter k. In particular, suppose that,
A(k) = F + kgh' (5.3)

with g, h vectors is o-Hurwitz for all scalar fixed k lying
in a given interval. Then the conditions in question, involve

—(® — TW(k))' P(k) — P(k)(® — TU'(k)) — Q(k) — 20P(k) P(k)T + U(k)

(P(R)L + ¥(k))

>0 4.9

2
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certain precise logarithmic bounds on the time variations in °

the parameter k, such that the EAS of

&(t) = A(k(t))=(t) (5.4)
is retained. Specifically, one obtains the theorem below.

Theorem 5.1: Suppose A(k) as in (5.3) is o-Hurwitz for all
k € [k~,k*]. Then (5.4) is EAS. if for some €1,€e2, T > 0,
6 € (0,0) and all t > 0

1y)
k(t) € [k~ +e1,kT — €] (5.5)
and
2) Either
a)
1 T rd, k) -k17
= —In ———— -6) (5.6
wnr [ [ i) o< o= 69
where
+_Ja a2>0
o)™ = {0; a<0 -7
or
b)
1 (M d, k(r) -k
- Rl L ~8) (58
i;gT/t d‘rlnk"'—k(-r) dr < 4(c —6) (5.8)

Several comments are in order. First, in essence each
condition in Theorem 5.1 offers a trade-off between the degree
of stability of the ‘‘frozen’’ LTI systems and the average
time variation that could be withstood without losing stability.
Further, as one can imagine, by choosing a larger § (i.e., with
a smaller bound on the average derivative of the logarithmic
value of the time varying parameter), one can quantify the
degree of EAS that the resulting time varying system is
endowed with. Such a result is in [17].

Second, the results of [3], [4], [17] apply only to the
continuous time case involving the situation where time
variation is confined to a single parameter. No comparable
result for multiparameter time varying systems is to our
knowledge available; nor are we aware of similar stability
results that apply to discrete time system.

Third, even for the single parameter case, the results of
[3], [4], [17] are proved using a somewhat involved multiplier
theory, which to our knowledge does not readily extend to
multiparameter time varying system.

The principal contribution of this section is to demonstrate
how the results of Section 4 can be used to readily prove
a much more general set of results that: (1) Involve LTV
systems with multiple time varying parameters; (2) incorporate
the degree of stability considerations featuring in [17]; and (3)
specialize to Theorem 5.1 in the single parameter case. Section
6 gives the corresponding discrete time result. Specifically, we
prove the following.

Theorem 5.2 With Q, A(k),k = [k1, -+, km), K as in
(1.10), (1.11), and h(k) affine in the elements of k, suppose
every member of §2 is o-Hurwitz. Then the LTV system

&(t) = A(K(2))a(?) 5.9)

is EAS with degree of stability v, 0 < v < o, if there exists
8§ € (0,6 —7),T > 0 and €15,€2; > 0, Vi = {1,...,m} such
that for all £ > 0

1)

ki(t) € [k + €1 kT —ez], Vi€ {1,..,m} (5.10)

and
2) Either
a)
1 TS0 d, ki(r) -k 1"
= —In " dr < 2(0—-6—7).
i;gT/t ;[d‘rnk;'—ki(r)] T (U 7)
.11
or
b)
1 T d, k() — k7
= —In ———1d 4o —6—1).
?ZlgT/t ;‘d‘rnkf—ki(r) T < Alo=8-7)

(5.12)
The respective association between (5.11), (5.12) and (5.6),
(5.8) is clear.

To prove this theorem we first provide a result proved in
the appendix which shows that (5.12) is in fact a stronger
condition than (5.11).

Lemma 5.1 With (5.10) in force, (5.12) implies (5.11).

Thus, we need only show that (5.10) and (5.11) suffice for
the EAS of (5.9) with degree of stability ~.

Now Theorem 4.1 and the fact that 2 is o-Hurwitz invariant
together imply the existence of a o-Hurwitz A and multiaffine
symmetric positive definite matrix functions P(k), Q(k) such
that with TI(k) as in (1.14), (1.12) holds for all £ € K. In
the sequel, it will become evident that it is more convenient
to work with the LTV system

2(t) = T(k(1))2(2)

rather than with (5.9). Evidently, the block upper triangular
structure of II{k(t)) and the position occupied by A(k(t)) in
II{k(t)) readily yield the following.

