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Robust Relative Stability of Time-Invariant
and Time-Varying Lattice Filters

Soura Dasguptéegellow, IEEE Minyue Fu, and Chris Schwarz

Abstract—We consider the relative stability of time-invariant and
and time-varying unnormalized lattice filters. First, we consider a

set of lattice filters whose reflection parametersy; obey |a;| < 6 y(k) =w, (k)

and provide necessary and sufficient conditions on thé; that B = ulk

guarantee that each time-invariant lattice in the set has poles Yn+1(k) = u(k)

inside a circle of prescribed radiusl/p < 1, i.e., is relatively stable ur (k) =y1(k —1). (1.3)

with degree of stability In p. We also show that the relative sta-
bility of the whole family is equivalent to the relative stability of | the sequel, the LTI version of (1.1)—(1.3) will refer to the

a single filter obtained by fixing eacha; to é; and can be checked case in which eachy;(k) equals a constant; for all k
with only the real poles of this filter. Counterexamples are given In thi a ’ il be the t zf f t'.
to show that a number of properties that hold for stability of LTI~ '" IS Case, (%01, -, ) will be the transfer function

Lattices do not apply to relative stability verification. Second, Y (2)/U(2).
we give a diagonal Lyapunov matrix that is useful in checking Since we are interested in relative stability, we first make

the above pole condition. Finally, we consider the time-varying precise our notion of relative stability. As we deal with systems

problem where the reflection coefficients vary in a region where 4+ are time varying, we use a state variable realization (SVR)-
the frozen transfer functions have poles with magnitude less than ’ . .
based approach to stability analysis.

1/p and provide bounds on their rate of variations that ensure S - o )
that the zero input state solution of the time-varying lattice decays ~ Definition 1.1 (Relative Stability)Consider the LTV sys-

exponentially at a rate faster than1/p: > 1/p. tem with SVR{A(k),b(k), c(k),d(k)}, i.e., obeying
Index Terms—L attice filters, Lyapunov, robustness, stability, _
time-vaying filters. z(k+1) = A(k)z(k) + b(k)u(k) (1.4)
y(k) = c(k)a(k) + d(k)u(k) (1.5)
l. INTRODUCTION where A(k), b(k), ¢(k), andd(k) are, respectivelyp x n,n x

HIS PAPER explores the relative stability of linear timel, 1 X7, and1x1 bounded matrices, thex 1 state isz(k), and
invariant (LTI) and linear time-varying (LTV) lattice (k) andy(k) are the input and output signals, respectively.
filters. Lattice filters have been studied extensively in the lashen, (1.4)—(1.5) is relatively stable with a degree of stability
two decades. They bear a direct relationship to the celebratge, p > 1 if there exist constants; > 0,0 < f, <1 such that
Levinson-Durbin algorithm [1] and have been applied if1€ zero input state solution obeys for albnd initial timef,
speech processing and linear predictive coding [2]. k—ko A < ) k—kq
An nth-order Lattice filter is depicted in Fig. 1, whege! P T (k)| < Bulla (ko) By (1.6)
is the unit delay element. _ . where|| - || denotes the standard 2-norm.
. He.re, thew, (k) are called the reflec’uon poeﬁlplents, the | 2(ko) # 0, (1.6) implies
time indexk used with these recognizes our intention to study

the time-varying lattice, ang=! is a unit delay. As is evident |z (k)] B k—ko
from this figure, the various signals obey, fbK ¢ < n m <h <7> 1.7
[yi(k)} B { 1 a;(k) } |:yi+1(k):| (1.1) Thus, relative stability with degree of stability. p ensures
wi(k) | |—ai(k) 1—ad(k) || ui(k) ’ that the zero input state response decays at an exponential rate
of at leastl/p. If (1.6) holds, we will sometimes say that
fort1 <i<n-1 (1.4)—(1.5) isp stable. If, in (1.6),0 = 1, then we simply call
(1.4)—(1.5) stable.
uip1 (k) = wi(k — 1) 1.2) In the LTI case (whereA,b,c, and d are constant),

. . ) ) ) (k1.4)—(1.5) has transfer function
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It is known that in the LTI case, where;(k) = «; for all
k, the lattice filter is stable iff
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Lattice filter.

Find sufficient conditions on the rate of variations in thék)
such that for somé < p; < p, this LTV lattice isp; stable.

In analyzing LTV systems, it is, in general, unreasonable
to assume complete knowledge of the nature of the time
variations. Normally, the knowledge we have is limited to
the extent and rate of parameter variations. Equation (1.14)

;] <1 V1 <i<n, 1.9

Furthermore, under (1.2), the lattice transfer function

_Y(») characterizes the extent of variation. Problem 2 then calls for
Gz, a1, ) = (1.10) . .
U(z) specification of the variation rate.
) ) ) Observe that effectively, the statement of Problem 2 ensures
is allpass, i.e., it obeys for alb € [0, 27) the p stability of all possible frozen LTI lattices corresponding
|G ay, -, an)| = 1. (1.11) to the LTV lattice being analyzed. Problem 1 addresses the

condition under which all such frozen LTI lattices will he
There are, however, two outstanding open issues in the undgigble. Subject to this condition on the frozen LTI lattices,
standing of lattice filters. The first of these concerns the issBgoblem 2 then calls for determining the parameter variation
of relative stability of the LTI lattice. Simply put, what arerates that ensure relative stability with a smaller dedngs .
the conditions on the reflection coefficients that ensuregtheAlthough it is important in its own right, Problem 1 is therefore
stablity of the LTI lattice? Such relative stability, as opposed ®@so useful to the analysis of LTV lattices. In Problem 2, there
mere stability, is important in most practical applications asii¢ clearly a natural tradeoff betweenp,, and the allowable
reduces the likelihood of quantization induced limit cyclegate of time variation for whiclp, stability is preserved. For
Further, as will become evident in the sequel, the relatidgivenp;, the larger thep, the greater the permissible rate.
stability of the LTI lattice is also critical to the stability of Our solution to Problem 2 captures this tradeoff, very much in
the LTV lattice. the spirit of [5]. Translated to the digital filter framework, [5]
The second concerns the relative stability of the LTV latticeonsiders digital filters in the direct form. It gives bounds on
It is known that the normalized version of the above latticde logarithmic rate of variation of the filter coefficients that
[3], [4] is stable under arbitrary time variations in the reflectioguarantee the relative stability of the underlying LTV system,
coefficients as long as they obey subject to a relative stability assumption on the frozen systems.
In particular, [5] assumes that the denominator coefficients
(1.12)  of the frozen LTI system transfer functions are1 < i < n
e{nd that the time-varying values of theseobey, for some
>0

(k)| <1 Vie{l,---,n}k.

