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Abstract— This paper studies a generalized linear quadratic
Gaussian (LQG) control problem subject to the constraint that
the feedback signal is quantized with a fixed bit rate. We show
that state feedback control, state estimation and quantization
can not be fully separated in general. Only a weak separation
principle holds which converts the quantized LQG control
problem into a quantized state estimation problem. We show
that under high resolution quantization and the assumption
that the output dimension does not exceed the input dimension,
full separation of state feedback control, state estimation and
quantization can be achieved.

I. INTRODUCTION

Quantized feedback control has received a lot of attention

in recent years, due to the overwhelming need for network

based control systems. This proposes many new challenges

to the seemingly well-established linear control theory in

questioning how to redesign control laws suitable for a

networked environment. In this paper, we focus on the so-

called quantized LQG control problem which is generalized

from the standard LQG problem in discrete time but with the

constraint that the feedback channel is a digital link with a

fixed bit rate. We first look back at the history of the research

on this problem and discuss many attempts to generalize the

separation principle, some dated back to early 1960’s. We

point out that many of these generalizations contain technical

errors and/or misinterpretations. This leads us to a number

of results on quantized LQG control, as briefed below:

1) A weak separation principle holds which states that

optimal quantized LQG control can be achieved by separately

designing state estimation, state feedback control and quan-

tization. However, the separation is weak in two ways: i) The

quantization criterion depends on the control cost function;

ii) More seriously, optimal quantization can not be done

by separately minimizing the quantization errors at different

time instants. These weaknesses imply that optimal design

for quantized LQG control is very complex numerically and

is in huge contrast with the classical separation principle

where state estimation is independent of the state feedback

control and state estimation at each time instant can be done

recursively without considering the future evolution of the

system dynamics.

2) The consequence of the weak separation principle is

that the quantized LQG problem becomes a quantized state

estimation problem. In this problem, the output signal of a

system needs to be quantized by a fixed rate quantizer and

the quantized information is used to construct an estimate

of a linear function of the state of the system, the desired
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control signal in our case, in a way to minimize a given

distortion function. We point out that this can be viewed

as a generalized vector quantization problem. We then use

a linear predictive coding (LPC) type of approach to show

that, under high resolution quantization and some mild rank

condition, optimal quantization is done by using a memo-

ryless quantizer. Using memoryless quantizers means that

quantization can be done by considering each input sample

separately. This result, together with the weak separation

principle above, shows that a full separation principle holds

for quantized LQG control under high resolution quantization

and the mild rank condition. This rank condition essentially

requires the dimension of output not to exceed the dimension

of the input, which holds in particular for single-input-single-

output systems.

II. PROBLEM FORMULATION

The quantized LQG problem we study is the same as the

standard LQG control problem but with the constraint that

the feedback signal must be quantized and transmitted over

a digital link with a fixed bit rate, as depicted in Figure 1.
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Fig. 1. Quantized LQG Control System

The system we consider is a discrete-time model given by

xt+1 = Axt + But + wt

yt = Cxt + vt (1)

where xt ∈ R
n is the state, ut ∈ R

m is the control input,

yt ∈ R
p is the measured output, wt ∈ R

n and vt ∈ R
p are

independent Gaussian random distributions with zero mean

and covariances Wt > 0 and Vt > 0, respectively, and the

initial state x0 is also assumed to be an independent zero-

mean Gaussian distribution with covariance Σ0.

In the sequel, we denote zt = {z0, z1, . . . , zt}.

The communication channel we consider in this paper is

assumed to be a memoryless and error-free channel with

a fixed transmission rate of R bits per sample. The output
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signal yt needs to be encoded first (as indicated by the ENC

block in Fig 1) before transmission, and the received signal

is decoded which is then used to construct a control signal

ut (as indicated by the DEC block in Fig. 1).

The encoder is required to be a causal mapping from the

measured signal yt, i.e.,

at = αt(y
t|at−1) (2)

where α(·) takes values in a finite alphabet set A with size of

2R. Without loss of generality, we take A = {1, 2, · · · , 2R}.