Lemma 5.2: With II(k) as in (1.14), if the LTV system
(5.13) is EAS with degree of stability +, then so is (5.9).

Thus, we need only show that under (5.10) and (5.11), (5.13)
is EAS with degree of stability y. To this end we first prove
the following intermediate proposition.

Proposition 5.1: Suppose A = [A1,..., A,,])’ and the square
matrix function II()) is such that there exists a symmetric
matrix function ]5(/\), multaffine in A, such that for all
Ai € [0,00),2 € {1,...,m}

(A PN)) + POVII(A) < —20P())

(5.13)

(5.14)
and

P()) >0 (5.15)
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Then, the LTV system Consequently, whenever A;(t) > 0
CE(t) = TI(A())z(t) (5.16) , BP(A(t)) Xi(t) P(A()
MO T N one
is EAS with degree of stability v, 0 < ¥ < o, if there exist ' z( 5 [9P()
M > 0,T > 0,6 € (0,0 —«), such that V¢ A ), 5.
D 30| O P’“(t”]
A(t) € (0,M]  Vie{l,..,m}. (5.17) - ifg;p(,\(t))
and '
In other words, with A;(¢) obeying (5.17)
t4+T m d + 1 OPO(1) d, . .
g 15 [ ar <=0 o el < [Simao] Py s20

(5-18)  Consider now the Lyapunov function (see (5.15))
Remark 5.1: Observe no restrictions have been placed on .
the nature of the dependence that II(\) exhibits with respect V((t),t) = Z'(t)P(A())Z(t) (5.25)
to A. It need not be affine.

L ) . Then along (5.16), the developmeny outlined in (5.26) at the

P P tion 5.1: Define, ¥ ey 3 . .
roof of Proposi o ene v €{L,m} bottom of this page holds. Thus, with 7 as in (5.18), (5.27)
P;(X) = P(M)|x, =0 (5.19) at the bottom of the page holds.t Likewise observe that for

B £ 5.15) each 71 € (0,7),
ecause of (5.15),
V(Z(t+T1),t+T1) < exp[2(c —v— 6 TIV(:(t),t). (5.28)

P(0)>0 (5.20) )
) o Thus, as A;(t) € (0, M], P(\(t)) is bounded, a standard set
and for all i € {1, ~,m} and A € [0,00)™, of arguments provide the result.
Pi()) > 0. (5.21) We need one last proposition.

Proposition 5.2: Suppose the matrices II(k) and symmetric
The multiaffine nature of P()) ensures that for all ¢ € P(k) are such that for all £ € K (see (1.11)): (1) (L.12)

{,..,m} holds; and (2) P(k) > 0. Define for each ¢ € {1,...,m} ,
850 A= AL, A’
P()\) = Bi(\) + A ) (5.22) b — k-
aX; . i i
Thus for all A € [0,00)™ and i € {1,...,m} v
oP() - . (5.23) P(A) = P(k)| s pum (5.30)
o~ L Y

V(E(t),t)=§’(t)[ﬁ(A(t))P(A(t))+P( (t))H(/\(t))]Z(t)+ () POA(®)3(2)
< —20V(3(t),t) + 7 (t) ZA(t o (tt)))} 0

Z{A i “@”]z(t)

F 5
< =20V (E(t), )+ 2 ()| [ditln)\i(t)] P(/\(t))] ()

Li=1

< —20V(3(t),t) + #(t

Nt

m g +
=(-20+3 [aln/\i(t)} W(E®D), B). (5.26)
i=1

V(¢ +T),t+T) < exp

_20T+[t+sz:[—lnA T)]+d¢] V(z(t),t)

=1
< e—2fyTe—26Tv(5(t)7 t). (5.27)
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PO = [T+ D1POY) (5.31)
=1
fI(/\) = H(k)|k =k',+)‘i+k_ (5.32)

Then:
1) (5.13) is EAS with degree of stability «, iff (5.16) has
this property.
2) Whenever k(t) obeys (5.10, 5.11), A(¢) obeys (5.17,
5.18) for some finite M.
3) (5.14) and (5.15) hold.
Proof: Parts (1) and (2) follow by noting that (5.29) is
equivalent to

kf X+ k]

5.33
A+l ( )

and (5.32). To prove (3) observe, that because of (1.12),

positive definiteness of Q(k) and (5.33)
)P + PO < =20 P(X) (5.34)

Thus (5.31) and the positivity of A;, yield the result. O

We can now prove Theorem 5.2.