However, to our knowledge, no nontrivial conditions exist th
guarantee the stability, let alone the relative stability, of theé

LTV unnormalized lattice structure of Fig. 1. In fact, it is well af +e<ai(k)<al —¢ 1<i<n (1.15)
known that the unnormalized LTV lattice could be unstable,
despite the satisfaction of (1.12) [4]. and that all LTI frozen systems defined by

This paper considers relative stablity of both the LTI and the aj <a;<a;i 1<i<n (1.16)

LTV lattices depicted in Fig. 1. The two problems addressed
are as follows. are p stable for somep > 1. Recall that they; directly appear

Problem 1.1: In Fig. 1, thee,'s are all time invariant, and I the direct-form implementations.
for somes; Then, with

a; (k) —a;
alf — a;(k)

7

i) = (1.17)
Find necessary and sufficient conditions on t#eso that the LTV filter is shown in [5] to bep, stable withl < p; < p
G(z,a1,---, ) are p stable withp>1, for all «;, as in jf there existV >0 and0 < 3 < 1 such that
(1.13). AN—1 n

Problem 1.2: Suppose for some > 1, every LTI system Z Z [ ¥i( l+1 } <2In <p/ ) (1.18)
G(z,0q, -, ap) Obeying (1.13) isp stable. Now, suppose k = 2pm
the reflection coefficients in Fig. 1 vary with time and 0be¥|
for some arbitrarily smalk; >0 ere

lou| <8 Yie{l,---,n}. (1.13)

[a]+:{a a>0

1.1
<8<l Vel ahk (L1 0 else. (19
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Note the tradeoff between the degree of the frozen systemProposition 2.1: Consider the set of polynomials
relative stabilityln p, the LTV filter degree of stabilityn g1, N
and theaveragerate of variation in the parameteys directly
related to the filter coefficients;; the +; monotonically Alz) = {a()"z) - Za
increase with thea,;. Further, only increases in;(k) and,
hence, a;(k) are of concern. Diminishings;(k) carry no A< < )\+} (2.5)
destabilizing influence. A result of this nature is sought here T T
for the LTV lattice of Fig. 1.

In Section Il, we provide some preliminaries. Section IWith a;(A\) continuous functions ok and for all\;” < X; <
gives a series of results connected to Problem 1. Section Ay, ag()\) # 0. Then, all members of4(z) are Schur (have
develops a Lyapunov matrix needed in the solution to Proberos strictly inside the unit circle) iff one member is Schur
lem 2. Section V then solves Problem 2. Section VI is thend for allw € [0,2n)
conclusion.

(2N =, A
i=0

a( X, e?*) £ 0. (2.6)

Il. PRELIMINARIES We next present a recursive formula for determining the
Eansfer function of a lattice filter.

This section derives a number of preliminary results aﬁ : . .
b y In the sequel (see Fig. 1), we will define

definitions. First, we define the technical concept of uniform
complete observability (UCO) [9], which is needed for some Golz) = 1 2.7)
of our analysis.

Definition 2.1: The pair of matrix sequenced(k) and gnq for1 < i < n
Q(k), respectivelyn x n andm x n, is called UCO if there -

exist y11, u2 >0 and integerNV such that for allk Gilz, o, ) = Wi(z) (2.8)
Yit1(2)
k+N—1 / 3 ' i h
ml< Y <H A(l)) Q' ()Q() <H A(l)) <ol Thus
i=k =k 1=k @2.1) Gz, a1, an) = Gz, a0, ) (2.9)

Here, the products are identity should the lower index exceed . ) )
the upper, and the order is exemplified by which is the overall transfer function of the lattice. Then, we

have, from [12], that foralD < i <n —1

1—1 _

TT(A() = (A — DYAG ~2) - (A(R)). Gia(zr o, o) = 2 GO €0) ~ i

=k 1 z aZ-I-IGZ (Z, g, ) OEZ) )
2.10

We next recount a fact from stability theory that provides the ) ) )
principle tool to be used in out LTV analysis. Further, we will define the transfer function séts< ¢ < n

Theorem 2.1 [6]: Consider (1.4)—(1.5) with the various

quantities defined in Definition 1.1. Then, (1.6) holds iff there Golz) =11} . .(2'11)
exists a symmetrie» x n Lyapunov matrix satisfying Gi(#) ={Gi(7, a1, )] < 6;<1,1 < j <}
2.12)

psl > P(k) = P'(k) > pal >0 vk (2.2)

Finally, we present a similar result for LTV lattice SVR'’s.

for which In the sequel, unless necessary, we will drop the explicit
dependence on the;.

pQA/(/{})P(/{J—i- 1)A(/€) _ P(/{;) < —Ql(k})Q(kJ) (23) Define {A7(l€),b7(/€),c7(/€),d7(/€)} to be an SVR of the

- system with inputy;1(k) and outputw;(k), as in Fig. 1

. ] ] ] [i.e., the system that in the LTI case has transfer function

with Q(k) real and[pA(k), Q(k)] UCO. In the LTI case of Gi(z,0q, -+, «;)]. The state vector; (k) is the output of the

constantd, P will be constant as well. delay elements appearing in the system and is given b
Much of our analysis relies on the concept of bounded rear & bp 9 y 9 y

(BR) transfer functions defined below. i (k) = [ (B), wa(k), - ws (k)] (2.13)
Definition 2.2: An LTI system with transfer functioi(z) ‘ ’ o
is BR if G(z) is stable and for all € [0, 27) In Theorem 2.1, we provide recursions that relate
- {Aip1(R), biy1(k), cipr(k), dipr(K)} to {Ai(K), bi(k), ei(k),
|G(e’)| < 1. (2.4) dy(k)} for 1 < i < n — 1. The recursion is initiated with

the nondynamic system corresponding & (z) in (2.7),
An important tool in robust stability analysis of LTI systems.e., Aq(k),bo(k), and co(k) are zero dimensional objects,
is thezero exclusion principl§l1], which is presented below. and dy(k) = 1.
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Theorem 2.2:Consider, with0 < ¢« < n — 1, the SVR
{A4;(k),b;(k),c;(k),d;(k)} of the system with inputw;(k)
and outputy;+1 (k) in Fig. 1, with state vector;(k), as in
(2.13). Then

