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Abstract: In this paper, we study the problem of robust regulation for a class of linear
uncertain systems which admit the so-called Recursive Augmentation Structure. This
structure is known to be quadratically stabilizable and is a rich class, including lower-
triangular and upper-triangular structures (which correspond to the so-called back-
stepping and forwarding in nonlinear control) as special cases. The results of this
paper provide conditions on the Recursive Augmentation Structure under which robust
regulation can be achieved. Our work differs from existing work on robust regulation for
linear systems in the sense that we allow large uncertainties in the system. Our work is
also expected to be useful in searching for possible new structures for regulation control
of nonlinear systems.Copyright c©2005 IFAC
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1. INTRODUCTION

Regulation control is one of the key problems in con-
trol because many control systems are designed for
the purpose of tracking certain reference signals. For
linear systems with a precise model, this problem was
thoroughly studied in the 1970’s and 1980’s under the
framework of internal model principle, and necessary
and sufficient conditions for regulation are well under-
stood; see, e.g., (Davison 1976) and (Francis 1977).
The concept of robust regulation has been around for
a long time. Robust regulation requires the existence
of a fixed controller which yields regulation for all
admissible uncertainties. By a simple continuity argu-
ment, it is well known (Davison (1976) and Francis
(1977)) that if a “fixed” linear system is regulated by
an internal model-based linear controller, the regula-
tion property is preserved when the system parameters
are slightly perturbed.

However, it is somewhat surprising that not much is
known about robust regulation control for linear sys-
tems with large parametric uncertainties in view of

the fact that a lot of results are available for robust
stabilization of linear systems. There is no general
approach for generalizing robust stabilization results
to robust regulation. Although the internal model prin-
ciple is still valid in the sense that robust regulation
amounts to robust stabilization of the given system
augmented with an internal model, the underlying
technical difficulty is that the resulting robust stabi-
lization may be difficult to solve. In general, the orig-
inal system and the augmented system have different
uncertainty structures.

In this paper, we study the robust regulation problem
for a class of linear uncertain systems which admit
the so-called Recursive Augmentation Structure. This
structure was first proposed by Barmish (1982) where
it was referred to as the shuffle structure. This structure
was later called the antisymmetric stepwise configura-
tion by Wei (1990) where it is proved that this struc-
ture is quadratically stabilizable via state feedback and
a recursive construction algorithm is provided for sta-
bilizing controllers. Because this structure is obtained
via a sequences of the so-called up augmentations
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and down augmentations, we call it a Recursive Aug-
mentation Structure. The structure includes the lower-
triangular and upper-triangular structures (which cor-
respond to back-stepping and forwarding in nonlinear
control) as special cases.

The aim of this paper is to generalize the quadratic
stabilization results of Barmish (1982) and Wei (1990)
to robust regulation for the Recursive Augmentation
Structure. The regulation controller employs dynamic
state feedback and is based on the internal model
principle. We provide two main results. The first one
deals with some necessary conditions for robust regu-
lation, whereas the second one provides a number of
selections for the output which guarantees a solution
to robust regulation.

2. RECURSIVE AUGMENTATION STRUCTURE

In this section, we introduce the Recursive Augmenta-
tion Structure initially introduced in Barmish (1982)
and review the results in Wei (1990) on quadratic
stabilization of this structure.

Consider the following linear time-invariant uncertain
system Σ(A(q),b(q)):

ẋ(t) = A(q)x(t)+b(q)u(t) (1)

where x(t)∈ IRn is the state, u(t)∈ IR is the control, q∈
IRp is the model uncertainty restricted to a prescribed
bounding set Q.

The problem of quadratic stabilization (via linear
feedback) requires finding a linear feedback controller
u(x) = kx for some row vector k ∈ IRn, an n × n
positive-definite symmetric matrix P and constant α >
0 such that

L(x,q) = x′[A′(q)P+PA(q)]x+2x′Pb(q)u(x)
≤ −αx′x (2)

holds for all x ∈ IRn and q∈Q. It is clear that L(x,q) is
the Lyapunov derivative associated with the quadratic
Lyapunov function V (x) = x′Px. The matrix P is called
the Lyapunov matrix, and its inverse is called the
inverse Lyapunov matrix.