Proof of Theorem 5.2: Suppose (5.10) and (5.11) hold.
Then, from (2) of Proposition 5.2, under (5.29), (5.17), and
(5.18) hold. Likewise, from (3) of Proposition 5.2, (5.14) and
(5.15) hold. Thus, Proposition 5.1 shows that (5.16) is EAS.
Hence, (1) of Proposition 5.2 shows that (5.13) is EAS. Then
Lemma 5.2 completes the proof.

VI. STABILITY OF DISCRETE TIME
LINEAR TIME VARYING SYSTEMS

This section extends the results of Section 5 to the discrete
time case. We note that similar results have been hitherto
unknown even for the single parameter case. We begin with

Theorem 6.1: Suppose A(k) as in Theorem 5.2 is such that
Vk € K, A(k) is p- Schur. Then

A(k())=(t)

is v-EAS, 0 < p < v < 1, if there exist integer T > 0, a
§ obeying 0 < p < 6§ < 1 and €;; and €3; as in Theorem
5.2, such that for all integer ¢ > 0, (5.10) holds together with
either (6.4) or (6.5) below:

z(t+1) = (6.3)

)‘i(j“'l)} ¥6
= 1 i < 2ln(=). (64
w2 Y [5G n() 69

t+T 1 m

i (_7+1 ‘ 8
= < 4ln(&). (65
sup T ; 2; n(2) 69

where,
ki(t) — k7

N() = s flki(t) (6.6)

By using techniques very similar to that in Lemma (5.1)
one readily obtains the following anologous lemma.

Lemma 6.1: Suppose the A; are as in (6.6), and that (5.10)
holds. Then (6.5) implies (6.4).

As before, the hypotheses of Theorem 6.1 ensure the ex-
istence of TI(k) as in (1.12) for which certain multiaffine,
symmetric positive definite P(k), Q(k) form the discrete time
Lyapunov pairs. Further the v-EAS of

z(t+ 1) = II(k(2))2(t) ©.7)
suffices for the y-EAS of (6.3). Thus, it is the v-EAS nature of
(6.7), that we will seek to establish. To this end, the following
analogy of proposition 5.1 will provide the key.

Proposition 6.1: Suppose TI(A),A = [A1,..., Am]’ is such
that there exists P()\) multiaffine in A for which for all
A € [0,00)™ and some 0 < p < 1,

the analogy of Definition 5.1. AP (N) — p?P(X) < 0 (6.8)
Definition 6.1: The LTV system
z(t + 1) = A(t)z(t) 6.1) P()) > 0. (6.9)
f M and all i t>
is EAS with degree of stability (1 — p), (ie. it is p-EAS), ~'PPOse also that for some M and all integer ¢ > 0
0<p<1,ifdc>0,0<§ <1 such that Vip and ¢ > o, Xi(t) € (0, M) Vie{l,..,m} (6.10)
t and to integers,
@) and moreover that (6.4) holds. Then
X
< t—to ~
pt—to = cllz(to) 18 ©2) 2t + 1) = TI(A2)#(t) (6.11)
The main result we will derive is as follows. is v-EAS.
V(EE+1),t+1) =2t + DPO(+1)2(t+1)
= Z ()T (A1) P(A(t + D)) ()
< F (T (M) POE)TIA®))Z (v (2) (6.14)
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Proof: Lemma A.2 in the appendix proves that under
the hypotheses of the Theorem,

Xt +1) = ()]

PO+1) < [T+ [T YPA®)).
= (6.12)
Consider the Lyapunov function
V(z(t),t) = Z({t)P(A(t)3(t). (6.13)

Equation (6.14), at the bottom of the preceding page, holds
where

m . _ . —+
Thus from (6.8) and (6.15)
V(EE+1),t+1) < pP?u(t)V(E(D), 1), (6.16)

whence

+T
VEE+T),t+T) < (H j))V(z(t t). (6.17)

Therefore, from (6.4), (6.15), and (6.17)

V(EE+T),t+T) ! ,
In————="—"-<2Tlnp+ Inv(j
EOR) 2, nv)
< 2Tln p+ 2TIn (%)
= 2Tln (v6). (6.18)

In the above, we have utilized the following equality:

[m Mr = In{1 + [M@} 1 619

Ai(7) Ai(d)
The result follows from considerations similar to those em-
ployed in the proof of Proposition 5.1. 0

Then a proposition anologous to Proposition 5.2 proves the
result.

