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Lack of Separation Principle for Quantized Linear
Quadratic Gaussian Control

Minyue Fu

Abstract—This technical note studies the quantized linear quadratic
Gaussian (LQG) control problem which is generalized from the classical
LQG control but with the constraint that the feedback signal is quantized
with a fixed bit rate. We show that state feedback control, state estimation
and quantization can not be fully separated in general. Only a weak
separation principle holds which converts the quantized LQG control
problem into a quantized state estimation problem. Further separation of
estimation and quantization is not possible in general. A concrete example
is provided to demonstrate this fact. It is also shown that the so-called
“whitening” approach to quantized state estimation is not optimal.

Index Terms—Certainty equivalence, linear quadratic Gaussian control,
networked control, quantized estimation, quantized feedback control, sep-
aration principle.

I. INTRODUCTION

The well-celebrated separation principle (otherwise known as cer-
tainty equivalence principle) for linear quadratic Gaussian (LQG) con-
trol has two key “separation” properties: 1) state feedback control and
state estimation can be designed separately and 2) the optimal state es-
timator over a given time horizon (finite or infinite) can be designed by
separately minimizing the state estimation error at each time instant,
a property which the well-known Kalman filter is based on. It is the
combination of these two properties that allows the familiar recursive
design of LQG controllers. What we intend to find out in this technical
note is how these two separation properties generalize to the case where
the feedback signal is quantized.

Quantized feedback control has received a lot of attention in re-
cent years, due to the overwhelming need for network-based control
systems. This raises many new challenges to the seemingly well-es-
tablished linear control theory in questioning how to redesign control
laws suitable for a networked environment. In this technical note, we
study the so-called quantized LOG control problem which is general-
ized from the classical LQG problem in discrete time but with the con-
straint that the feedback channel is a digital link with a given bit rate.
In doing so, we will also study a related problem of quantized state es-
timation which is an extension of the optimal state estimation problem
but with a similar bit rate constraint. We first look back at the history of
the research on the quantized LQG problem and discuss many attempts
to generalize the separation principle, some dated back to early 1960’s.
We point out that many of these generalizations contain technical er-
rors and/or misinterpretations. This leads us to the following results on
quantized LQG control.

1) A weak separation principle holds which says that optimal quan-
tized LQG control can be achieved by separately designing state
feedback control and quantized state estimation. However, we pro-
vide a concrete example to demonstrate that further separation of
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Fig. 1. Quantized LQG control system.

quantized state estimation is not possible. The lack of a full separa-
tion principle implies that optimal design for quantized LQG con-
trol is very complex numerically and is in huge contrast with the
classical separation principle where state estimation is indepen-
dent of the state feedback control and that state estimation at each
time instant can be done recursively without loss of optimality.

2) We then study the so-called whitening approach to quantized state
estimation. This approach is often used in signal processing and
has been proposed for quantized feedback control too. The basic
idea is to pass the given measurement signal through a whitening
filter to create an independent sequence before quantization by
a memoryless quantizer, then pass the quantized signal through
an inverse filter. We first show that if a given signal is a “white”
signal, memoryless quantization is indeed optimal. This is due to
the causality constraint in quantization and is in contrast with the
standard quantization theory where vector quantization is known
to be superior to memoryless quantization (or scalar quantization)
when no causality constraint is imposed. However, we show that
the whitening approach is not optimal for colored signals. This
result should be of interest to a wide range of quantized feedback
control problems.

The rest of the technical note is organized as follows. Section II for-
mulates the quantized LQG problem; Section III reviews the long his-
tory of this problem and related research; Section IV is devoted to the
weak separation principle; Section V studies the quantized state esti-
mation problem; and Section VI concludes the technical note. A pre-
liminary version of this technical note appeared in [15].

II. PROBLEM FORMULATION

Our quantized LQG problem is depicted in Fig. 1. The plant model
is given by

Ti41 = Axy + Buy + wy
ye =Cay + vy (D

where :; € R" is the state, u; € R™ is the control input, y: € R? is
the measured output, w, € R™ and v, € R” are independent Gaussian
random distributions with zero mean and covariances W; > 0 and
Vi > 0, respectively, and the initial state xg is also assumed to be an
independent zero-mean Gaussian distribution with covariance Xo. In
the sequel, we denote z' = {zo, z1,..., 2t }.