Similarly, the decoder is required to be a causal mapping

from the received quantized signal, i.e.,

ut = βt(ãt|ã
t−1) (3)

where ãt is the received version of at. Because the channel

is error free, ãt = at, thus (3) can be rewritten as

ut = βt(at|a
t−1) (4)

We are interested in the following linear quadratic cost:

J = E

[

x′
T QT xT +

T−1
∑

t=0

x′
tQtxt + 2u′

tHtxt + u′
tStut

]

(5)

where E [·] is the expectation operator and Qt = Q′
t, St = S′

t

and Ht are weighting matrices with

St > 0, Qt − HtS
−1
t H ′

t ≥ 0 (6)

for all t = 0, 1, · · · , T − 1 and QT = Q′
T ≥ 0.

The problem of quantized LQG control is to jointly design

the quantizer and controller (or encoder and decoder) to

minimize the cost J , under the bit rate constraint.

III. LITERATURE REVIEW

It is interesting to know that the quantized LQG control

problem, with a virtually identical problem formulation as in

Section II, has been actively studied for a long time. Lewis

and Tou [6] (1965), Meier [7] (1965) and a monograph by

Tou [8] (1963) were perhaps the earliest attempts on this

problem. Larson [9] (1967) for the first time claimed that

the well-known separation principle for LQG control can

be generalized to quantized LQG control. But their claim

is incorrect [9]. Fischer [11] (1982) revisited the quantized

LQG control problem. He correctly pointed out that the

optimal quantizer must be time-varying. By allowing time-

varying quantization, Fisher claimed that the separation of

control, estimation and quantization indeed holds. More

specifically, he claimed that the optimal quantized LQG

problem is solved by separately

1) performing the optimal state estimation (Kalman filter-

ing) to produce a state estimate x̂t;

2) generating the optimal control ut = Ktx̂t to the

standard LQG problem;

3) quantizing ut to minimize a weighted quantization

distortion E [(ut −uq
t )

′Ωt(ut −uq
t )] for some weighting

matrix Ωt dependant on the cost function, where uq
t is

the quantized version of ut.

Borkar and Mitter [1] (1997) approached the quantized

LQG control problem under a slightly different setting (by

assuming the full state being measured without noise, but

allowing a certain type of transmission errors). It is claimed

in [1] that if, instead of the output, an “innovation process” is

encoded and transmitted, control, estimation and quantization

can be separately designed to achieve optimal performance.

It should be noted that the separation is conditioned on the

specific choice of the quantization scheme (i.e., quantization

of a particular “innovation process”). The paper did not

discuss whether such a choice is optimal or not. Also, this

method does not apply to unstable systems [2].

In the work of Tatikonda, Sahai and Mitter [2] (2004),

the quantized LQG control problem is revisited once again

also under the assumption of full state being measured. By

using the work of Bar-Shalom and Tse [13] on the so-called

neutrality (or no dual effect), a separation result is given

in [2]. In the work of Matveev and Savkin [3] (2004), a

restrictive decoder, called memoryless decoder for which

(4) reduces to ut = βt(at), is used for quantized LQG

control. It was shown in [3] that if using a memoryless

decoder, separation of state feedback control, state estimation

and quantization holds. We note that the use of memoryless

decoders can degrade the control performance.

Despite all these claims, we will show via an example

that the separation principle breaks down for quantized LQG

control. That is, strictly speaking, the optimal control law

can not be separated into independent state feedback control,

state estimation and quantization problems. We point out

that the lack of separation for quantized LQG has been

recognized by, Bao et. al. [5] (2008), although no explicit

examples are shown there.

IV. SEPARATION PRINCIPLE AND LACK OF IT

The core of the classical LQG control theory is the well-

known separation principle which states that the optimal

controller is given by ut = Ktx̂t, where Kt is the optimal

control gain assuming that the true state is known, and x̂t is

the optimal estimate of the state xt based on yt. An important

question to ask, in the presence of a bit rate constraint, is

whether the separation principle generalizes or not.