_ [Ai(k)  bi(k)avipa (k)
Az-l—l(k) - [cz(k) dz(k)ai+l(k):| (2-14)
beaath) = |8 (2.15)
cip1(k) = (1 — aiy (k))eiy (2.16)
dit1(k) = —ai1(k) (2.17)
where thei x 1 vector ¢; obeys
e; =[0,---,0,1]. (2.18)
Proof: By definition
zi(k+1) = Ai(k)zi(k) + bi(R)yiva (k) (2.19)
wi(k) = ci(k)zi(k) + di(k)yi41(k).  (2.20)
Further, from (1.1)
Yi1 (k) = aip1(k)uit1 (k) + yira(k). (2.21)
From Fig. 1, (2.20), and (2.21)
wip1(k + 1) =wi(k)
=c;(k)zi(k) + di(k)yit1 (k)
=ci(k)zi(k) + di(k)ovipr (F)uir1 (k)
+ d;(K)yip2(k). (2.22)
Thus, substituting into (2.19), we have
uit1(k +1) ci(k)  di(k)aipa(k) | [wiya(k)
|:bi(k)
+ [0 |ossat (229)

Since, by the definition (2.13);11(k) = [zi(k), w1 (k)]
this proves (2.14), (2.15). Further, from (1.1)

wip1 (k) = =1 (F)yira(k) + (1 — oy (k))uiyr (k)
= —ip1 (B)yira(k) + (1 — o1 (k)
w1 (k). (2.24)
This proves (2.16)—(2.17) because of (2.18). [ |

An important consequence of this theorem is that;{ft) #
0, then

2091

Ill. ROBUST RELATIVE STABILITY OF THE LTI L ATTICE

We call a set of transfer functiorstable invariantif all its
members are stable. In this section, we provide a necessary
and sufficient condition foiG,,(z/p) to be stable invariant,
given p>1. Thus, this solves the problem of determining
whether each member of,(z/p) has degree of stability
In p. In addition, where appropriate, we will point out certain
salient points on which-stability properties differ from mere
stability. A third contribution of this section is to answer the
following question. Are there any distinguished members of
G.(z) whosep stability implies thep stability of all members
of Gn(2)?

It is known that for anyay,---, @, Gn(z,0q, -, @)
is stable iff for all 1 < ¢ < n,Gi(z, a4, -+, ;) IS stable.
Example 3.1 shows this not to be the case dostability in
general.

Example 3.1: Consider the lattice filter as in Fig. 1 and
(1.1) with

[Oél, o, (Y3, (N4, 045] = [—0.9, —0.8, —0.4, —0.6, —0.5].

Then, we can verify thatFs(z/p, a1, -+, a5) is stable for
all p<1.099. Yet, Ga(z/p,c1,---,4) is unstable for all
p>1.061.

Nonetheless, Lemma 3.1 below shows that when it comes
to verifying the stable invarianceof the entire setg, (z), an
order reductibility property does hold.

Lemma 3.1: The setG,,(z/p) is stable invariant ifiG;(z/p)
is stable invariant for all < i < n.

Proof: Sufficiency is clear. To prove necessity, assume
that for somel < ¢ < n — 1, G(z/p) is not stable
invariant. Then, there exist§;(z, a1, -+, ;) € G;(z) such
that G;(z/p, a1, -, ;) is unstable. Now, obsern@< &;41.

Thus
Giv1(z, a1, -, 03,0) € Giv1(2). (3.1)
Observe from (2.10) that
Gip1(z, 01,0, 05,0) = 27 1Gylz, a1, -, 0q). (3.2)

Thus, G;y1(z/p, a1, -+, ,0) is unstable. Hence, we have
the result. O
The fact that the order reductability property applies to
stable invariance of sets such @s(z/p) even forp>1 is
crucially dependent on the fact that the s@i$z/p) contain
elements involvingy; = 0.
Henceforth, we consider the stable invariance of all the

bi(k) = LAi(k)ei(k). (2.25) Gi(z/p). We are now in a position to state the main result
ai(k) of this section. This result requires that
Together with the initiating process stated just
before the theorem statement, this provides the SVR fo=1 (3.3)
{AL(K), b (k), ca(k),dn ()}, of the lattice filter in Fig. 1. = pfi-1— 6 i1 (3.4)
As an illustration, observe that YTl = pbificy’ o ’

{Al(k)7 bl(k)v C1 (k)7 dl(k)}

= {al(k)v 1,1- O‘%(k)a

—ay(B)}. (2.26)

be considered. Then, the necessary and sufficient condition for
the stable invariance of thg;(z/p),1 < i < n, is as follows.
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Theorem 3.1:Consider the setg};(z2),1 < ¢ < n, as Lemma 3.2: Suppose the sef,,(z/p) is stable invariant.
defined in (2.8)—(2.12). Then, with>1, G,(z/p) is stable Then, for alll <i <n and|o;| < &;, g;(Jar],-- -, |ou]) exist
invariant iff the f; defined in (3.3)—(3.4) exist and obey, for

all<i<n plolgi—i (o], - -+ Jevi—a]) <1 (3.12)
and
0<pfi_16; < 1. (3.5
gi(|al|7 ) |CYZ|) 2 pgi—l(|al|7 ) |ai—1|)' (313)
Further, under (3.5), for all << <n Proof: Use induction. First, observe that (3.12) guar-
antees the existence @f(|aq],---,|ou]). Now, go clearly
fi>pfi-1. (3.6) exists. Suppose for someé < [ < nand alll < i <
I, gi—1(Jou|, -+ . Joi—1]) exists. Then, as (3.12) holds &t [
B and for oy = 0, its violation will imply that for some