The communication channel we consider in this technical note is
assumed to be a memoryless and error-free channel with a fixed trans-
mission rate of R bits per (discrete-time) sample. The output signal y,
needs to be quantized by a causal encoder (the ENC block in Fig. 1)
before transmission

ar = a(yela'™h) 2
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where «(-) takes values in a finite alphabet set A with size of 2%, Sim-
ilarly, the decoder (the DEC block in Fig. 1) is required to be a causal
mapping from the received quantized signal, i.e.,

we = Belaca’™h). (3)

The problem of quantized LQG control is to jointly design the quan-
tizer and controller (or encoder and decoder) to minimize the following
cost function .J, under the given bit rate constraint

T—1
J=E& |27 Qrar + Z 2,Qery + 2u, Hyxy + uy Spug “4)

t=0

where €[] is the expectation operator and Q; = Q;, S; = S} and H,
are weighting matrices with

S¢>0, Qi — HiST H{ >0 Q)

forallt = 0,1,....,7 —land Qy = Q7 > 0.

III. LITERATURE REVIEW

Communication constrained control, also known as data-rate lim-
ited control, information limited control, networked control, is an area
of research which attracts a lot of attention recently; see, e.g., Wong
and Brockett [1], [2], Baillieul [3], Borkar and Mitter [4], Brockett and
Liberzon [5], Nair and Evans [6], [7], Elia and Mitter [9], Tatikonda and
Mitter [10], [11], Tatikonda et al. [12], Fu and Xie [13], [14], Matveev
and Savkin [16], Braslavsky et al. [17], Fu and de Souza [18], and Bao
et al. [19]. A comprehensive survey of recent research and historical
background can be found in [8].
Research on quantized feedback control can be traced back to
early days of modern control research. For example, Kalman [20]
(1956) studied quantization effects in sampled-data systems; Widrow
[21] (1961) conducted statistical analysis on quantization errors for
sampled-data systems. It is interesting to know that the quantized
LQG control problem, with a virtually identical problem formulation
as in Section II, has been actively studied for a long time. Lewis and
Tou [22] (1965), Meier [23] (1965) and a monograph by Tou [24]
(1963) were perhaps the earliest attempts on this problem. Larson
[25] (1967) for the first time claimed that the well-known separation
principle for LQG control can be generalized to quantized LQG
control. More specifically, he claimed that optimal control, estimation
and quantization can be separately designed. Unfortunately, Marleau
and Negro [26] (1972) came up with a counterexample to Larson’s
claim. Larson and Tse [27] (1972) then responded by pointing out an
error in the counterexample but conceded that the separation claim in
[25] is incorrect.
Fischer [28] (1982) revisited the quantized LQG control problem. He
correctly pointed out that the optimal quantizer must be time-varying.
By allowing time-varying quantization, Fisher claimed that the separa-
tion of control, estimation and quantization indeed holds. More specif-
ically, he claimed that the optimal quantized LQG problem is solved
by separately:
1) performing the optimal state estimation (Kalman filtering) to pro-
duce a state estimate Z;

2) generating the optimal control v, = I;#; to the standard LQG
problem;

3) quantizing u; to minimize a weighted quantization distortion
E[(ue — ul) Q(uy — uf)] for some weighting matrix 2, depen-
dant on the cost function, where u{ is the quantized w..
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Apparently unaware of the works of Larson and Fischer, Borkar and
Mitter [4] (1997) approached the quantized LQG control problem
under a slightly different setting (by assuming the full state being
measured without noise, but allowing a certain type of transmission
errors). It is claimed in [4] that if, instead of the output, an “innovation
process” is encoded and transmitted, control, estimation and quan-
tization can be separately designed to achieve optimal performance.
It should be noted that the separation is conditioned on the specific
choice of the quantization scheme (i.e., quantization of a particular
“innovation process”). The paper did not discuss whether such a
choice is optimal or not. Also, this method does not apply to unstable
systems [12].

In Tatikonda, Sahai and Mitter [12] (2004), the quantized LQG con-
trol problem is revisited once again also under the assumption of full
state being measured and a separation result is given. In the work of
Matveev and Savkin [16] (2004), a restrictive decoder, called memo-
ryless decoder for which (3) reduces to u; = 3;(ay), is used for quan-
tized LQG control. It was shown that if using a memoryless decoder,
separation of state feedback control, state estimation and quantization
holds. Note that the use of memoryless decoders can degrade the con-
trol performance.