We first recall the optimal control solution for Kt below:

Kt = −(St + B′Pt+1B)−1(B′Pt+1A + Ht)

Pt = Qt + A′Pt+1A − K ′
t(St + B′Pt+1B)Kt (7)

with PT = QT , and the optimal J for state feedback is [14]

JLQ = tr(P0Σ0) +
T−1
∑

t=0

tr(WtPt+1) (8)

It is also well known (see, e.g., [15]) that the optimal state

estimate x̂t is obtained by the following Kalman filter:

x̂t = x̂t|t−1 + EtC
′V −1

t (yt − Cx̂t|t−1)

x̂t+1|t = Ax̂t + But (9)

with x̂0|−1 = E [x0] = 0, where

Et = E [(xt − x̂t)(xt − x̂t)
′] (10)
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is the state estimation error covariance given by:

Et = Et|t−1 − Et|t−1C
′(CEt|t−1C

′ + Vt)
−1CEt|t−1

Et+1|t = AEtA
′ + Wt (11)

with E0|−1 = Σ0. The optimal cost of J becomes [15]

JLQG = JLQ +

T−1
∑

t=0

tr(K ′
tΩtKtEt) (12)

where

Ωt = St + B′Pt+1B (13)

A. Weak Separation of Quantized LQG Control

Returning to the quantized LQG control problem, we have

the following basic result:

Theorem 4.1: Consider the quantized LQG control prob-

lem for the system (1), the cost function (5) and R-bit fixed-

rate quantization. Denote

zt = Ktx̂t (14)

and its quantized version by zq
t . Then, optimal quantized

LQG control is achieved by choosing the encoder (sequence)

{αt} to minimize the following distortion function:

D =

T−1
∑

t=0

E [(zt − zq
t )′Ωt(zt − zq

t )] (15)

The corresponding optimal controller and cost function are

given by, respectively,

ut = zq
t (16)

min J = JLQG + min D (17)

Moreover, given any encoder {αt} in (2), the optimal solu-

tion to ut is given by

ut = E [Ktx̂t|a
t] = KtE [x̂t|a

t] (18)

Proof: The proof is essentially borrowed from [11]. Using

the standard dynamic programming technique [15], the cost

function J can be rewritten as

J = JLQ +

T−1
∑

t=0

E(Ktxt − ut)
′Ωt(Ktxt − ut)

Rewriting

Ktxt = Ktx̂t + Kt(xt − x̂t)

and using (10), we get

J = JLQG + D + 2

T−1
∑

t=0

E [(Ktx̂t − ut)
′Ωt(xt − x̂t)]

It is a well-known fact [15] that xt− x̂t is uncorrelated to x̂t

and yt. Since they are all Gaussian, xt − x̂t is independent

of x̂t and yt and hence independent of ut too because the

latter depends only on yt. Therefore, the last term in J
above is zero and we arrive (17). The equation (18) is easily

obtained by minimizing the term E [(zt −ut)
′Ωt(zt −ut)] in

D, conditioned on at.

The next result shows that the quantized LQG problem is

equivalent to a quantized state estimation problem. For this

purpose, we consider the open-loop system of (1) as follows:

x̃t+1 = Ax̃t + wt

ỹt = Cx̃t + vt (19)

It is clear that xt and x̃t are related by

xt = x̃t −

t−1
∑

i=0

Bui (20)

Consider the following distortion function

D̃ =

T−1
∑

t=0

E(x̃t − x̃q
t )

′Πt(x̃t − x̃q
t ) (21)

where Πt ≥ 0, x̃q
t is the quantized x̃t and the associated

encoder is given by

at = α̃t(ỹt|a
t−1) (22)

which is a rate-R encoder. The quantized state estimation

problem is to find an encoder (22) such that D̃ is minimized.

Theorem 4.2: Consider the quantized LQG problem for

the system (1) with the cost function (5) and fixed bit rate

R. Define

Πt = K ′
tΩtKt (23)

and let {α̃t(·)} be the optimal encoder that minimizes the

distortion function (21) for the associated quantized state

estimation problem. Then, the optimal encoder (2) for the

quantized LQG problem is given by

αt(yt|a
t−1) = α̃t(ỹt|a

t−1) (24)

with

ỹt = yt −

t−1
∑

i=0

CBui (25)

Moreover, the minimum cost for the quantized LQG problem

is given by

min J = JLQG + min D̃ (26)

and

xq
t = x̃q

t +

t−1
∑

i=0

Bui = E [x̃t|a
t] +

t−1
∑

i=0

Bui (27)

Proof: The proof follows from Theorem 4.1 and two

simple facts below: 1) yt is linear in ut−1; 2) ut = Ktx
q
t with

xq
t fully determined by at. These two facts collectively mean

that yt|at and ỹt|a
t possess the same information. Hence, we

can encode ỹt|a
t instead of yt|a

t and construct xq
t from x̃q

t

as in (27) without affecting the distortion.