The proof of this result is developed in the sequel. Howev Ful < 6,1 <4 <1
before embarking on this proof, we make a few pertinent =~ -
observations. plealgi-i(laal, -+ loa—1]) = 1. (3.14)
Note that withp = 1, the recursion in (3.3)—(3.4) giVeSEq, this choice of; 1 <i <1
f; =1forall 1 <i<n,and (3.5) boils down to T
pgi(laal, -, lau—1]) # |eul (3.15)

as otherwise|o;|? = 1, which violatess; < 1. Thus, for this

which is a fact well known about lattice filters. Note, howeveF,hOICe offai <8,1 < ¢ < 1, from (3.11)

that (3.7) is necessary and sufficient for stability of any g|eal,- -+, |au]) = oo (3.16)
Gn(z,01, -+, ,), whereas (3.5) is not necessary for th

stability of G,,(z/p, 1, -, ). Indeed, return to the filter Bbserve from (2.7), (2.10), (3.10), and (3.11)
in Example 3.1.G5(z/p, o1, -+, a3) is stable forp = 1.08. gilleal, - aul) = Gi(1/p, o], - - -, |eul)- (3.17)
Yet, for this value ofp, taking §; = ||

<1 (3.7)

HenceGi(z/p,|a1], -+, |cu]) has a pole at 1, an€;(z/p) is
f1 = 6.4286 not stable invariant. Then, from Lemma 3d,(z/p) is not
stable invariant. The contradiction proves (3.12).

To prove (3.13), again use induction. Suppose it holds for
somel < ¢ < [. Then, because of (3.1Q)(|cv1|, - -, |au]) > 1

and

pdaf1 = 5.5543 > 1. e (o), -+ |oug])
Example 3.1 illustrates a further departure from = 1pgl(|a1|’ Jod) =l

the p = 1 case. Despite the fact that for the given = paJeal, - laa])] e

a1, Gs(z/p,an,-++,a5) is stable for all p<1.099, _ paulleal, -, lea)(@ = pgrlfeal, - Jeulaws])

Gs5(z/p,|aal, -, |as]) is unstable for p>1.0004. Thus, 1= pgi(lasl, -, [eul)|cusa]

although the stability of a solitary lattice filter is determined p2gi(aal, -, Jeal)|cusa| — ouga]

entirely by the magnitude of the reflection coefficients, this is 1—pg(ea|, - -, loul)|ciya]

not the case for the relative stability of a solitary lattice filter. > pai(|as], -, |eu). (3.18)
Observe that (3.6) implies that

[
f;>p (3.8) Clearly, the satisfaction of (3.12)—(3.13) is a necessary
condition for the stable invariance @,(z/p). From (3.11),

whence we have that a necessary, although not sufficiehtis also sufficient for the existence of the(|au|, - -, |a|)

condition for stable invariance &, (z/p) is for all |a;| < ¢;. Comparing (3.10)—(3.11) with (3.3)—(3.4),
we find that for alll <7 < n

1

6; < —
] ] should, of courseg;(61,---,6;) exist. Thus, we have shown
Finally, observe that the number of computations needed;jp, following.
check the condition in questiqn grows only linearly whh Lemma 3.3: The setGy(z/p) is stable invariant only if the
We now turn to proving this theorem through a series of i, (3.3)-(3.4) exist and obey (3.5). Further, (3.6) also holds.
lemmas. The first of these concerns a sequence related to thﬁemark 3.1:An interesting consequence of Lemma 3.3
fi is the fact that the violation of (3.5) is equivalent to the
_1 3.10 requirement that for somg G;(z) has a member with pole
g0 = (3.10) 4 1/p. In view of this, G,,(z) must also have a member with
gz(|a1|77|az|) _ pgz—l(‘|oﬂ|,-.-,|az—1|‘)_ |Oé7| ) (311) a pole atl/p .
1= pgi—1([aal, - Jaima[)]evi] Henceforth, we will assume that (3.5), and thus (3.6), holds.
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Lemma 3.4: Consider (3.3)—(3.4) and (3.10)—(3.11). SupNow, observe under (3.26)
pose thef; exist and that (3.5) holds. Then, for 8ll< i < n

and |o;| < &, the g;(Jazl, -, |ay|) exist PPl ol — (1+afr?p?) = (p*r* = 1)1 —a]) >0
gi(lal, -, |ou]) < fi (3.20) (3.28)
and (3.12)=(3.13) holds. because of (3.26) and the facts that 1,6; < 1. Thus, the

Proof: Clearly, should (3.20) hold and thg& exist, then lower bound in (3.23) holds at =
the g; must exist, and aky;| < §;, (3.12) must hold. We use
induction to prove (3.20). This clearly holds at&= 0. Now,

[. Consider next the
maximum of o(/3) with respect tog

suppose it holds at sonte< ¢ < n — 1. Then o 20prsin A1 — r2p)(1 — a?)
l
— = . (3.29)
pleiti|gi(Joal, - -, Jeu]) < pbiva fi< 1 (3.21) ap (1+ p27’2a12 — 2pray cos 3)?
whence from (3.11)g;41(Ja1|, - - -, |oip1]) exists. Thus, because of (3.26)y>1, and & < 1, the maximum
Further, |ais1] < [6:41], from whence occurs according to the following rule: At
pgilaal -, ai) — ey
gi+1(|al|7"'7|ai+l|): i ‘
1 — plagyilgi(laal], -+ ewl) B= {0 |]1: a; >0 (3.30)
< pfi — |oig1] 7 If a; <O0.

~1—ploipalfi
2] In either case, because of (3.26)

Further, observe that gsf; > 1 and ;41| <1

2 r2 . - — 2 — 2
2 plimloi| N PPfEi=1 G )2 < <p7 !Oézl ) < <pgz || ) . (331)
Aatipr| \1 — plaigs|f: (1 — ploigps|f:)? 1 — priay 1 — pgilev]
Thus, as|ait1] < 641 Then, (3.23) follows from (3.11). n
ofi — 6iv1 We can now prove the sufficiency part of the theorem.
giv1(Jarl, -+ |oiga]) < Y o S, = fiy1. (3.22) Lemma 3.6: Consider the set§;(z),1 < ¢ < n as defined

in (2.8)—(2.12) and the sequengeas in (3.3)—(3.4). Suppose
The fact that (3.13) holds follows similarly to the proof ofie f; exist and for alll < ¢ < n obey (3.5). Then, for all
Lemma 3.2. . B | <i<n, G(z/p)is stable invariant.
The next lemma points to a BR result. _ Proof: We use induction. ClearlyGo(z/p) is stable
Lemma 3.5: Consider (3.3), (3.4), (3.10), and (3.11), withpyariant. Now, supposéi(z/p) is stable invariant for some
p>1. Suppose (3.5) holds for all < ¢ < n. Then, for all <1< n— 1. Observe that all elements 6% 1(~/p) have
0<é<n Gi(zaq, -, @) € Gi(z), and for allw € [0,27)  degreel + 1. Further, from (3.2)