Despite all these claims, we will show via an example that the separa-
tion principle breaks down for quantized LQG control, i.e., the optimal
control problem can not be separated into independent state feedback
control, state estimation and quantization problems. We point out that
the lack of separation for quantized LQG has been recognized by, Bao
et al. [19] (2008) and [8] (2007), but no explicit examples are shown
there.

IV. SEPARATION PRINCIPLE AND LACK OF IT

The core of the classical LQG control theory is the well-known sep-
aration principle which states that the optimal controller is given by
uy = K@, where 2, is the optimal estimate of the state x; based on
y', and K, is the optimal control gain assuming that the true state is
known and is given by

I(t = — (St + B,Pt+1B)_](B,Pt+1A + Ht>

Pt :Qt +441Pt+144 — 1&72(5t+BlPt+1B)IX’t (6)
witht =T — 1,7 —2,...,0 and Py = Q¢ . The optimal cost of .J,
in the case where x; is available for feedback, is given by
T—1
Jrg = tr(RySo) + Z tr(W Piyq). ¢
t=0

The result above is slightly generalized from [30] to allow time-varying
matrices in J. It is well known (see, e.g., [31]) that the optimal state
estimate & is given by a Kalman filter:

Ty =y + Etcl1";71(yt — Cdype—1)

Zyp1e = A2y + Buy ®)
with #¢|_1 = E[xa] = 0, where
Et = E[(Tf - jﬁ't)(,’l?f bl f‘f),] (9)

is the state estimation error covariance, computed recursively as
follows:

E:=E 1 — Et\t—lc/(CEtu—lOI + Y/rf)_lCEt\t—l

Epp =AEA + W, (10)
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state estimator is independent of the optimal control problem. The op-
timal cost of J, when u; = K;Z; is used, becomes [31]

witht =0,1,..., T — 1 and Ey_; = Xo. Itis clear that the optimal

T—1
Jraa = Juq+ Y tr(KiQu K Ey)

t=0

an
where )y = S, + B'P,.1 B.

A. Weak Separation of Quantized LQG Control

Returning to the quantized LQG control problem, we have the fol-
lowing weak separation result, which was first established in [28].

Theorem 4.1: Consider the quantized LQG control problem for the
system (1), the cost function (4) and R-bit fixed-rate quantization.
Denote

Zt = IX’t"IAT[ (12)

and its quantized version by z{. Then, optimal quantized LQG control
is achieved by choosing the encoder (sequence) {a; } to minimize the
following distortion function:

(13)

The corresponding optimal controller and minimum cost function are
given by, respectively

wp =z} (14)
minJ =.Ji.qq + min D. (15)
Moreover, given any encoder {«,} in (2), the optimal solution to u; is
given by

U = S[Ii't;i’”(lt] = I{tg[li?t|&t] (16)
where the expectation above is done over the distribution of &'+ con-
ditioned on a'.

Remark 4.1: The result above suggests that optimal quantized LQG
control can be achieved by first constructing the optimal estimate Z;,
which is independent of the cost function, then generating the optimal
control z; = ;2 and then quantizing it. However, the result does
not suggest that each z; can be independently quantized (a technical

error made in [28]). Instead, the encoder sequence a, a1, ..., a7—1
needs to be chosen jointly to minimize the distortion function D in
(13), which depends on the cost function .J. O

The next result shows that the quantized LQG problem is equivalent
to a quantized state estimation problem. For this purpose, we consider
the open-loop system of (1) as follows:

Tip1 = AT + wy

gt = Cit + Ut. (17)
It is clear that #; and #; are related by
t—1

v =i — Y Bu. (18)
=0

2387

Consider the following distortion function

T—1

D= (i — &) Mo — &) 19
t=0

where II; > 0, &} is the quantized &, and the associated encoder is
given by

ar = @(gea’"") (20)
which is a rate-R encoder. The quantized state estimation problem is
to find an encoder (20) such that D is minimized.