B. Lack of Separation for Quantization

From Theorems 4.1-4.2, we understand that the quantized

LQG control problem boils down to quantizing the sequence

{zt} (or {x̂t}). We see that the distortion function D depends

on the cost function J , but the relevant parameters Kt and Ωt

can be pre-computed and in the steady state they are constant.

Thus, the next question is whether the quantization of {zt}
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can be further separately so that each zt can be separately

quantized. This question is made more precise below.

Denoting

Dt = E [(zτ − uτ )′Ωτ (zτ − uτ )] (28)

then the distortion function can be split into two terms:

D =
t−1
∑

τ=0

Dτ +
T−1
∑

τ=t

Dτ (29)

The function αt needs to be designed to minimize the

second term above called the distortion-to-go. The specific

separation question we ask is whether the optimal encoder

sequence {αt} for minimizing D can be obtained by taking

each αt separately to minimize the distortion Dt only.

Unfortunately, this type of separation is not possible, as

demonstrated by the example below.

Example 4.1: The example we consider is a scalar system

without any process or measurement noise:

xt+1 = xt + ut, x0 ∼ N(0, 1)

yt = xt (30)

where N(0, 1) is the normalized Gaussian distribution (with

zero mean and unity variance). The cost function is given by

J = E [Q1x
2
1 +Q2x

2
2 +Q3x

2
3 +R0u

2
0 +R1u

2
1 +R2u

2
2] (31)

A single-bit quantizer is to be used.

Using (14), (15) and (17), we rewrite J = JLQG +D with

D = E [Π0(x0 − xq
0)

2 + Π1(x1 − xq
1)

2 + Π2(x2 − xq
2)

2]

Note that {Πt} is a function of {Qt} and {Rt}. Conversely,

we can choose {Qt} and {Rt} to make any positive {Πt}
we want. In particular, we will take Π0 = Π1 = 1 and leave

Π2 > 0 as a free parameter. Defining

ρ0 = xq
0

ρ1 = xq
1 − K0x

q
0

ρ2 = xq
2 − K1x

q
1 − K0x

q
0

and using xt+1 = xt + Ktx
q
t , D can be rewritten as

D = E [(x0 − ρ0)
2 + (x0 − ρ1)

2 + Π2(x0 − ρ2)
2] (32)

Therefore, for this particular example, the quantized LQG

problem becomes a quantization problem for x0 ∼ N(0, 1)
with distortion in (32). We can view {ρt} as a sequence of

successive quantized estimates of x0, i.e., ρt = E [x0|a
t].

Figure 2 shows how the quantization works: At t = 0,

the range of x0 is split into two quantization intervals:

(−∞, 0] and (0,∞). At t = 1, each of the above intervals

is divided into two intervals: The interval (0,∞) is divided

into (0, i2] and (i2,∞), and (−∞, 0] divided into (−∞,−i2]
and (−i2, 0]. At t = 2, each of the above intervals is further

divided into two. Thus, we will have 4 intervals on the

positive side: (0, i1], (i1, i2], (i2, i3], (i3,∞), and the negative

side is mirror imaged. It can be shown that this symmetric

structure is optimal for any S2.

Fig. 2. Example of Quantized LQG

The separation question we asked before becomes the

following: Suppose, at time t, yt is encoded to minimize

E [(x0 − ρq
t )

2|at] at each time t. Will such an encoder lead

to the optimal D? The answer turns out to be negative. If

Π2 → 0, to minimize D, the optimal value for i2 = 0.9816.

This value is also optimal for minimizing D1 (the second

term in (32)). The corresponding optimal values for i1 and

i3 are 0.4709 and 1.6942, respectively. If Π2 → ∞, to

minimize D, the optimal value for i2 → 1.05, and the

corresponding optimal values for i1 and i3 are 0.5006 and

1.7470, respectively. If Π2 is very large and we use the

optimal value of i2 for minimizing D1, there will be some

increase in the distortion (around 0.8%).