1< |Gi(e™ /p.ar, - i) < gi(lonl, - |ai]) < fi
(323) Gl+l(z/p7a17"'7alvo)

Proof: That the first two inequalities imply (3.23) is a
consequence of Lemma 3.4. Observe also from this Lemisastable for all|c;| < §;,1 < ¢ < I. Thus, from Proposition
that g;(|cq|,---,|oy|) exist and obey 2.1, Gi41(z/p) is not stable invariant only if there exists
gillasl - i) = o' > 0. (3.24) || < 6,1 <4 <[ such that for some € [0, 2)
Now, use induction. From (2.7), (3.23) clearly holds fot 0. G (Y pyan, - ) =0 (3.32)
Now, suppose it holds d@t=1[ — 1 for somel <! < n. Then,
dropping the arguments; at anyw € [0,2n), there exist j.e., because of (2.10)
and » such that

Gia (™ /p) = rd? (3.25) pa1Gi(e? p,an, - aq) = € (3.33)

with i.e., because of Lemma 3.5

1<r<g. (3.26) N
. _ 1= plaap||Gi(€“/p,ca, - )] < pbisrfi - (3.34)
Now, at thisw from (2.10), with3 = 6 — w
2 violating (3.12). [ |
Thus, Lemmas 3.3 and 3.6 prove Theorem 3.1. We conclude
this section with two results of independent interest. The proof
= = o(8). (3.27) of the first follows from Lemma 3.5 and the fact that BR
53 3 (B). (38.27)
1+ agr?p? — 2aqpr cos 3 systems are stable.

pre’ R

G/ =

_ p*r? 4+ of — 2oy pr cos B _

1— pragei®
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Theorem 3.2: The setG,,(z/p) is stable invariant iff for all becausep, < p, and
Gi +6; <1+ 4G;.

FGelp.0n,ea0) (3.35) .
and Proof of Theorem 3.3:Since 1) implies 2) and 2) implies
1 3), it suffices to show that 3) implies 1). In view of Theorem
——Gi(2/p, 01, ) (3.36) 3.1, it suffices to show that 3) implies th#t,i = 1,---,n
gi(laal,- -+ feul) exist and obey (3.5). We proceed by contradiction. Obviously,
are BR. Further, for allu € [0, 2r) fo = 1 exists. Suppose 3) holds. Assume tliaéxists, f; > 1,
' andpé; f; 1 <1,foralli=0,---,]—1and somel <[ <n
L<|Gi(e™ ) p,any -+, i) (3.37) but that p&; fi—1 > 1.
Compare this with the allpass property wher= 1. Case I pbifi-1>1. Then
The next theorem relates the stable invarianc&,gfz/p) pfi1 — &
to the stability, in fact, the real poles, of a “worst” member. fi= 1—pbifi1 <0.
Theorem 3.3:Given p>1,0<é;<1,4¢ = 1,---,n. The
following are equivalent. It follows from induction thatf;yy,- - -, f, are all negative.
1) The setG,(z/p) is stable invariant. Case Il: pbifi-1 = 1. Consequentlyf; = oo. If [ <n,
2) Gulz/p,b1,--,6,) is stable. then flJ_rl = —1/& <0, and f,, < 0 follows from induction.
In either case,f, <0 or f, = oc. Note that f,, =

3) Gn(z/p,61,---,6,) has no poles or € [1, p).
The proof of the Theorem relies on the following Lemma.
Lemma 3.7: SupposeG,,(z/p, 61, -+, b,) has no poles in

G.(1/p,b1,-+-,6,). By Lemma 3.7, this cannot happen.
Therefore, pé; f_1 <1 must hold. Hencef;,i = 1,---,n,

e all exist and obey (3.5). ]
2€[Lp)p>1,0<6;<1,i=1,---,n. Then Thus, Theorem 3.3 shows that the stability invariance of
Gn(1/p,61,---,8,)>0. the whole set,.(z/p) boils down to the stability of a single

corner Lattice filter. Recall that whep = 1, the set of
Proof: Since0<é; <1, Gn(z,61,---,6,) is stable all-  G(z/p,6,,---,6,) stability preserving lattice coefficients form
pass. Thus, withp;| <1 a convex set|;| < 1). Therefore, it is intuitive to conjecture
that the result in Theorem 3.3 can be generalized to the case

Gn(z,01,-++,6,) = H % where the set of reflection coefficients lie in a nonsymmetric
Pl interval, i.e.,
SinceG,(z, 61, - -, 6,) has real coefficients, it readily follows of <oy <af.

that

Gl ps61,-,6,) >0 We show via the following example that when the parameter
nAPLP O On ’ set becomes nonsymmetric, relative stability of corner filters

SupposeG,(1/p,61,---,8,) < 0. Since G,.(z/p,6,---,6,) Will not imply the relative stability of the whole set.

has no poles om € [1,p), the only wayG,, (z/p.61,---,6,)  Example3.2in = 5 (a2 a3, a4,05) = (=0.5,0.1,0,
changes sign as travels fromp to 1 is if there exists some —0.1), a1 € [-0.8,0.8],p = 1.25. It is straightforward to
1< po < p such that verify that G,.(2/p) is stable atev; = 40.8 but unstable at
a1 = —0.45. Note from this example thak; even lies in a
Gn(po/p,61,+++,6,) = 0. symmetric interval, althoughs, - - - , 5 does not.