Theorem 4.2: Consider the quantized LQG problem for the
system (1) with the cost function (4) and fixed bit rate R. Define
II; = K;Q:K; and let {&+(-)} be the optimal encoder that minimizes
the distortion function (19) for the associated quantized state estima-
tion problem. Then, the optimal encoder (2) for the quantized LQG
problem is given by

ar(yea’ ™) = @ (Gefa’™") 1)
with
t—1
gi=y.— Y CBu,. 22)
=0

Moreover, the minimum cost for the quantized LQG problem is given
by

minJ = Jrqa + min D 23)
and
t—1 t—1
xf =af+ ZBM = E[i't|a‘t] + ZBui. 24)
1=0 =0

Proof: The proof follows from Theorem 4.1 and two simple facts
below: 1) y, is linear in u'~*; 2) u; = K¢ with =7 fully determined
by a'. These two facts collectively mean that y*|a" and §:|a’ possess
the same information. Hence, we can encode §j:|a instead of y|a’ and
construct 7 from z{ as in (24) without affecting the optimality of the
distortion. O

B. Lack of Separation for Quantization

From Theorems 4.1-4.2, we understand that the quantized LQG con-
trol problem boils down to quantizing the sequence {z;} (or {Z}).
Denoting

Dt = g[(lt - ’LLt)th(Zt - ut)] (25)

then, for any ¢ > 0, the distortion function can be split into two terms
t—1 T—1

p=Y D+ Dn
=0 =t

At each time 7, it is clear that a; needs to be designed to minimize
the second term above, which is called the distortion-to-go. The spe-
cific separation question we ask is whether the optimal encoder
sequence {«;} for minimizing D can be obtained by separately

(26)
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Fig. 2. Example of quantized LQG.

choosing each o, to minimize the distortion D, only. If this prop-
erty held, a Kalman-like forward recursive formula could be derived
for the quantizer design. This property, together with the weak separa-
tion principle, would constitute what we call a full separation principle
for quantized LQG.
Unfortunately, this type of separation is not possible, as demon-
strated by the example below.
1) Example 4.1: We consider a scalar system without process and
measurement noises
Tig1 =T +ue, xo ~ N(0,1)
Y =y (27
where N (0, 1) is the normalized Gaussian distribution (with zero mean
and unity variance). The cost function is given by
J = E[Quat + Qaus 4+ Qaws + Soud + Siui + Saud].  (28)
A single-bit quantizer is to be used.
Using (12), (13), and (15), we rewrite J = Jr.qaq + D with

D = E[Mo(xo — ) + Mi(w1 — 21)* + Mo (w2 — 2)?].

Note that {TI,} is a function of {Q} and {S;}. Conversely, we can
choose {Q:} and {S:} to make any positive {II;} we want. In partic-
ular, we will take II, = II; = 1 and leave II, > 0 as a free parameter.
Defining

po = ;tg; pL = x‘f - Kowg; p2 = ;L’S - Ifl;r? - Ix"o;rg
and using z;+1 = z; + K2, D can be rewritten as

D = E[(xo — po)* + (w0 — p1)* + a(wo — p2)’].  (29)
Therefore, for this particular example, the quantized LQG problem be-
comes a quantization problem for 29 ~ N(0,1) with the distortion
function in (29). We can interpret {p;} as a sequence of successive
quantized estimates of xg, i.e., pr = E[xo|a’].

Fig. 2 shows how the quantization works: At ¢ = 0, the range of zo
is split into two quantization intervals: (—oo, 0] and (0, 00). Att = 1,
each of the above intervals is divided into two intervals: The interval
(0,00) is divided into (0,¢2] and (i2, 00), and (—o0, 0] divided into
(—00, —i2] and (—i2, 0]. At ¢ = 2, each of the above intervals is fur-
ther divided into two. Thus, we will have four intervals on the positive
side: (0,i1], (41,42], (i2,73], (i3,00), and the negative side is mirror
imaged. It can be shown that this symmetric structure is necessary for
minimizing D in (29) for any II, > 0.

The separation question we asked before becomes the following:
Suppose, at time ¢, y; is encoded to minimize E[(z0 — pi)*|a’] at
each time ¢. Will such an encoder lead to the optimal D? The answer
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turns out to be negative. If Il — 0, to minimize D, the optimal value
for i» = 0.9816. This value is also optimal for minimizing D; (the
second term in (29)). The corresponding optimal values for iy and i3
are 0.4709 and 1.6942, respectively. If Il — oo, to minimize D, the
optimal value for i» — 1.05, and the corresponding optimal values for
i1 and i3 are 0.5006 and 1.7470, respectively. If Il is very large and
we use the optimal value of 7> for minimizing D, there will be some
increase in the distortion (around 0.8%).

