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Abstract— In this paper power system dynamic state esti-
mation problem is studied considering random communication
packet losses. Two sorts of stochastic processes, i.i.d. process
and Markov process, are respectively utilized to model two
different communication packet losses cases. The first case only
considers packet losses rate, and the second case includes both
of packet losses rate and recovery rate. The degradation of
the performance of state estimation caused by communication
packet losses is analyzed on IEEE 14 buses test system, and
numerical results are given.

I. INTRODUCTION

State estimation is one of the essential elements of the

online security analysis function in modern power system

energy management centers by providing a real time database

of the system state variables. After Schweppe and Wildes

[1]introduced the concept of state estimation in the field

of power system in the early 1970s, many methods have

been proposed to estimate the state variables of the power

system[2]-[5]. Especially, with the power system growing

larger and more complex, dynamic state estimation methods

[6]-[9] draw more and more attentions, which can save a

large number of computing resources compared with the

traditional static state estimation methods.

Signal communication technology forms the backbone

of state estimation by providing the database of real time

raw measurement. In most of the papers, which talked

about power system state estimation problem, the effects of

network communication were rarely focused on. In tradi-

tional power system state estimation methods the failure of

communication usually is addressed as normal bad data. In

this paper the state estimation performance degradation due

to signal communication constraint will be studied. When

communication constraint problem is studied, the following

several properties usually are considered, time delay, packets

loss, bandwidth constraint and quantization error. Su studied

the random time delay problem in his paper [7], and a state

estimation method was proposed for power system.

In this paper we just focus on the random packet loss

behavior of communication network. There are two sorts of

packet loss behaviors, in the first case, only packet loss rate

is considered, and in the second case, both of packet loss
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rate and recovery rate are entertained. The details will be

given in next section.

II. PROBLEM FORMULATION

We first take the standard IEEE 14 bus test system, shown

in Fig. 1, as an example to generally represent the network

structure of power systems. Based on the three assumptions

of the power system dynamic modeling in previous section,

the following dynamic network model is used to describe the

general power system:

Fig. 1. IEEE 14 bus test system

The following group dynamic equations (1) are used to

simply model the power system and signal communication

network.
Xk+1 = AXk +BX̄ +ωk

Yk = h(Xk)+νk

Zk = ϒkYk

(1)

where k is the time sample. Xk is the state vector comprised

by the phase angles and magnitudes of the bus voltages,

Xk = [θ2 (k)θ3 (k) · · ·θN (k)V1 (k)V2 (k) · · ·VN (k)]T

where θi (k) and Vi (k) are the voltage phase angle and

magnitude of bus i at time k. However in the following

sections θi and Vi will be used instead for simplicity. N is

the number of buses. Assuming the initial value of state X0

is a white Gaussian noise with mean value X̄ and covariance

matrix ΣX0
. Matrix A represents how fast the transitions

between states are, which is assumed to be stable. Matrix B is
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associated with the trend behavior of the state trajectory. Let

B= I−A, where I is the identity matrix, then E (Xk)k→∞ = X̄ .

Therefore X̄ is called the expected steady state. Vector ωk

represents modeling uncertainties, which is a white Gaussian

noise with zero mean and covariance matrix Σω . Ykis the raw

measurement vector. νk is measurement noise, which is also

a white Gaussian noise with zero mean and covariance matrix

Σν . Assuming X0, ωk and νk are uncorrelated.

h is the load flow function vector for the current power

system network configuration, including the following mea-

surements.

� Real and reactive power injection at bus i:

Pi =Vi ∑
j∈ℵ

V j (Gi j cosθi j +Bi j sinθi j)

Qi =Vi ∑
j∈ℵ

V j (Gi j sinθi j −Bi j cosθi j)

where Gi j + jBi j is the i jth element of the complex bus

admittance matrix. ℵi is the set of bus numbers that are

directly connected to bus i.

