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Abstract

This paper shows that the robust stability problem for
a linear system with both parametric and nonparametric
uncertainties is equivalent to a robust stability problem
with parametric uncertainty only. This is achieved by
converting the nonparametric uncertainty into a fictitious
linear parameter. When applied to systems with affine
parametric uncertainty and nonparametric uncertainty,
the resulting robust stability problem involves bilinear
parametric uncertainty which can be simply tested. This
result is also useful in computing Ho norm and strict
positive realness for systems with parametric uncertainty.

1 Introduction

Uncertainties arising from system modeling usually come
in different forms. Parametric uncertainty is often used
to describe perturbations caused by unknown or un-
certain physical parameters which are time-invariant or
slowly drifting (and hence can be approximated by time-
invariant ones). This type of uncertainty also corresponds
to low-frequency variations in the system transfer func-
tion. Unparametric uncertainty, on the other hand, is
popular for capturing unmodeled dynamics, fast time-
varying and/or high-frequency perturbations.

This paper solves the robust stability problem of linear
systems with both parametric and nonparametric uncer-
tainties. We show that the commonly used unmodeled
dynamics, either additive or multiplicative uncertainties,
can be reparameterized by a single fictitious parameter
which is linear, bounded and real. This reparameteriza-
tion has some advantages over the standard “polar” pa-
rameterization [1, 2]. In particular, we show that the ro-
bust stability problem of a linear system with both affine
parametric uncertainty and nonparametric uncertainty in
either additive form or multiplicative form is equivalent to
the robust stability of a family of polynomials with bilin-
ear parametric uncertainty, i.e., linear in both the original
parameters and the fictitious one. The resulting robust
stability can be tested in various ways. In particular, one
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can use the Finite Zero Exclusion Principle in [3] which
has the advantage of avoiding “frequency sweeping.”

The development of our results is through an equiv-
alence among the robust stability with nonparametric
uncertainty, Ho, performance, and strict positive real-
ness (SPRness). For this reason, our results are applica-
ble to the problems of testing the H,, performance and
SPR property of transfer functions with parametric un-
certainty. In other words, these problems are shown to be
equivalent to the robust stability problem of a family of
polynomials with parametric uncertainty with a fictitious
(linear) parameter.

2 Problem Formulation and Notation

Consider a single-input-single-output unity feedback sys-
tem with the open loop transfer function in s given by
G(s,q) + A(s), where G(s,q) € G is the parametric part
of the transfer function which depends an parameter vec-
tor ¢ which belongs to a bounding set Q € R™, A(s) €D
is the nonparametric uncertainty in the additive form.
We restrict ourselves to additive perturbations although
multiplicative ones can be treated similarly. The follow-
ing assumptions are required throughout the paper:

A1l G(s,q) is nth-order, strictly proper and real-valued

for all g € Q, i.e.,

n(s,0) _ Tip bi(a)e!
G(s,q) = -—=+ =&F - 1
402 %9 = Trgui@r
where a;(g) and b;(g) are real-valued functions with

an(g) #0forallg € Q.

A2 a;(g) and b;(g) are continuous in g over @, 0 < i <
n,0<j<n-1

A3 G(s,q) has no poles on the jw axis for allg€ Q.

A4 G(s,q) and G(s,q) + A(s) have the same number of
poles in the closed right half plane, for all A(s) € D.

A5 There exists some strictly proper, stable and
minimum-phase, real-valued transfer function y(s) =

%8 such that
D = {A(s) satisfying Ad : |A(jw)| < v(jw)} . (2)
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The robust stability problem to be solved in this paper
is to determine whether the closed-loop stability holds for
all for all ¢ € Q and A(s) € D.

Notation: The convex set of two elements = and y is
denoted by conv(z,y), i.e., conv[z,y] = {PAz+ (1 - A)y:
A € [0,1]}. Similarly, the convex family of two polynomi-
als a(s) and b(s) will be denoted by conv(a(s),b(s)].