Remark 4.2: From this example, we see that an optimal encoder ¢
which yields the optimal quantized state estimate at time £ may not
lead to an optimal total distortion. In other words, in designing a, its
influence to “future” distortions must be considered. This implies that
optimal encoder design a very nontrivial task, as it can not be done
recursively as in the Kamlan filtering case. The example above uses a
scalar system without measurement noise, so it is interesting that the
separation principle can fail even in such a simple case.

V. QUANTIZED STATE ESTIMATION

We now study the quantized state estimation problem. The system
we consider is given by

Ti41 = 441‘1 —+ wy

ye =Cry 4 vy (30)
with @o, {w,}, {v:} being independent Gaussian random variables as
before. Let ; be the optimal (Kalman) estimate of x¢ and consider
z¢ = K@ for some given I(;. The task of quantized state estimation
is to encode {y,} (or {z} indirectly) using (3) with fixed bit rate R to
minimize the following distortion function:

T—1

D = Z g[(:z — Z?)/Qt(zt - 3?)]

t=0

(3D

for some given 2, where z{ is the quantized z;.

The quantized state estimation problem above resembles the tradi-
tional vector quantization problem in the sense that both consider quan-
tizing a sequence of input signal {z:} to minimize some distortion
function. However, in our problem the quantizer has the additional con-
straint of causality. That is, the encoding-decoding pair at time ¢ is not
allowed to “see” the “future” values of z, and a-, 7 > t. The detailed
connection to vector quantization can be seen in [15].

A. Special Case: “White” Signal

We first study a special case where {z: } is an independent sequence
of random variables, but different distributions are allowed at different
t. We may consider this sequence to be generated by (30) with A = 0.
In this case, z¢ = K& with the optimal Kalman state estimate given
by

i =SC(CSC" + V) (32)

We have the following simple result which shows that a memory-
less quantizer is optimal, i.e., each z; can be quantized independently,
which implies that a full separation principle holds in this case.
The result is somewhat surprising because in the standard quantiza-
tion setting where there is no causality constraint, it is well known that
memoryless quantization is only suboptimal (hence the need for vector
quantization).

Theorem 5.1: Suppose {z:} is an independent sequence of random
variables with probability density functions {f:}. Then, the optimal
quantizer that minimizes D has the following memoryless structure:
(33)

ar = a(ze); 2t = Elzi]ad]
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Fig. 3. “Whitening” approach to quantized state estimation.

with o chosen to minimize

Dy = E[(z = =)' Qulz = 2] (34)
where the expectation is taken over f;.

Proof: The independence of {z¢} implies that the a posteriori
probability density function of z; is still f¢, not altered upon receiving
a'~!. For the same reason, quantization of z; has no effect to the future
distortion terms D-, 7 > t. Hence, the optimal quantizer must be the
one that minimizes D; only, thus it is a memoryless quantizer. O

B. General Case: Colored Signal

We return to the general case where {z;} is not an independent se-
quence. Motivated by Theorem 5.1, we may be tempted to consider
a “whitening” approach, as depicted in Fig. 3. In this approach, z; is
“whitened” first before quantization. This can be done by passing {z;}
through a whitening filter F' to generate a white sequence {n.} for
quantization [Scheme (a)] or, alternatively, by quantizing the innova-
tion signal (or prediction error) e; = z, — Z,,—; from the Kalman
filter for {z;} directly [Scheme (b)]. The quantized signal is then used
to “reconstruct” the intended signal by ignoring the quantization error.

We remark that this approach has been proposed for quantized LQG
control. In Borkar and Mitter [4], under the assumption that the full
state is available (hence no need for state estimation), it was suggested
to quantize the process noise w, (an innovation signal), instead of the
state or control signal, using a memoryless quantizer.

We first show via an example that the whitening approach is, unfor-
tunately, not optimal.

1) Example 5.1: Consider zo = no and z1 = n1 + no, where ng
and n; independent and uniformly distributed in [0, 1]. Let

D =¢E[(z0—28)" + (21 — 2)°). (35)
An L-level quantizer is to be used for a large L.

Itis easy to “whiten” z; to getng = zo; n1 = z1 —z2o.If we quantize
{n.}, then, following Theorem 5.1, n, can be quantized independently.
Since n; is uniformly distributed, a uniform quantizer is known to be
optimal and the distortion is given by &[(n; — nf)?] = 6?/12 with
6 = 1/L (see [32]). The corresponding distortion D equals

D =¢&[(no = ng)* + (1 +no = nf —ng)’|
4 62
n§)* + (m —n)*]= .

