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inputs to the systems. Then, (17) is satisfied. Limits in (18) come from
part 1) of the Proof for Theorem 1.
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Pole Placement via Static Output Feedback is NP-Hard

Minyue Fu

Abstract—This note proves that the problem of pole placement via static
output feedback for linear time-invariant systems is NP-hard.

Index Terms—Computational complexity, pole placement, static output
feedback.

I. INTRODUCTION

This note is motivated by the following long-standing problem of
static output feedback stabilization (SOFS): Given a linear time-in-
variant system, determine if it is stabilizable via static output feed-
back. This is arguably one of themost fundamental yet unsolved control
problems; see [1]. There have been a number of attempts recently to an-
alyze the computational complexity of this problem. In [2], it is shown
that the problem of finding a static output feedback stabilizer from a
given bounded set (a hypercube) is NP-complete. In [3], it is shown
that a matrix inequality problem closely related to the SOFS problem
is NP-hard. This matrix inequality problem, involving two linear ma-
trix inequalities and a nonconvex coupling condition, is related to the
SOFS problem in the sense that the latter can be transformed into the
former.
In this note, we consider the problem of static output feedback pole

placement (SOFPP): Given a linear time-invariant system and a set of
desired poles, determine if there exists a static output feedback con-
troller such that the closed-loop system contains poles at these desired
locations. For some special cases where the numbers of inputs and out-
puts are very small, constructive methods are available for SOFPP; see
[4]. It is also known that generic pole placement using static output
feedback is not feasible; see, e.g., [5]–[7]. The difficulty, however, is
that it is not clear how difficult it is to determine the solvability of the
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SOFPP problem for a given system and a given set of desired poles.
Our result shows that the SOFPP problem is, unfortunately, NP-hard.

II. MAIN RESULT

The SOFPP problem can be formally stated as follows: Given an
nth-order linear time-invariant system

�x =Ax(t) +Bu(t)

y(t) =Cx(t) (1)

where �x = _x for the continuous-time case, or �x = x(t+ 1) for the
discrete-time case, A 2 Rn�n, B 2 Rn�m, C 2 Rr�n, and a set of
desired eigenvalues �i, i = 1; 2; . . . ; q � n, determine if there exists
a static output feedback controller

u(t) = �Ky(t); K 2 Rm�r (2)

such that �i, i = 1; 2; . . . q, are eigenvalues of A � BKC .Without
loss of generality, (A, B) and (A, C) are assumed to be controllable
and observable pairs, respectively.

Remark 1: Note that we have set q � n. This is because it is gener-
ally impossible to assign all n poles arbitrarily. Obviously, this happens
whenmr < n. Even whenmr � n, arbitrary pole placement may not
be possible. This is because the closed-loop characteristic polynomial,
p(s), is multiaffine in K , implying that the domain of the mapping
fromK to p(s) may not cover all the nth order polynomials.

Denote byG(s) = C(sI�A)�1B the open-loop transfer function,
it is clear that the SOFPP problem above is equivalent to finding K
such that

det (I +KG(�i)) = 0; i = 1; 2; . . . ; q (3)

In the sequel, we assume that A, B, and C are rational matrices.
Theorem 1: The SOFPP problem is NP-hard.
The proof of the result above is done by transforming a known

NP-complete problem, the so-called partition problem, into the
SOFPP problem; see, e.g., [8] for definitions and examples of P,
NP-complete and NP-hard problems.

The Partition Problem [8]: Given an integer vector c =
(c1; . . . ; cp)

T , determining if there exists a binary vector
x = (x1; . . . ; xp)

T 2 f�1; 1gp such that cTx = 0.
Lemma 1: Denote two 2 � 2 matrices

H =
a b

c d
X =

x y

z w
(4)

and a scalar function f(X;H) = det(I +XH). Define

H1 =
1 �1

0 0
H2 =

0 0

�1 �1

H3 =
1

3

1 3

�2 �6
H4 =

�1 �1

�2 �4
: (5)

Then, the following simultaneous equations:

f(X;Hj) = 0; j = 1; 2; 3; 4 (6)

have only two possible solutions

x 2 f�1; 1g y = �x z = 1 + x w = 1 + x: (7)

Proof: It is straightforward to verify that

f(X;H) = 1 + ax + cy + bz + dw + (xw � yz)(ad� bc):

Substituting H1 and H2 into the previous equation, respectively, we
obtain z = 1 + x and w = 1� y. Simplifying f(X;H) gives

f(X;H) = (1 + b+ d) + (a+ b+ ad� bc)x

+(c� d� ad+ bc)y � 2(ad� bc)xy

Substituting H3 and H4 into the previous equation, respectively, we
obtain x + y = 0 and xy = �1. Hence, the only solutions are those
given in (7).