The class of uncertain systems Σ(A(q),b(q)) studied
in (Wei 1990) admits the so-called standard form
with structural independent uncertainties (or standard
form for short), which is defined below:

Definition 1. Take the (n+1)× (n+1) matrix

M(q) =
{

mi j(q)
}

=
[

A(q) b(q)
0 0

]
(3)

Then, the uncertain system Σ(A(q),b(q)) is said to
be in the standard form if for every entry mi j(q), the
following properties hold:

• If it is a superdiagonal entry, i.e., j = i+1, then,
it is an uncertain term which varies indepen-
dently in [ri j, r̄i j], where either ri j > 0 or r̄i j < 0,

i.e., mi j is bounded and bounded away from zero.
For notational simplicity, these entries will be
denoted by θ.

• If it is a non-superdiagonal entry, i.e., j 6= i +
1, then it is either zero or an uncertain term
which varies independently in [ri j, r̄i j] for any ri j
and r̄i j, i.e., |mi j| is either zero all the time or
varies in an arbitrarily large but bounded region.
Similarly, these entries, if not identically zero,
will be denoted by ∗.

Definition 2. An uncertain system Σ(A(q),b(q)) in
the standard form is said to admit an Recursive Aug-
mentation Structure if its corresponding matrix M(q)
as in (3) satisfies the following condition: If p≥ k +2
and mkp(q) 6≡ 0, then muv(q)≡ 0 for all u≥ v, u≤ p−
1 and v≤ k +1.

The following key result is cited from (Wei 1990):

Lemma 3. Suppose Σ(A(q),b(q)) is in the standard
form. Then, it is quadratically stabilizable if and only
if it admits the Recursive Augmentation Structure.

Definition 4. Let Σ(A(q),b(q)) be n-dimensional. A
down-augmented system Σ+(A+(q),b+(q)) is given
by

A+(q) =
[

A(q) b(q)
∗∗ · · ·∗ ∗

]
; b+(q) =

[
0
θ

]
∈ IRn+1,

(4)
where ∗ and θ are uncertain entries as defined earlier.
Similarly, suppose Σ(A(q),b(q)) is in the following
form:

A(q) =
[

0 A−(q)
∗ ∗∗ · · ·∗

]
; b(q) =

[
0
θ

]
(5)

for some (n−1)×(n−1) uncertain matrix A−(q) with
n ≥ 1. An up-augmented system Σ+(A+(q),b+(q)) is
given by

A+(q) =




0 θ ∗∗ · · ·∗
0 0 A−(q)
∗ ∗ ∗∗ · · ·∗


 ; b+(q) =

[
0

b(q)

]
(6)

The system Σ(A(q),b(q)) will be referred to as the
generating system.

The Recursive Augmentation Structure is constructed
via a sequence of up and down augmentations, origi-
nated from a scalar system

ẋk = akxk +θu (7)

where ak is either 0 or ∗. The system (7) will be
referred to as the generating system.

3. REVIEW OF LINEAR REGULATION

Research on regulation problems was very active in
the 1970’s; see, for example, Davison (1976) and
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Francis (1977) and their bibliographies. The main
results that are pertinent to our paper are summarized
below.

Consider an uncertain LTI system

ẋ(t) = (A+δA)x+(b+δb)u+(E +δE)v
e(t) = (c+δc)x+(d +δd)u+(F +δF)v (8)

where x ∈ IRn and u ∈ IR are as before, v ∈ IRm is
the reference signal, e ∈ IR is the regulation error,
A,b,c,d,E and F are given, and the δ terms represent
perturbations with arbitrarily small sizes. Assume that
the reference signal is generated by

v̇ = A1v (9)

where A1 is a known matrix with eigenvalues in the
closed right-half plane. The reference model is driven
by some nonzero initial value v(0).

The regulation problem is to design a (fixed) linear
feedback control law such that the closed-loop system
is asymptotically stable and the regulation error ap-
proaches zero asymptotically, regardless the perturba-
tions δA,δb, etc., provided they are sufficiently small.
In this paper, we consider dynamic state feedback de-
fined by

ż = G1z+G2e
u = K1x+K2z (10)

The well-known internal model principle below as-
serts that the regulation problem is essentially a sta-
bilization problem.