Remark 3.2: Condition 3) in Theorem 3.3 offers a simple

Using (2.10), we have way of determining the maximurp, p.,. for which relative

ﬁGn—l(ﬁO/ﬁ, 81, 1) = 6n stability of G,,(z/p) is guaranteed for all < p< pmax-
po Indeed,p, L. is the smallest pole of?,(z, 61, --,8,) on the
or positive real axis, which can be checked easily by solving the
00 real eigenvalues ofi,, in Theorem 2.2.
Gn_1(p0/p, (51, e, (57,,_1) = 7(57, c (0, 1). (338)
We proceed to show that (3.38) impli€% € (0,1), which IV. L YAPUNOV MATRIX FOR
contradictsGGy = 1. To see this by induction, we assume, for RELATIVELY STABLE LTI L ATTICES
somel < ¢ < n — 1, that In order to address the LTV problem considered in
Section V, we need to determine a Lyapunov matrix that
Gi(po/p: b1, -, 6i-1) € (0, 1). proves the stable invariance 6f,(z/p). It is known [7] that
Indeed, (2.10) gives with
_po Gité P=diag{(l1-af)---(1-aj_1),(1-a3) -

Gi—l(po/pvélv"'vén) = € (07 1)

P 1+6G (1—a2_y), .1} (4.1)

n—1
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and{A4,,b,,c,,d,}, the SVR of G, (2,01, -+, ) of (3.10)—(3.11), the Lyapunov matrix in (4.4) depends only
on|eyl,1 <i<n-—1as opposed to depending andirectly.

! _ 2 /
ALPA, =P =—(1-ay)ency,. (4-2) The rest of this section is devoted to proving Theorem 4.1.
However, for the stable invariance & (z/p), we need to ~ With Ai,b;, ¢;, and d; as defined in Theorem 2.2 (we are
find a positive definite symmetril,, that obeys assuming time invariance here), the transfer function
1
pQA;LHnAn - Hn S _Q%Qn (43) g_Gp(z/pv Qpycccy, ap)
P
for |oy;| < 6;,1 < i < n, where[p4,,,Q,] is a completely _d, by
observable pair. The main result of this section, which is - ; + ¢p((2/p)1 — Ap) ;
presented below, solves this problem. d, b,
Theorem 4.1:Suppose G,(z/p) is stable invariant =5 (pep)(2 — pAp) 0 (4.10)
with p>1. Then, with {A, b, ¢, dn}, the SVR of v v
Gz a1, ) € Gulz), andIl,, defined by In other words, G,(z/p,cn, -+,ap)/9p has SVR
) - ) ) {pAp, by/ap, pep, dp/gpt. Accordingly, we will call the
II,, =diag {p ’2 (1- C;n—l) (1= 31)%/90 realization matrix ofG,(z/p, a1, -, )/ gp
pni (1 - an—l) T (1 - a?)gn—l/glv T
_ [pAp by/gp
p(l - ai—l)gn—l/gn—% 1} (44) P |:pcp dp/gp . (411)
for all |o;| < 6;,1 < i < n, we havel — p?g2_;a2 >0and Observe from Theorem 2.2 that
2 41 2 2 2 / I 0
p AL A, — I, < —(1— pogs 10 )encl,. (4.5) A =S [ } 4.12
1 PApt1 P10 pgpapis ( )

Here, theg; are as in (3.10)(3.11). We have dropped the Our proof of Theorem 4.1 will use induction. To this end,

arguments ;| in g;, An, and IL,. ) )
Observe from (3.10), Lemma 3.2, and (2.12) that the stabqgte from Theorem 3.2 that the stable invarianc&pfz/p)

: . : » o i | < 6,1 <i< <p<

invariance ofG,,(z/p) ensures thall,, is positive definite for inplies that for alljos| = 6,1 < =n and alll < p <

all |o;| < 6;,1 <4 < n. Further, from Lemma 3.2 ”’ (1/9P—})GP—1(Z/Paa1"'"O‘P_—l) Is BR. Consequen_tly,
e == ’ ' from [14], it follows that there exists @ —1) x (p—1) matrix

0 pgn-1cn <1. (4.6) Pyy=P\_ >0 (4.13)

Thus, @, in (4.3) is such that with

Qn=1/1-p%g5_ 3¢, (4.7) IL, = [Pp—l 0} (4.14)

0 1
Further, observe that S;,,alSpfl — 11, <0. (4.15)
Z(pA;)iQ;Qn(pAn)i =W.W, (4.8) Observe thatl, = I, > 0. Then, the next Lemma shows that
o 1L, acts as a Lyapunov matrix for the stability verification of

Gp(z/pv ag, -+, ap)

where Lemma 4.1: Suppose thag@,.(z/p) is stable and for some
Qn 1 <p<n, I is as in (4.13)—(4.15), with (4.11) in force.
nAn
W, — pQ. ' 4.9) Then
p"_lQ."_lAn pQA;HpAp -1, <—-(1- (pgp_lap)Q)epe;. (4.16)
Proof: Because of (4.15) and (4.13
Then, it is readily verified (see the Appendix) tH&t W, is ( ) ( )
positive definite throughoug,, (z). p? AT, A, — 1,
Observe that ag; = 1 for all 1 < ¢ < n, whenever I 0 I 0
p = 1, we recover the result of [7] whep = 1. A few < [0 pgp_locp} p[o pgp_l%} =1l
further comments on the nature of the derived Lyapunov 0 0
matrix are in order. In the setting of [5] involving direct- = —[ 2}. (4.17)
0 (1-pgp-10p)

form realization, the Lyapunov matrix was multiaffine in the
coefficients of the transfer function denominator. This fa¢ience, we have the result. ]
considerably simplified the LTV analysis conducted in [5]. Clearly, the stable invariance &,(z/p) and Lemma 3.2
The Lyapunov matrix in (4.4) is clearlyot multiaffine. There ensures that the left-hand side of (4.16) is negative semidef-
is, however, one vast simplification in the form of (4.4) oveinite.

its counterpart in [5], namely, that it is diagonal. As will be The next step of the induction argument must reldig
shown in Section V, this diagonal nature aids the LTV analysis 11,,. To this, we need two intermediate Lemmas. The first
conducted there. Two other points to be exploited in Sectiondf these relates the positive semidefiniteness of a special class
are as follows. Firsfi1,, is independent ofi,,. Further, because of matrices to the definiteness of cert&@nx 2 matrices.
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Lemma 4.2: Consider scalargy, f2, 33, ande, as in (2.18).

Then
Breye e
{ /3222710 /33])} >0 (4.18)
iff
B e
[ i /33} > 0. (4.19)

Proof: Consideré = [£],&:],&1 € RP, & to be scalar.