� Real and reactive power flow from bus i to bus j:

Pi j =V 2
i (gsi + gi j)−ViV j (gi j cosθi j + bi j sin θi j)

Qi j =−V 2
i (bsi + bi j)−ViV j (gi j sinθi j − bi j cosθi j)

where gi j + jbi j is the admittance of the series branch

connecting buses i and j. gsi + jbsi is the admittance of the

shunt branch connected at bus i.

� Voltage magnitude at bus i: Vi.

The above measurements are all accessable but not nec-

essary. Generally there are m measurements and n state

variables, m > n = 2N − 1.

Zk is the received measurement vector after transmission

from the raw measurement vector Yk via a communication

network. Random matrix ϒk = diag
[

γ1
k , γ2

k , · · · , γm
k

]

is used to indicate whether the measurement of the corre-

sponding dimension is correctly received, γ i
k = 1 or 0, i =

1,2, · · · ,m indicates measurement received or lost respec-

tively. Note that when γ i
k = 0, the corresponding dimension

measurement will be canceled, and the whole dimension of

measurement will be reduced to m− l at time k, l is the

number of 0 in ϒk.

In this paper, we study two different cases of commu-

nication packet loss. In the first case, only packet loss

rate p is considered. Furthermore assuming packet received

independently for different sample time point, cov
(

γ i
kγ i

s

)

=
0, k 6= s. I.i.d. process is used here to model this kind of

packet loss behavior, like follows: ϒk yields i.i.d. with

p = Pr(γ i
k = 0)

i = 1,2, · · · ,m
k = 0,1, · · ·

In the second case, both of packet loss rate p and recovery

rate q are considered. Packet on current sample time point

is received or lost only depend on the state of previous time

point. ϒk is assumed to yield one order Markov distribution.

Transmission probability matrix is
[

1− p p

q 1− q

]

where
p = Pr

(

γ i
k+1 = 0

∣

∣γ i
k = 1

)

q = Pr
(

γ i
k+1 = 1

∣

∣γ i
k = 0

)

i = 1,2, · · · ,m
k = 0,1, · · ·

In both of the above two cases, each dimension of mea-

surements of the same sample time point is assumed to be

transmitted via communication network independently with

the others, cov
(

γ i
kγ

j

k

)

= 0, i 6= j.

III. DYNAMIC STATE ESTIMATION

In this paper extended Kalman filter (EKF) is used to

estimate the state variables. Note that MAP estimation

method is also valid for this system, and actually EKF is

a particular case of MAP method with only one iterative

step on each time point. Furthermore both of the results of

the two methods are very similar, but the calculation speed

of EKF is much faster than MAP, and mathematical analysis

is also simpler for EKF. Therefore, EKF is preferred here.

Considering the communication packets loss behaviors

described in previous section, the following modified EKF

is operated on the system (1).

X̂k|k = X̂k|k−1 +Gk

[

Zk −ϒkh
(

X̂k|k−1

)]

X̂k+1|k = AX̂k|k +BX̄

Gk = Σk|k−1H ′
kϒ′

k

(

ϒkHkΣk|k−1H ′
kϒ′

k +ϒkΣν ϒ′
k

)−1

Σk|k = Σk|k−1 −GkϒkHkΣk|k−1

Σk+1|k = AΣk|kA′+Σω

(2)

Initialization is provided by Σ0|−1 = ΣX0
, X̂0|−1 = X̄ . Hk =

∂h(Xk)
∂Xk

∣

∣

∣

Xk=X̂k|k−1

is the Jacobian matrix of h(Xk).

From the EKF (2), we can see that the state estimation

error covariance is function of the random packet loss

parameter ϒk. The numerical test in next section analyzes

the effect of random packet loss to the state estimation

performance.