V. QUANTIZED STATE ESTIMATION

We now study the quantized state estimation problem. The

system we consider is given by

xt+1 = Axt + wt

yt = Cxt + vt (33)

with x0, {wt}, {vt} being independent Gaussian random

variables as before. Let x̂t be the optimal (Kalman) estimate

of xt and consider zt = Ktx̂t for some given Kt. The

task of quantized state estimation is to encode {yt} (or {zt}
indirectly) using (4) with fixed bit rate R to minimize the

following distortion function

D =

T−1
∑

t=0

E [(zt − zq
t )′Ωt(zt − zq

t )] (34)

for some given Ωt, where zq
t is the quantized zt.

A. Special Case: “White” Signal

We first study a special case where {zt} is an independent

sequence of random variables, but different distributions are

allowed at different t. We may consider this sequence to be

generated by (33) with A = 0. In this case, zt = Ktx̂t with

x̂t = ΣtC
′(CΣtC

′ + Vt)
−1yt (35)
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We have the following simple result which shows that

a memoryless quantizer is optimal, i.e., each zt can be

quantized independently. The result is somewhat surprising

because in the standard quantization setting where there is

no causality constraint, it is well known that memoryless

quantization is only suboptimal (hence the need for vector

quantization).

Theorem 5.1: Suppose {zt} is an independent sequence

of random variables with probability density functions {ft}.

Then, the optimal quantizer that minimizes D has the fol-

lowing memoryless structure:

at = αt(zt); zq
t = E [zt|at] (36)

with αt chosen to minimize

Dt = E [(zt − zq
t )′Ωt(zt − zq

t )] (37)

Proof: The independence of {zt} implies that the a poste-

riori probability density function of zt is still ft, not altered

upon receiving at−1. For the same reason, quantization of

zt has no effect to the future distortion terms Dτ , τ > t.
Hence, the optimal quantizer must be the one that minimizes

Dt only, thus it is a memoryless quantizer.

B. General Case: Colored Signal

We return to the general case where {zt} is not an

independent sequence. Motivated by Theorem 5.1, we may

be tempted to consider a “whitening” approach, as depicted

in Figure 3. In this approach, zt is “whitened” first before

quantization. This can be done by passing {zt} through a

whitening filter F to generate a white sequence {nt} for

quantization (Scheme (a)) or, alternatively, by quantizing the

innovation signal

et = yt − Cx̂t|t−1 (38)

from the Kalman filter (9) directly (Scheme (b)). The quan-

tized signal is then used to “reconstruct” the intended signal

by ignoring the quantization error.

- F - Q - F−1 -zt nt nq
t zq

t

Filter Quantizer

Scheme (a): Quantizing a “whitened” signal

- F - Q - G -yt et eq
t zq

t

Filter Quantizer Filter

Scheme (b): Quantizing the innovations signal

Fig. 3. The “whitening” approach to quantized state estimation

We remark that this approach has been proposed for

quantized LQG control. In Borkar and Mitter [1], under the

assumption that the full state is available (hence no need for

state estimation), it was suggested to quantize the process

noise wt (an innovation signal), instead of the state or control

signal, using a memoryless quantizer.

We show below that the whitening approach is not optimal.

Example 5.1: Let

z0 = n0; z1 = n1 + n0 (39)

with n0 and n1 independent and uniformly distributed in

[0, 1]. Let

D = E [(z0 − zq
0)2 + (z1 − zq

1)2] (40)

An L-level quantizer is to be used for a large L.

It is easy to “whiten” zt to get

n0 = z0; n1 = z1 − z0 (41)

If we quantize {nt}, then, following Theorem 5.1, nt can be

quantized independently. Since ut is uniformly distributed, a

uniform quantizer is known to be optimal and the distortion

is given by [17]

E [(nt − nq
t )

2] = δ2/12 (42)

with δ = 1/L. The corresponding distortion D equals

D = E [(n0 − nq
0)

2 + (n1 + n0 − nq
1 − nq

0)
2]

= E [2(n0 − nq
0)

2 + (n1 − nq
1)

2] = δ2/4 (43)

Now consider the alternative quantization scheme where

z0 = n0 is quantized using a uniform quantizer as before

which gives D0 = δ2/12, but z1 is quantized differently as

follows. At time t = 1, zq
0 = nq

0 is known to lie uniformly

in [nq
0 − δ/2, nq

0 + δ/2]. Then, z1 = n1 +n0 has probability

density function shown in Figure 4 (without the offset of nq
0).