Then, (4.16) is equivalent to
Bi(&lep)” +26(¢ep) B+ F36 20 (4.20)
for all £&. This in turn is equivalent to
y Br Pa||€lep >
0. 4.21
[51@%52] |:/32 /33:| |: 52 - ( )
Hence, we have the result. [ ]

The next Lemma gives some key propertiegygpf

Lemma 4.3: Suppose thag,,(=/p) is stable invariant with

p> 1. Then, under (3.10)—(3.11), forall< p < n

Ip — PIp—1 = |apl(pgpgp—1 — 1) (4.22)

and

(1- a?;)gp

R L 4.23
T+ T g (4.23)

pgp—1 — |ap| =
Proof: From (3.10), (3.11), and Lemma 3.2

Pgp—1 — |y
o= PIp=1 = —ppgp_1|;p|
_ —|ap| + p291%—1|04p|
1= pgp-ilayl

PQQJ%—l -1
1= pgp—1lay|’

— PGp—1

(4.24)

= |ay)|

Further
PIp—1 — ||
———gp-1—1
1 — pgp—1log|””
2
-1
e (4.25)
1 — pgp—1lay)

Then, (4.22) follows easily. Now, from (3.11)

POpdp—1— 1 =p

Gp — Pp—18p|cip| = pap—1 — ||
9p T |ap|

. (4.26)
1+ gplay|

< PG9p—1 =

Thus

_ 9 + ||
1+ gplay|

gt |ap| - |ap| - gp|ap|2

= (4.27)
1+ gplay|

PGp—1 — |O‘p| - |O‘p|

hence, we have the result.

We are now in a position to proceed with the inductive stepe last inequality following from (4.15). Hence, the result

of relating 1L, to IL,;.
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Lemma 4.4:Suppose G,(z/p) is stable invariant with
p>1. Considerll, as in Lemma 4.1. Define

g,
= p(l —ap) =~ (4.28)
9p—1
and
¥pIll, 0
4 = [ o 1} (4.29)
Then
S 1,418y — 1 < 0. (4.30)

Proof: We will treat thec,, # 0 case separately from the
ap, = 0 case.
Case I: o, = 0. In this case, from (3.11)

9p = PGp—1. (4.31)
Further, from Theorem 2.2 and (4.11)
pAp—1 0 bp_1/pgp—1
Sp=1pcp1 0 dp1/pgp1 (4.32)
0 p 0
From (4.28) and (4.31)
Y =P (4.33)
Thus
T (4.34)

Define the(p + 1) x (p + 1) matrix
I 0 O

E=10 0 1/p]|.
0 p O

Note thatE = E~!. Because of (4.11)

pApfl bpfl/gpfl 0 S .0
SpE = | pep—1 dp-1/gp—1 0| = { 0 1} (4.35)
0 0 1

Moreover, because of (4.14)

E'l,E =11,4,. (4.36)
Thus, from (4.34)—(4.36)
E'S 1S, E — E'll 1 E
2! 2
_|P Spil(];[pSp—l (1):| _ |:p g[p (1):| <0

holds.
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Case II: «;, # 0. Because of (2.25), (4.11), and Theorenfrinally, from Lemmas 4.3 and 3.2

2.2
PAp

" [p(l - a})e
[ 3 la-wpy )

Observe through direct verification that

(Apep/apgp)}
—(/9p)

(4.37)

I ep/ay - _[T=(1=ad)eyed, e
(1-ad)e, —ap Tl p(l-ad)e, —ap |
(4.38)
Observe from (4.14) that
e, = ep. (4.39)

0
F(2,2) = g_1|ap|(pgpgp—l = D1 + gplapl) > 0. (4.45)
o

Then, it is readily verified using Lemma 4.3 that

det (F) = 0. (4.46)

Consequently, (4.4) together with (4.45) implies that (4.42)
holds. Hence, (4.30) holds. [ |
Then, the proof of Theorem 4.1 follows by noting that

So=1

and hencell; = 1. Then, with the induction so initiated, we
can repeatedly use Lemmas 4.1 and 4.4 to obtain the desired

Because of (4.37) and (4.39), (4.30) is, in turn, equivalent ttesult that

pQWPA;HpAp 0
0 p?

[T == ad)epel, ap(l—al)e,
€ —ayp
w0 I —(1— a)epet, ¢ <0
0 p29§ ap(l — a?))e;) —op |

PP AL, Ap — T, £ —(1 = pgp—10p)’epc,. (4.47)

V. RELATIVE STABILITY OF THE LTV LATTICE

This section addresses the relative stability of LTV lattice
filters. We will assume that there exists> 0 arbitrarily small
such that for alll <7 < n

and (4.40), shown at the bottom of the page. Because of (4.16)

and (4.39), (4.30) is guaranteed, provided we have (4.41),

s (k)| < 6 — €. (5.1)

shown at the bottom of the page. Observe from Lemma 4.2
that this is equivalent to (4.42), shown at the bottom of th&/e will further assume that thg in (3.3)—(3.4) obey (3.5) for
page. Now, select,, as in (4.28). Then, using (4.2), the (1all 1 < ¢ < n, i.e., all frozen systems are stable with degree

1) block of (4.42) equals

g
F(1,1) = paj(1 - Oc}i)—g pl || (pgpgp—1 — 1)
o

~(Pgp-1 — low]) (4.43)

where the last equality is from Lemma 4.2. Likewise

(1- 04127)(1 —pgpgp—1)- (4.44)

F(2,1) = F(1,2) = paiggpl
o

of stability In p. The question is, given

l<pi<p (5.2)
what rates of time variations can be sustained to ensure that
the LTV Lattice has degree of stabilityt p; ?

To this end, we present two results. The first is a simple
consequence of the comments made at the end of the previous
section. The second constitutes the main result of this section.

pQ'VPA;)HpAp — 1L
—{[F2(1 = o) + (1 = 2]

‘%Wﬁﬂﬂ@—%h

+p29§(1 — 0415)))20412)}61,6;) = (4.40)
2PR(1—ad) —yld, | pl-giad) -7,
{’Yp[_(l - p2a]2,g§_1) 27,22 2
- aclp g (1 —ar) —vle
[ T T I “p]go @.a)
Q2[pPgA(1 - a2) = le) - gad) -
F= |:a?)p29§(1 . ap)? S ’gpa§<p2gf§—1 —ap) ol - 5295(1 N 2‘12))]} > 0. (4.42)
o[y — P g (1 — ap)] W p(l—gya) |~