Lemma 5. (Francis (1977) and Davison (1976)) Given
the system in (8) and reference model in (9), assume,
without loss of generality, that (A,b) is stabilizable.
Then,

• The necessary and sufficient condition for solv-
ing the dynamic state feedback regulation prob-
lem is that the eigenvalues of A1, σ(A1), do not
overlap with the zeros of system Σ(A,b,c,d).

• Under the condition above, then a regulating con-
troller (10) contains an internal model of the ref-
erence signal, i.e., σ(A1) ⊂ σ(G1) and (G1,G2)
is a controllable pair. Further, with any internal
model, the controller regulates the system if and
only if it stabilizes the system.

4. ROBUST REGULATION

The robust regulation problem is very similar to the
regulation problem except that the model uncertainties
(δA,δb, etc.) are now allowed to be large. For this
reason, we rewrite (8) as

ẋ(t) = A(q)x+b(q)u+E(q)v
e(t) = c(q)x+d(q)u+F(q)v (11)

where q ∈ Q representing constant uncertain param-
eters, A(·),b(·), c(q), d(q), E(q) and F(q) are con-
tinuous functions of q, and Q is a given compact set
called the bounding set. The controller takes the form

of (10). In particular, it does not depend on q but
it may depend on Q. The robust regulation problem
requires stabilization and regulation to be achieved for
all q∈Q. In this paper, we only consider dynamic state
feedback (10).

Recall that stabilizability is a necessary condition for
regulation. It is natural for robust regulation that we
only consider uncertain systems which are robustly
stabilizable and are so via state feedback because (10)
is the required control law. Motivated by the above,
we study uncertain systems (11) which satisfy the
following conditions:

i) (A(q),b(q)) admits the Recursive Augmentation
Structure;

ii)
e = ck(q)x+F(q)v (12)

for some k, where
ck(q) = [∗ ∗ · · · ∗ θ ∗ · · · ∗] (13)

with θ being at the kth entry.
iii) The pair (A1,F(q)) is detectable for all q∈Q and

A1 has all the eigenvalues in the closed right-half
plane.

Without loss of generality, we assume that A1 is in the
following form:

A1 =




0 1 0 . . . 0

0 0 1 0
...

...
. . . 0

0 0 . . . 0 1
α1 α2 . . . αm−1 αm




. (14)

Accordingly, we choose the internal model (G1,G2)
in (10) to be in the controllable canonical form:

ż1 = z2
· · ·

żm−1 = zm
żm = α1z1 + · · ·+αmzm + e

(15)

Theorem 6. Suppose the regulation error e(t) takes
the form (12) and that (A(q),b(q)) admits the Re-
cursive Augmentation Structure. Then, the following
results hold for dynamic state feedback robust regula-
tion:

• If k > 1, then a necessary condition for ro-
bust regulation is α1 6= 0, even when ck(q) =
[0 · · · 0 1 0 · · · 0] (i.e., no uncertainty).

• Robust regulation can be achieved if k = 1 and
αi = 0 for all i = 1, · · · ,m.

Proof: For the first case, take ck(q)= [0 · · · 0 1 0 · · · 0],
i.e., e = xk + F(q)v for k > 1. If α1 = 0, we choose
a special reference signal: v1 = β;v2 = 0, · · · ,vm = 0,
where β is a nonzero constant. Certainly, this sig-
nal fits the reference model because α1 = 0. Since
(A1,F(q)) is detectable, F(q)v must also be a nonzero
constant. Take

ẋk−1 = θxk (16)
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i.e., set possible * terms to zero. Suppose on the
contrary that robust regulation is achieved. Then, xk
should approach to −F(q)v asymptotically, i.e., a
nonzero constant. This implies that xk−1 would have
to approach to infinity asymptotically. Thus, we have
unbounded state for bounded input, i.e., the system is
not stable. By this contradiction, we conclude that the
system cannot be robustly regulated.