=E&[2(no — 1

(36)

Now consider the alternative quantization scheme where zp = no
is quantized using a uniform quantizer as before which gives Dy =
52/12, but z, is quantized differently as follows. At time ¢ = 1, 2 =
n¢ is known to lie uniformly in [n — §/2, ni + 6/2]. Then, z1 =
n1 + no has probability density function shown in Fig. 4 (without the
offsetof nd). Let[ng—6/2, ng+6/2] and [14+nd—6/2, 14+ni+6/2]
to be two quantization intervals and take the remaining L — 2 intervals
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Fig. 4. Probability density function for z; in Example 5.1.

to be uniform in [n§ 4+ /2, 1 — n§ — §/2]. Then, the distortion for z
becomes

_ o .4Y27 (1_5)2 _ ﬁ
Dy = £l ”)]_12(L—2)2(1 o)+ 1%

(37
Combining it with the distortion for zo, we get D = /6 4+ O(§*),
where O(6%) involves only third-order terms of 6. It is clear that when
L is large, this distortion is smaller than (36).

Remark 5.1: 'We should not confuse the whitening approach with
the so-called linear predictive coding (LPC) approach [32]. The latter
quantizes the prediction error e; = z; — Z;—, where £,,_ is the
prediction of z; based on past quantized values of e-, 7 < f, i.e.,
Zije—1 = Elzi|ed, 0 < 7 < t]. The key to the LPC approach is that the
previous quantization values are used in constructing the input to the
quantizer, which is not the case in the whitening approach. Note that
the alternative approach in the example uses LPC.

VI. CONCLUSION

We have offered and discussed several results on the quantized LQG
control problem. A weak separation principle holds for this problem,
which allows this problem to be converted into a quantized state estima-
tion problem. The latter is unfortunately difficult to solve. An example
is given to show that a full separation principle does not hold in gen-
eral. It is also shown that the “whitening” approach to quantized state
estimation is not optimal and is even inferior to the LPC approach. It
would be desirable to study suboptimal approaches to quantized state
estimation.
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Reduced-Order Iterative Learning Control and a Design
Strategy for Optimal Performance Tradeoffs

Goele Pipeleers and Kevin L. Moore

Abstract—When iterative learning control (ILC) is applied to improve a
system’s tracking performance, the trial-invariant reference input is typ-
ically known or contained in a prescribed set of signals. To account for
this knowledge, we propose a novel ILC structure that only responds to a
given set of trial-invariant inputs. The controllers are called reduced-order
ILCs as their order is less than the discrete-time trial length. Exploiting
all knowledge available on the input signals is instrumental in facing the
fundamental performance limitations in ILC: an ILC is bound to amplify
trial-varying inputs and reducing this trial-varying performance degrada-
tion invokes a slower learning transient. We present a novel optimal ILC
design strategy that allows for a quantitative and systematic analysis of this
tradeoff. The merit of reduced-order ILCs in view of this tradeoff is demon-
strated by numerical results.

Index Terms—TIterative learning control, optimal control.

[. INTRODUCTION

Iterative learning control (ILC) is an open-loop control strategy that
improves the performance of a system executing the same task over
and over again by learning from previous iterations/trials [1], [2]. Most
current ILCs comply with the following trial-domain description [2],

[3]:
u;j+1 = Q(u; + Lej) M

for some N x N matrices Q and L, with N the discrete-time trial
length. The index j = 0, 1,... labels the trials, while the /V-dimen-
sional vector signals u; and e;, correspond to the supervectors of the
control signal, respectively the tracking error, as described in more de-
tail in Section II-A.

It is well-known in the ILC literature that for linear discrete-time
systems, ILC (1) achieves perfect asymptotic rejection/tracking of any
trial-invariant input if and only if Q = Iy, where Ix denotes the
N x N identity matrix. This is a direct implication of the Internal Model
Principle [4], [5], which states that in order to achieve perfect asymp-
totic rejection/tracking of disturbance/reference signals corresponding
to the output of an autonomous system, this system must be embedded
in a stable feedback loop. Fig. 1 shows the trial-domain implementation
of (1) with Q = I, where q denotes the one-trial-advance operator:!
qu; = u;4. This figure reveals that the corresponding ILC embeds
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INotice that the boldfaced q notation is equivalent to the w-operator intro-
duced in [6] and developed in [3].
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