Let [nq
0−δ/2, nq

0 +δ/2] and [1+nq
0−δ/2, 1+nq

0 +δ/2] to

be two quantization intervals and take the remaining L − 2
intervals to be uniform in [nq

0 + δ/2, 1 − nq
0 − δ/2]. Then,

the distortion for z1 is computed to be

D1 = E [(z1 − zq
1)2] =

(1 − δ)2

12(L − 2)2
(1 − δ) +

δ2

18
δ (44)

Combining it with the distortion for z0, we get

D = δ2/6 + O(δ3) (45)

where O(δ3) involves only 3rd order terms of δ. It is clear

that when L is large, this distortion is smaller than (43).

-¡
¡¡ @

@@
− δ

2
δ
2 1 − δ

2 1 + δ
2

1

Fig. 4. Probability density function for z1 in Example 5.1

Remark 5.1: We should not confuse the whitening ap-

proach with the LPC approach. The latter quantizes the

prediction error

et = zt − ẑt|t−1 (46)

where ẑt|t−1 is the prediction of zt given by

ẑt|t−1 = E [zt|e
q
τ , 0 ≤ τ < t] (47)

Because et contains the same information as zt at time t,
quantizing et is equivalent to quantizing zt. The key to the
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LPC approach is that the previous quantization values are

used in constructing the input to the quantizer, which is not

the case in the whitening approach. The alternative approach

in the example uses LPC, which explains why it is better than

the whitening approach.

C. High Resolution Quantization: Separation Principle

We continue with the general case where {zt} is a colored

sequence and we will show that, under the assumption of

high resolution quantization (i.e., R being large) and a mild

rank condition, the optimal quantizer has a very simple

separable structure. This is obtained using the LPC approach.

We first rewrite the Kalman filter (9) (with ut = 0) as

x̂t = x̂q
t|t−1 + Γtet + (x̂t|t−1 − x̂q

t|t−1) (48)

where Γt = EtC
′V −1

t and et is given in (38). Instead of

quantizing zt directly, we consider quantizing

εt = Γtet + x̂t|t−1 − x̂q
t|t−1 (49)

using a memoryless quantizer and take

x̂q
t = x̂q

t|t−1 + εq
t ; zq

t = Ktx̂
q
t (50)

Since et and x̂t|t−1 − x̂q
t|t−1 are independent, quantizing

εt will always yield a larger distortion for x̂t (hence for zt)

than in the case when x̂t|t−1 − x̂t|t−1 = 0.

We first mention a very important result on vector quan-

tization by Zador [19] (1963) (also see [17], [18]) which

states that the minimum distortion E [‖x − xq‖2] for any k-

dimensional random source x by a fixed-rate quantizer with

bit rate R has the form

D(R) ∼= bk‖fx‖k/(k+2)2
−2R (51)

where fx is the probability density function of x,

‖fx‖k/(k+2) =

(
∫

Rm

fk/(k+2)
x (χ)dχ

)(k+2)/k

(52)

and bk is a term independent of the source x, representing

how well cells can be packed in k-dimensional space for

the given distortion measure. The approximation ∼= in (51)

means that the approximation error is in in a order smaller

than 2−2R as R → ∞. But the approximation is known to

be very accurate even for relatively small values of R [20].

Using Zador’s formula (51), we obtain the main result

of this section which, together with Theorems 4.1-4.2, es-

tablishes a complete separation for quantized LQG control

under high resolution quantization and a mild rank condition.

The proof is omitted due to page limit.

Theorem 5.2: Consider the quantized state estimation

problem associated with the system (33) and the distortion

function D in (34). Suppose KtΓt has full column rank,

where Γt = EtC
′V −1

t as previously defined. Then, high

resolution quantization of zt is optimally done by quantizing

εt in (49) using a memoryless quantizer for the following

distortion function:

Dε
t = E [(εt − εq

t )
′K ′

tΩtKt(εt − εq
t )] (53)

The minimum distortion Dε
t is approximately the same as

the minimum distortion by quantizing et using a memoryless

quantizer with the following distortion function:

De
t = E [(et − eq

t )
′Γ′

tK
′
tΩtKtΓt(et − eq

t )] (54)

Hence, the minimum distortion D is approximated by

min D ∼=

T−1
∑

t=0

min De
t (55)

with the approximation error in the order smaller than 2−2R.
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