For the second case, we simply amalgamate the inter-
nal model (15) with (11). By setting v = 0, we obtain

ż1 = z2
· · ·

żm−1 = zm
żm = θx1 +∗x2 + · · ·+∗xn
ẋ = A(q)x+b(q)u

(17)

It is clear that the system above is obtained by up-
augmentations from (A(q),b(q)), so it admits the Re-
cursive Augmentation Structure because (A(q),b(q))
does so. Hence, it is robustly stabilizable by u = K1x+
K2z. By the internal model principle, this controller
also robustly regulates the system (11).

Theorem 7. Suppose the regulation error e(t) takes
the form (12) and that (A(q),b(q)) admits the Recur-
sive Augmentation Structure generated from the gen-
erating system (7), i.e., the regulated state variable is
the variable of the generating system for the Recursive
Augmentation Structure. Then, the following results
hold for dynamic state feedback robust regulation:

(i) Robust regulation can be achieved if k = 1 (i.e.,
(A(q),b(q)) involves down-augmentations only)
and ck(q) = [θ 0 · · · 0].

(ii) Robust regulation can be achieved if k > 1,
ck(q) = [0 · · · 0 1 0 · · · 0] and α1 6= 0.

(iii) As a special (but interesting) case of (ii) above,
robust regulation can be achieved if α1 6= 0, k =
n− 1 with ck(q) = [0 · · · 0 1 0] or k = n with
ck(q) = [0 · · · 0 1], and the system (A(q),b(q))
involves up-augmentations only, i.e.,

ẋ1 = θx2 +∗x3 + · · ·+∗xn
· · ·

ẋn−2 = θxn−1 +∗xn
ẋn−1 = θxn
ẋn = ∗x1 + · · ·+∗xn +θu

(18)

Proof: All we need to show is that in either case
above, the amalgamated system, consisting of (11) and
(15) with v = 0, admits the Recursive Augmentation
Structure. The first case is easy to check because the
amalgamated system (with v = 0) is given by

ż1 = z2
· · ·

żm−1 = zm
żm = α1z1 + · · ·+αmzm +θx1
ẋ1 = θx2

· · ·
ẋn−1 = ∗x1 + · · · ∗ xn +θu

(19)

It can be verified that the above admits the Recursive
Augmentation Structure. Therefore, there exists a ro-
bust stabilizing controller u = K1x + K2z. According
to the internal model principle, this controller will also
robustly regulates the system.

For the second case, we combine the generating sys-
tem (7) and the first series of down-augmentations (if
any) before up-augmentations as follows:

ẋk = θxk+1
· · ·

ẋk+ j−1 = ∗xk+1 + · · · ∗ xk+ j−1 +θxk+ j
ẋk+ j = ∗xk + · · · ∗ xk+ j +θu

(20)

for j≥ 0. Note that if j = 0, then down-augmentations
are void, i.e., augmented system (A(q),b(q)) starts
with up-augmentations. Also note that in the first j
lines above, the xk term does not appear on the right
hand side. This is a requirement for the subsequent
up-augmentation(s); see (6).

Define
x̄k = α1z1 + xk (21)

Combining (20) with (15) and replacing xk by x̄k gives
the following amalgamated system:

ż1 = z2
· · ·

żm−1 = zm
żm = α2z2 + · · ·+αmzm + x̄k
˙̄xk = θα1z2 +θxk+1
ẋk+1 = ∗xk+1 +θxk+2

· · ·
ẋk+ j−1 = ∗xk+1 + · · ·+∗xk+ j−1 +θxk+ j
ẋk+ j = ∗(−α1z1 + x̄k)+ · · ·+∗xk+ j +θu

(22)

Note that in the 5th line above, the term α1z2 should
be replaced by α1x̄k if m = 1. Anyway, the structure
above involves only down-augmentations.

Now consider the next series of up-augmentations

ẋk−i = θxk−i+1 +∗xk−i+2 + · · ·+∗xk+ j
· · ·

ẋk−1 = θxk +∗xk+1 + · · ·+∗xk+ j

(23)

for some i≥ 1. We have
ẋk−i = θxk−i+1 +∗xk−i+2 + · · ·

+∗ (−α1z1 + x̄k)+ · · ·+∗xk+ j
· · ·

ẋk−1 = −α1θz1 +θx̄k

(24)

Stacking them on top of (22), the amalgamated sys-
tem also admits the Recursive Augmentation Struc-
ture. This process can continue until all state vari-
ables x1, · · · ,xn are exhausted. Hence, the Recursive
Augmentation Structure is preserved, and like the first
case, robust regulation is achieved by some u = K1x+
K2z.