Proof of Theorem 1: We first note that, if we allow c to be a vector
of rational numbers and replace cTx = 0 by cTx + 1 = 0, this mod-
ified partition problem is still NP-complete. This can be seen as fol-
lows. Given any instance of the original problem, if we set xp = 1
and normalize c by dividing it by cp (assumed to be nonzero, without
loss of generality), then we obtain an instance of the modified parti-
tion problem with p � 1 variables x1; . . . ; xp�1. Similarly, if we set
xp = �1 and normalize c by dividing it by�cp, we obtain another in-
stance of the modified partition problem. Hence, the modified partition
problem is NP-complete.
Next, given any instance of the modified partition problem, we want

to construct an instance of the SOFPP problem such that its solution
coincides with the solution of the former. To do so, we choose matrix
K 2 R2�2p as follows:

K = [X1 X2 . . . Xp] (8)

where each Xi, is a 2 � 2 matrix. Next, we choose 4p + 1 eigen-
values �i;j , i = 1; . . . ; p, j = 1; . . . ; 4, and �4p+1 to be any distinct,
real, nonzero rational values and require G(s) to satisfy the following
constraints:

G(�i;j) = 0 . . . 0HT
j 0 . . . 0

T

2 R2p�2 (9)

for i = 1; . . . ; p, j = 1; . . . ; 4. That is,G(�i;j) starts with (i�1)2�2
zero matrices, followed by Hj and some more 2 � 2 zero matrices.
Also, G(�4p+1) is constructed as follows: The (2i � 1)th element in
the first column equals to ci, i = 1; . . . ; p, and all other elements are
zero.
We then obtain G(s) by interpolation as follows: Set q = 4p + 1

and order the eigenvalues �i;j as �1; �2; . . . ; �q�1. Then

G(s) =

q

i=1

�qi
sq

j 6=i

s� �j
�i � �j

G(�i) (10)

which is a simple polynomial interpolation. The extra term �qi =s
q

above is used to ensure the strict properness ofG(s). Obviously, n � q
because each entry of G(s) has order q. The matrices A, B and C in
(1) can be constructed from G(s) using, e.g., the control canonical
form. This construction procedure has a polynomial complexity.
By the construction ofG(�i;j) and Lemma 1, we know that det(I+

KG(�i;j)) = 0 at all i, j if and only if xi 2 f�1; 1g, where xi is the
upper left entry of Xi. Further, it is easy to verify that

det (I +KG(�4p+1)) = cTx+ 1:

Hence, we have done the required transformation. That is, the given
instance of the modified partition problem has a solution x if and only
if the instance of the corresponding SOFPP problem has a solutionK .
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It is easy to verify that this transformation is done in a polynomial time.
It follows that the SOFPP problem is NP-hard.

III. CONCLUSION

We have given a negative result for the static output feedback
pole placement problem. This explains why there is lack of effective
solutions to such a fundamental problem. However, it does not imply
that the SOFS problem is NP-hard. In fact, it seems that neither
problem reduces to the other in an obvious way. Nevertheless, it seems
to strengthens the conjecture that the SOFS problem is NP-hard as
well.
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A Remark on “Disturbance Decoupling for Linear
Time-Invariant Systems: A Matrix Pencil Approach”

Ying Wang, Shuqian Zhu, and Zhaolin Cheng

Abstract—In the above paper, an approach was proposed for the dis-
turbance decoupling for the linear system. Some details in the proof of the
sufficiency of Theorem 2 for the existence of the matrix are omitted. In
this note, we will give a detailed proof.

Index Terms—Generalized inverse, orthogonal matrix transformation,
stabilization.

The authors of [1] presented a systematic analysis of disturbance de-
coupling problem for standard linear systems based on the theory of the
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matrix pencils. However, some details in the proof of the sufficiency of
Theorem 2 for the existence of the matrix F1 2 Rm�n are omitted. In
this remark, wewill give a detailed proof and present a method for com-
putation of F1. Based on the disturbance decoupling and closed-loop
stability requirement given by [1], it is necessary to construct matrix
F1 such that

B3F1 + A31 = 0 (1)

holds and the matrix

G =
E11

E21

T
A11 +B1F1

A21 +B2F1
(2)

is stable, where E11 2 R~n �n ; E21 2 R~n �n ; [ET11 ET21 ]
T is or-

thogonal, and A11; A21; B1; B2 are matrices of appropriate dimen-
sions. From [1], the matrix B3 is of full-row rank, thus we have

F1 = �B
+

3 A31 + (Im �B
+

3 B3)Z (3)

where B+

3 is the Moore–Penrose inverse [2] of B3 2 R~n �m, Z 2

Rm�n is an arbitrary matrix. In addition, the requirement that the
matrix G in (2) must be stable implies that matrix F1 should satisfy
that

rank
sE11 � A11 �B1F1

sE21 � A21 �B2F1
= ~n1 + ~n2 8s 2 �C

+
: (4)

Substituting (3) for F1 in (4) gives

rank
sE11 �A11 +B1B

+

3 A31 �B1(Im �B+

3 B3)Z

sE21 �A21 +B2B
+

3 A31 �B2(Im �B+

3 B3)Z

= ~n1 + ~n2 8s 2 �C
+
: (5)

It is clear that if

rank
sE11 �A11 +B1B

+

3 A31 B1(Im �B+

3 B3)

sE21 �A21 +B2B
+

3 A31 B2(Im �B+

3 B3)

= ~n1 + ~n2 8s 2 �C
+ (6)

holds, i.e., the triple of matrices

E11

E21

;
A11 �B1B

+

3 A31

A21 �B2B
+

3 A31

;
B1(Im �B+

3 B3)

B2(Im �B+

3 B3)

is R-stabilizable [3], then theremust exist a constant real matrixZ , such
that (5) holds. Next, we prove that (6) is true. On one hand, noticing
that the matrix B3 is of full-row rank, we have

rank

sE11 �A11 B1

sE21 �A21 B2

�A31 B3

In 0

B+

3 A31 Im �B+

3 B3

� ~n1 + ~n2 8s 2 �C
+
: (7)

On the other hand, since the following equation:

rank(Im �B
+

3 B3) = m� ~n3
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