2098 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

Theorem 5.1:Consider the lattice filter depicted in Fig. 1. Proof: Consider the Lyapunov matrikl,, (k) in (5.4),
Suppose that (5.1) holds and that(z/p) is stable invariant and observe that (5.5) prevails. Note that tws n diagonal
for somep > 1. Suppose also that there exigtsuch that for matricesA; and A; obey

l1<4+i<n-1andallk
all1 <i<n and a A< Ay (5.11)

|ci (B)[ = |a]- (5.3) . . o .
iff for all 1 < ¢ < n, theith diagonal ofA; is less than or
Then, the LTV lattice filter is stable with degree of stabilityequal to theith diagonal ofA,. Then, from (5.4), it is readily
Inp. observed that*(*) is the smallestscalar for which
Proof: Suppose {A,,(k),b,(k),cn(k),d,(k)} is the

C PARA ' v (k)
SVR of the lattice filter as exemplified in Theorem 2.2. Define Wk +1) < V1L (k). (5.12)
IL, (k) =diag {p" 21 — a2_ (k) --- (1 — a2(k)) The “+” notation in (5.10) accounts for the fact that thex n
I I 1o (k elements of botHI,(k + 1) andIl, (k) equal 1.
n=1(k)/g0(k), -+, p(1 = vy () With «,,(k) the state vector of the lattice (see Theorem 2.2),
“Gn-1(k)/gn—2(k), 1}. (5.4)  consider the zero input state solution of
Observe that because of Lemma 3.2, (3.10), (3.11), and (5.1), (b +1) = Ap(k)z, (k). (5.13)
there existsu, u2 > 0 such that for allk
Consider
pd < Hn(k) < pal. (5.5)
Volzn(k), k) = o, (k)IL,(k)z, (k). (5.14)

Further, because of (5.3) and (3.10)—(3.11)
Then, because of (5.5), it suffices to show that under (5.10),

1L, (k + 1) = L1 (k). (5.6) there exists3, > 0,0 < f3; <1 such that along (5.13), for all
Then, because of Theorem 4.1 k, ko
k—kq
AL ()T (K + 1) Ay () — T, (R) pE V(@ (), ) < BaVaalwn (o) ko)B ™). (5.15)
= PP AL (R (k) An (k) — L (k) Now, observe that under our assumptiads(%) is a bounded
< —(1—-p?g2_1(k)a2(k))enel,. (5.7) matrix. Hence, (5.13) cannot have finite escape time. In fact,
, . because of (5.5) along (5.13), there exi8tssuch that for all
Then, we show in the Appendix that k. ko
k) =\/1- 022 (W)a2(k)e, (5.8) Vi (wn(k + 1),k +1) < BaViu(wa(k), k). (5.16)
obeys (2.1). Note that (5.8) is real for &lt;(k)| < ;. Hence, Now, consider
we have the result. [ |
Observe that this theorem states that as long as the frozen Vi (b jr 1),k +1)
LTI systems have degree of stability p, the LTV filter < ay(k+ DUn(k + Dy (k +1)
sustains the same degree of stability for arbitrary rates of < eWa! (k4 DIL,(k)z,(k 4+ 1)
variation in«,, (k) as long as they;(k),1 < ¢ < n— 1 sustain — B! (1) AL ()L (k) An () (K). (5.17)

only changes in sign, and (5.1) holds for alK i < n.
The next theorem addresses relative stability under simulhen, because of Theorem 4.1
neous magnitude variations in multiple reflection coefficients. A Vi(zn (k). k)
Theorem 5.2:Consider the LTV lattice in Fig. 1, which A1V (zn(k+1),k+1) < /W22 22202 (5.18)
obeys (5.1). Suppose théf(z/p) is stable invariant and that r
p> 1. Then, the LTV lattice is stable with degree of stabilityrhen, the recursive application of (5.18) reveals that for:all
p1 obeying (5.2), if the following holds: There exists an integer 2N . .
N>0and0</2<1 such that pr Valan(k+ N = 1),k + N —1)

P 2N E+N—1
k+N—1 < —1> exp v(k)
sup — N Z y<2In [p_ﬁ} (5.9 p < ;
K20 & Va(an(k = 1),k = 1)
where < Vi(zn(k = 1),k —1)52N (5.19)
v(k) = sup { <111 {Mk;ﬂ)} where the last inequality is because of (5.9). Then, because of
(1,1} n-1(k) (5.16), for all k, &,
gi-1(k) } 2(k—k
_|_1 [ el S A ( 0) . .
+ /33) 2N 2(k—kp)
< (£ V(20 (ko). ko) o). 5.20
5 { ST | (%) A¥vtontinbo) (5.20
=i 1- al (k)
* Hence, we have the result. [ |
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A few comments concerning (5.9)—(5.10) are now appropind
ate. Essentially, this condition represents a tradeoff between
frozen systems and LTV system degree of stability with the Wi(k) = S(k)W, (k) (A.5)
rate of variations in thenagnitudeof the «;. Sign changes
are inconsequential.

. —
Observe that with the matrix in (2.1) isW; (k)W, (k). Observe from (2.14) and

(2.16) thatA, (k) has the form

(k)
(k) =p(1 = a3 (k) (5.21)
-1 N A (k) = [g%’? i‘;’(,’j)} (A6)
v(k) = sup Ti:lln M . (5.22) " "
ie{l,n—1} et (k) where D(k) is (n — 1) x (n — 1) upper triangular with the

Thus, (5.9)—(5.10) essentially quantify the potentially destagi? element
lizing time variations as those that increagg%) and limit
the average increase in theggk). Declining values ofy, (k) (1 —a?(k)).
are found not to be destabilizing.
Thus, V,,(k) is triangular with the property that it&, j)th
VI. CONCLUSION element is zero whenevetj < n. Further, for alll < ¢ < n,
We have studied the relative stability of both the LTI and théS (¢,n — @ + 1)th element is
LTV lattice. We have shown that when the LTI set of lattice

filters is defined by bounds on the reflection coefficients, then il )

there is a simple necessary and sufficient condition for all such H p(1 =g g1 (k+1)). (A7)

LTI lattices to have degree of stability . We also show that =1

verification of stable invariance can be effected by checkincc:;I ) )

a single corner oG, (z/p). early, since elements in (A.7) are bounded away from zero

We provide a Lyapunov matrix for checking this degree gind all elements oft,,(k) and, hence}V,,(k) are bounded,

stability requirement and show that it specializes to the matig-1) holds.
of [7]. Finally, we give a logarithmic rate of variation result
that suffices for the relative stability of LTV unnormalized REFERENCES
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