The third case is a special case of (ii) because the
system (13) can be viewed as augmented from ei-
ther xn with n up-augmentations or xn−1 through
a down-augmentation first followed by n − 1 up-
augmentations.
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Remark. We point out that two results in Theorem 7
have counterparts in nonlinear regulation. These are
Case (i), which can be found in Chen and Huang
(2002) and Isidori (1997), and Case (iii) with k = n,
which can be found in Marcoli, Isidori and Serrani
(2001). Roughly speaking, the nonlinear counterparts
of these results allow the * and θ terms to be replaced
by nonlinear functions (but with some restrictions);
see the references above for details. However, no
nonlinear counterparts exist so far for the more general
results in Theorem 7.

5. CONTROLLER DESIGN AND ILLUSTRATIVE
EXAMPLE

The results given in Theorem 7 address the solvabil-
ity of robust regulation. This section discusses the
controller design issue. We will introduce a design
algorithm and demonstrate it through an example.

Recall that we reduce a robust regulation problem to
a robust stabilization problem via the internal model
principle and that the Recursive Augmentation Struc-
ture is preserved in the process. Hence, it is sufficient
to explain how to design a quadratic stabilizer for an
Recursive Augmentation Structure. This is done using
the three results in the theorem below. The first two
results are from Barmish (1985) and the third one from
Wei (1990).

Theorem 8. Given an n-th order uncertain system Σ =
(A(q),b(q)) with b(q) = [0 0 . . . 0 θ]T , continuous
A(q) and a compact bounding set Q, it is quadratically
stabilizable if and only if

b⊥(SAT (q)+A(q)S)bT
⊥ < 0, ∀q ∈ Q, (25)

where b⊥ = [In−1 0]. If the condition above holds,
then a stabilizing controller is given by

k =−γbT
0 S−1, (26)

where b0 = [0 0 . . . 0 1]T and γ is any scalar satisfying
[

b⊥Ω(q)bT
⊥ b⊥Ω(q)bT

0
bT

0 Ω(q)bT
⊥ bT

0 Ω(q)bT
0 − γθ

]
< 0, ∀q ∈ Q, (27)

where Ω(q) = SAT (q)+A(q)S.

Suppose Σ above is is quadratically stabilizable, S =
ST > 0 is the corresponding inverse Lyapunov ma-
trix and k is the corresponding controller gain. Then,
any down augmented system Σ+ = (A+(q),b+(q))
is quadratically stabilizable via the following inverse
Lyapunov matrix

S+ =
[

S SkT

kS sn+1 + kSkT

]
, (28)

where sn+1 is any positive number. The corresponding
controller gain k+ can be found using the first part of
this theorem.

Suppose Σ above is is quadratically stabilizable, S =
ST > 0 is the corresponding inverse Lyapunov matrix.

Then, any up augmented system Σ+ = (A+(q),b+(q))
is quadratically stabilizable via the following inverse
Lyapunov matrix

S+ =
[

s0 + γ2cT
0 S−1c0 −γcT

0
−γc0 S

]
, (29)

where c0 = [1 0 0 . . . 0]T , s0 is any positive number,
and γ is chosen to satisfy

b+
⊥(S+(A+(q))T +A+(q)S+)(b+)T

⊥ < 0, ∀q ∈ Q,
(30)

where b+
⊥ = [In 0].

Controller Design Algorithm: We assume that the
conditions in Theomrem 7 are satisfied.

Step 1: Form the amalgamated system Σ̄ as in (22)
which consists of an internal model of the reference
system with the given uncertain system Σ. Initial-
ize Σ0 to be the generating system for Σ, choose
the corresponding inverse Lyapunov matrix S0 =
1 and select the corresponding controller gain k0
that (quadratically) stabilizes the generating system.
Denote by Σi, i = 1,2, · · · , n̄, the sequence of aug-
mented systems obtained recursively from Σ0 which
leads to the final amalgamated system, i.e., Σn̄ = Σ̄.