IV. NUMERICAL SIMULATION

The performance of the EKF in (2) is tested via the

generated simulation measurement data in this section. In

this simulation the trace of state estimation error covariance

is used as criterion to evaluate the performance. There are

two methods of calculating the trace of estimation error

covariance considered, the first one is

Ξk = trace

(

1

d

d

∑
j=1

(

X
j

k − X̂
j

k

)(

X
j

k − X̂
j

k

)′
)

(3)

which is called the trace of practical state estimation error

covariance. The second one is

Ψk = trace

(

1

d

d

∑
j=1

Σ
j

k|k

)

(4)

which is called the trace of theoretical state estimation

error covariance. Where d is the number of independent

realizations of simulated results used to calculate the average

values, and j indicates different realizations. Note that the

two kinds of error covariances will equal to each other when

d → ∞. Here we let d = 100.

360



A diag(0.98, · · · ,0.98)

B diag(0.02, · · · ,0.02)

ΣW diag(0.012 , · · · ,0.012)

ΣV diag(0.022 , · · · ,0.022)

ΣX0
diag(0.025, · · · ,0.025)

TABLE I

SIMULATION VALUES OF PARAMETERS

Bus Voltage magnitude Phase angle

1 1.060 0.0

2 1.045 −4.98

3 1.010 −12.72

4 1.019 −10.33

5 1.020 −8.78

6 1.070 −14.22

7 1.062 −13.37

8 1.090 −13.36

9 1.056 −14.94

10 1.051 −15.10

11 1.057 −14.79

12 1.055 −15.07

13 1.050 −15.16

14 1.036 −16.04

TABLE II

SIMULATION VALUE OF X̄

A. Simulation Data Generation

In practical case the value of the parameters A and B as

well as the noise covariance ΣW and ΣV should be estimated

online. In this paper, we just fix these parameters on some

given value shown in Table I. The value of X̄ is given in

IEEE 14 bus test system, which is shown in Table II.

Using the first two equations in (1) and the values in

Table I and Table II, we generated d sets of simulation

measurement. Fig. 2 and Fig. 3 show only one realization

of them.
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Fig. 2. one realization of simulation state variables
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Fig. 3. one realization of simulation measurement
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Fig. 4. p = 0.1, EKF state estimation result

B. Only Packet Loss Rate p with i.i.d. Distribution

Let ϒk yields i.i.d. with Pr(γ i
k = 0) = p, i = 0,1, · · · ,m.

When the packet loss rate p is fixed, the state estimation error

covariance will decreases with time going to some steady

value. Fig. 4 shows the result when p= 0.1. Otherwise, when

time k is fixed, especially let k equal to some steady time

point in Fig. 4, k = 200, the relationship between packet

loss rate p and state estimation error covariance can be

represented clearly. From Fig. 4, it’s noted that the trace of

the estimation error covariance increases monotonically with

the packet loss rate increases, especially in the last 10% of p,

changing speed increases quickly. However, when p is small,

the effect of the packet loss is not very distinct. In both Fig.

4 and Fig. 5, the two kinds of trace of error covariances are

close to each other, but the so called trace of practical error

covariance fluctuates more roughly.

C. Packet Loss Rate p and Recovery Rate q with Markov

Distribution

When both of packet loss rate p and recovery rate q are

considered, the one order Markov process is used to model

the packet loss behavior, which is introduced in Section II.

Fig. 6 shows the EKF estimation process when p = 0.1,q =
0.9, from which we can see that the state estimation error
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Fig. 5. i.i.d. packet loss rate, p = 0 : 0.01 : 1
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Fig. 6. p = 0.1,q = 0.9, EKF state estimation result

covariance decreases to some steady value. Fig. 7 and Fig. 8

show the effects of packet loss rate p and recovery rate q to

the state estimation performance. Fig. 7 shows the so called

practical case and Fig. 8 shows the so called theoretical

case. From both of Fig. and Fig., it’s noted that the trace of

the estimation error covariance increases monotonically with

packet loss rate p increasing or recovery rate q decreasing.

V. CONCLUSIONS

The relationship between state estimation error covariance

of power system and random communication packet loss is

studied via numerical simulation based on IEEE 14 bus test

system. This test method is also valid for the other power

systems. This simulation result will be very useful for further

study of state estimation of power system with communica-

tion constraints. Furthermore all of these monotonicity can

be approved mathematically.
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