VII. CONCLUSION

We have derived parameterized Lyapunov functions for
both uncertain passive and stable systems. We also have
demonstrated their utility to the stability analysis of specific
classes of LTV systems. Several future lines of research
emerge from this paper. First, can the parameterization of
Theorem 4.1 be further simplified to render P(k) and Q(k)
affine in k7 Second, can one force P(k),Q(k) to have the

same dimension as A(k)? Third, just as the results presented
here have been beneficial in deriving stability theorems for a
class of LTV systems, we expect they would provide similar
benefit to the analysis of a wide class of nonlinear time varying
systems.

APPENDIX

A. Proof of Lemma 5.1

Define
ki(ty — k.
Lit) = In| ———+ 8.1
o =[5 &b
Then the following Lemma trivially proves the result. O

Lemma A.1: Suppose there exist My, M, > 0 such that the

real functions /;(t), ¢ = 1,...,m, obey
)
—M1 < l,(t) S M2 Vit 2 0 and (82)
2) There exists T, n and v > 0 such that
t+T m d
Sup — / —Li(T)ldr < 4n. (8.3)
>0 1 dr

Then Yy > 0, there exists T7(x) such that

1 4T, ™

d +
g [ X (k] <2 we

Proof: Suppose (8.4) fails for some p = po > 0. Then
for this po and every 7i there exists ¢1(us2,7;) for which,
dropping the arguments of ¢;

1 L+, ™ [d
1

+
Tl El,(T):l dr > 2(T}+ [LQ) (8.5)

Choose T7 = N T where N is to be specified later. Then

m

t1+T) d +
/ > [—li(r)] dr > 2(n+p2) NT  (8.6)
t o ldr

Defining [f(t)]” = min[0, f(2)]
I = [FeN*

Then (8.3), (8.6) and (8.7) imply

, note that for any f(t)

- [F@®1" 8.7

/tt1+NT - { 1] }dT > —2(n— ) NT (8.8)

Li(t1 +Th)

\%

v

1l

——li —+ 4ﬂ2NT

m ti+Ty ™
Suw+ [P i
= 511+T1 m

_mM1+/ Z[—z ) d¢+/

—mM; +2(n + uz)NT 2(n

(m))dr

1+T1 m

L) dr

~ p2)NT
(8.10)
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From (8.2),

—mM; <) Li(t) £ mMp Vt20 8.9
i=1

Thus from (8.6), (8.7), (8.8), and (8.9) it follows that (8.10)
holds. (See bottom of preceding page.) Choosing
m(M2 + M 1)

4“‘2T
one finds that the upper bound of (8.9) is violated at ¢ =
t1 + Ty. The contradiction proves the result. d

N> 8.11)

B. A Lemma Required to Prove Theorem 6.1
Lemma A.2: Suppose the symmetric matrix function P())
is multiaffine in the elements of A = [Ar,..., Am]’, and is

moreover, positive semidefinite for all A € [0, 00)™. Then,

if for all t, A(t) € [0,00)™, one has
MiE+1D) -2 5
MDA o

(8.12)
Proof: Since P()) is multiaffine in the elements of A,
one can always express it as follows: with S = {1,..,m}

Py =Y (J[MF 20 (8.13)

rCS i€r

PA(t+1)) < ﬁ{1+ [
i=1

Since P()) > 0,V € [0,00)™, one can readily establish the
fact that

P.>0 V¥rcS (8.14)

Use induction on m. When m = 1
PO(HL)-PAA®) = Pt +1) = M(B)] P
M+ -xn®]F -
{—I——W—L—] M () Py
[Al(t + 1) - /\1(t)
Ar(t)

+ . ~
] (B, + Au(t)Poy]
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whence

+
POt+1)) < {1+ [——Mt +,\11)(t; /\l(t‘)] }P(,\(t))
(8.15)

Suppose the result holds for m = . Define S = {1,..,1}
Then, for m = [ + 1, (8.16) at the bottom of the page holds.
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