Step 2: For i = 1,2, . . . , n̄, design the inverse Lya-
punov matrix Si for the augmented system Σi using
Theorem 8. Then, set S̄ = Sn̄.

Step 3: Design a quadratic stabilizer for Σ̄ using The-
orem 8.

Illustrative Example: The uncertain system Σ in this
example is given by

ẋ1 = x2 +α2x3
ẋ2 = θ1x3
ẋ3 = α1x1 +θ2u
y = x2,

where α0 ∈ [−0.2, 0.2] and θi ∈ [0.8,1.2] for i = 1,2.
The output y is required to track a sinusoidal signal w
generated by

v̇1 = v2
v̇2 = −v1
w = gv1

with g to be specified. It is verified that Σ is a Re-
cursive Augmentation Structure with the generating
system

ẋ2 = θ1u
and the sequence of augmentations being down-up.
This falls into Case (iii) of Theorem 7, therefore robust
regulation can be achieved. The amalgamated system
is given by

ẋ1 = x2 +α2x3
ż1 = z2
ż2 = −z1 + x2−g(t)v1
ẋ2 = θ1x3
ẋ3 = α1x1 +θ2u

Following Step 1 in the Controller Design Procedure,
defining x̄2 =−z1 +x2, we transform the system above
into Σ̄ below:
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ẋ1 = z1 + x̄2 +α2x3
ż1 = z2
ż2 = x̄2−g(t)v1
˙̄x2 = −z2 +θ1x3
ẋ3 = α1x1 +θ2u,

which we need to stabilize quadratically (when v1 is
set to zero). It is easy to verify that the system above
admits the Recursive Augmentation Structure and the
sequence of augmentations is down-down-down-up
with the generating system being

ż1 = z2,

which is easily stabilized with any controller gain
k0 < 0 and inverse Lyapunov matrix (scalar in this
case) S0 > 0. Next, we follow Step 2 in the Controller
Design Algorithm obtain the inverse Lyapunov matrix
S̄ for Σ̄. The result is given by

S̄ =




264.69 −10.0 0 0 0
−10.0 4.11 −0.5 −1.04 −1.0

0 −0.5 1.04 −0.5 −2.0
0 −1.04 −0.5 1.1 −3.0
0 −1.0 −2.0 −3.0 74.08




. (31)

The relevant design parameters for each recursion
(i.e., γ, s0 or sn+1 as specified in Theorem 8) can be
identified from S̄. Finally, we follow Step 3 in the
design procedure to derive the following controller
gain:

k = [−1.377 −11.018 −16.518 −12.513 −5.809].

Figure 1 shows a simulation of the system. The initial
conditions of Σ are set to zero, but for the reference,
v(0) = [1 0] is used. The two trajectories correspond
to the reference signal and the output of the system.
For 0 ≤ t ≤ 20, the magnitude of the reference signal
g = 1. For t > 20, g = −0.5 is used. The uncertain
parameters are taken to be

[α1 α2 θ1 θ2] =





[0.2 0.2 0.8 0.8], t < 10;

[−0.2 −0.2 1.2 1.2], t ≥ 10.

We see that the output converges well in 5 seconds or
so after each parameter change.

6. CONCLUSIONS

In this paper, we have derived a number of results on
the problem of robust regulation for linear uncertain
systems. These uncertain systems are very general and
admit the Recursive Augmentation Structure. On one
hand, our results can be viewed as generalizations of
those in Barmish (1982) and Wei (1990) on quadratic
stabilization to robust regulation. On the other hand,
the results given in this paper can be used to motivate
new structures for nonlinear regulation. It is likely that
nonlinear systems which admit a generalized Recur-
sive Augmentation Structure (with the * and θ terms

0 5 10 15 20 25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

Reference
Output

Fig. 1. Simulation of the Illustrative Example

replaced by appropriate nonlinear functions) and sim-
ilar constraints on the regulated output as in Theo-
rems 6 and 7 can also have solutions to robust regu-
lation problems. This is a subject to be further studied.
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