3 Main Results

Several related results are to be developed. Theorem 1
shows that a rational function is SPR if and only if the
convex family of two associated polynomials is robustly
stable. This relationship simplifies a result by Rantzer [3]
which needs two parameters to do the conversion. Theo-
rem 2 generalizes Theorem 1 to testing the H,, norm of
a rational function by using an equivalence between Ho,
performance and SPRness. Theorem 3, an application of
Theorem 2, gives a parametric approach to the robust
stability problem of linear systems with both parametric
and nonparametric uncertainties.

Theorem 1. Given two n-th order real-valued poly-
nomials a(s) and b(s) with the same sign for their
leading coefficients, a(s)/b(s) is SPR if and only if
conv[a(s), jb(s)] is robustly stable (strictly Hurwitz).

Proof. From the definition of SPRness, we know that
a(s)/b(s) is SPR if and only if (i) both a(s) and b(s) are
stable, and (ii) Re[a(jw)/b(jw)] > 0, V — 00 < w < 00.
Because the leading coefficients of a(s) and 5(s) have the
same sign, i.e., a(joo)/b(joo) > 0, the condition (ii) above
can be replaced by

Re[a(jw)/b(jw)] # 0, V-0 <w < o0,

which is actually equivalent to

a(jw) .t

hw) +iT #0,vte0,1). (3
Using the nonzeroness of a(jw) and b(jw) (from the sta-
bility of a(s) and b(s)), the inequality (3) holds if and
only if

p(jw,t) = (1 - t)a(jw) + jtb(jw) # 0, VL €[0,1] . (4)

Note that the leading coefficient of p(s,t) is nonvanish-
ing for all t € [0,1]. Finally, due to the zero exclusion
principle (see [4], for example), the condition (i) and that
in (4) are further equivalent to the robust stability of
convla(s), b(s)). WV

The following lemma which establishes the relationship
between SPRness and H, performance is well-known; see
[5), for example.

Lemma 2. Given a sirictly proper transfer function
H(s) = n(s)/d(s) where n(s) and d(s) are real-valued
polynomials, ||H(8)llw < 1 if and only if the transfer
function (d(s) — n(s))/(d(s) + n(s)) is SPR.

Following the lemma above and Theorem 1, we have
the next result which relates the Hy performance of a
transfer function to robust stability of a family of poly-
nomials. The proof is omitted due to its obviousness.

Theorem 3. Given e sirictly proper transfer function
H(s) = n(s)/d(s) where n(s) and d(s) are real-valued
polynomials, ||H(s)lleo < 1 if and only if conv[d(s) —
n(s), 7(d(s) + n(s))] is robustly stable.

Now we return to the robust stability problem formu-
lated in Section 2. The following result is a natural com-
bination of the small gain theorem (see, [5], for example)
and Theorem 2 above.

Theorem 4. Consider the unity feedback uncertain sys-
tem described in Section 2 which satisfies A1-A5. Then,
the closed-loop sysiem is robustly stable if and only if the
following family of polynomials is robustly stable:

He = {ha(slq:’\) ‘g€ Q:’\ € [0» 1]} (5)
where

ha(s,q,2) = (1= A)(B - a)d(s,q) + Bn(s, q)]
+ JAl(B+a)d(s,q) +Pn(s,q)] . (6)

Remark 1. Note that the families of polynomials #, and
‘H,, will involve multilinear parametric uncertainty if the
open-loop transfer function G(s, ¢) is multilinear in g, or
bilinear uncertainty if G(s,¢) is affine in ¢. Effecient nu-
merical algorithms are available for testing the robust sta-
bility with these classes of uncertainty. In particular, we
draw attention to those based on the Finite Zero Principle
in [3] which require testing certain zero exclusion proper-
ties at a finite number of frequencies. Since the fictitious
parameter A introduced above is a linear parameter, ro-
bust stability test can be carried out efficiently.
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