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Robust Relative Stability of Time-Invariant
and Time-Varying Lattice Filters

Soura Dasgupta,Fellow, IEEE, Minyue Fu, and Chris Schwarz

Abstract—We consider the relative stability of time-invariant
and time-varying unnormalized lattice filters. First, we consider a
set of lattice filters whose reflection parameters�i obey j�ij � �i
and provide necessary and sufficient conditions on the�i that
guarantee that each time-invariant lattice in the set has poles
inside a circle of prescribed radius1=�< 1, i.e., is relatively stable
with degree of stability ln �: We also show that the relative sta-
bility of the whole family is equivalent to the relative stability of
a single filter obtained by fixing each�i to �i and can be checked
with only the real poles of this filter. Counterexamples are given
to show that a number of properties that hold for stability of LTI
Lattices do not apply to relative stability verification. Second,
we give a diagonal Lyapunov matrix that is useful in checking
the above pole condition. Finally, we consider the time-varying
problem where the reflection coefficients vary in a region where
the frozen transfer functions have poles with magnitude less than
1=� and provide bounds on their rate of variations that ensure
that the zero input state solution of the time-varying lattice decays
exponentially at a rate faster than1=�1> 1=�:

Index Terms—Lattice filters, Lyapunov, robustness, stability,
time-vaying filters.

I. INTRODUCTION

T HIS PAPER explores the relative stability of linear time-
invariant (LTI) and linear time-varying (LTV) lattice

filters. Lattice filters have been studied extensively in the last
two decades. They bear a direct relationship to the celebrated
Levinson–Durbin algorithm [1] and have been applied in
speech processing and linear predictive coding [2].

An th-order Lattice filter is depicted in Fig. 1, where
is the unit delay element.

Here, the are called the reflection coefficients; the
time index used with these recognizes our intention to study
the time-varying lattice, and is a unit delay. As is evident
from this figure, the various signals obey, for

(1.1)

for

(1.2)
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and

(1.3)

In the sequel, the LTI version of (1.1)–(1.3) will refer to the
case in which each equals a constant for all
In this case, will be the transfer function

Since we are interested in relative stability, we first make
precise our notion of relative stability. As we deal with systems
that are time varying, we use a state variable realization (SVR)-
based approach to stability analysis.

Definition 1.1 (Relative Stability):Consider the LTV sys-
tem with SVR , i.e., obeying

(1.4)

(1.5)

where and are, respectively,
and bounded matrices, the state is , and

and are the input and output signals, respectively.
Then, (1.4)–(1.5) is relatively stable with a degree of stability

if there exist constants such that
the zero input state solution obeys for alland initial time

(1.6)

where denotes the standard 2-norm.
If , (1.6) implies

(1.7)

Thus, relative stability with degree of stability ensures
that the zero input state response decays at an exponential rate
of at least If (1.6) holds, we will sometimes say that
(1.4)–(1.5) is stable. If, in (1.6), , then we simply call
(1.4)–(1.5) stable.

In the LTI case (where and are constant),
(1.4)–(1.5) has transfer function

(1.8)

In this case, as long as is completely reachable and
completely observable (see [13] for definitions), then

(1.4)–(1.5) is stable iff has poles with magnitude less
than , i.e., is stable.
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Fig. 1. Lattice filter.

It is known that in the LTI case, where for all
the lattice filter is stable iff

(1.9)

Furthermore, under (1.2), the lattice transfer function

(1.10)

is allpass, i.e., it obeys for all

(1.11)

There are, however, two outstanding open issues in the under-
standing of lattice filters. The first of these concerns the issue
of relative stability of the LTI lattice. Simply put, what are
the conditions on the reflection coefficients that ensure the
stablity of the LTI lattice? Such relative stability, as opposed to
mere stability, is important in most practical applications as it
reduces the likelihood of quantization induced limit cycles.
Further, as will become evident in the sequel, the relative
stability of the LTI lattice is also critical to the stability of
the LTV lattice.

The second concerns the relative stability of the LTV lattice.
It is known that the normalized version of the above lattice
[3], [4] is stable under arbitrary time variations in the reflection
coefficients as long as they obey

(1.12)

However, to our knowledge, no nontrivial conditions exist that
guarantee the stability, let alone the relative stability, of the
LTV unnormalized lattice structure of Fig. 1. In fact, it is well
known that the unnormalized LTV lattice could be unstable,
despite the satisfaction of (1.12) [4].

This paper considers relative stablity of both the LTI and the
LTV lattices depicted in Fig. 1. The two problems addressed
are as follows.

Problem 1.1: In Fig. 1, the ’s are all time invariant, and
for some

(1.13)

Find necessary and sufficient conditions on theso that
are stable with for all , as in

(1.13).
Problem 1.2: Suppose for some , every LTI system

obeying (1.13) is stable. Now, suppose
the reflection coefficients in Fig. 1 vary with time and obey
for some arbitrarily small

(1.14)

Find sufficient conditions on the rate of variations in the
such that for some , this LTV lattice is stable.

In analyzing LTV systems, it is, in general, unreasonable
to assume complete knowledge of the nature of the time
variations. Normally, the knowledge we have is limited to
the extent and rate of parameter variations. Equation (1.14)
characterizes the extent of variation. Problem 2 then calls for
specification of the variation rate.

Observe that effectively, the statement of Problem 2 ensures
the stability of all possible frozen LTI lattices corresponding
to the LTV lattice being analyzed. Problem 1 addresses the
condition under which all such frozen LTI lattices will be
stable. Subject to this condition on the frozen LTI lattices,
Problem 2 then calls for determining the parameter variation
rates that ensure relative stability with a smaller degree
Although it is important in its own right, Problem 1 is therefore
also useful to the analysis of LTV lattices. In Problem 2, there
is clearly a natural tradeoff between and the allowable
rate of time variation for which stability is preserved. For
a given , the larger the , the greater the permissible rate.
Our solution to Problem 2 captures this tradeoff, very much in
the spirit of [5]. Translated to the digital filter framework, [5]
considers digital filters in the direct form. It gives bounds on
the logarithmic rate of variation of the filter coefficients that
guarantee the relative stability of the underlying LTV system,
subject to a relative stability assumption on the frozen systems.

In particular, [5] assumes that the denominator coefficients
of the frozen LTI system transfer functions are
and that the time-varying values of theseobey, for some

(1.15)

and that all LTI frozen systems defined by

(1.16)

are stable for some Recall that the directly appear
in the direct-form implementations.

Then, with

(1.17)

the LTV filter is shown in [5] to be stable with
if there exist and such that

(1.18)

Here

else.
(1.19)
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Note the tradeoff between the degree of the frozen system
relative stability , the LTV filter degree of stability ,
and theaveragerate of variation in the parameters directly
related to the filter coefficients ; the monotonically
increase with the Further, only increases in and,
hence, are of concern. Diminishing carry no
destabilizing influence. A result of this nature is sought here
for the LTV lattice of Fig. 1.

In Section II, we provide some preliminaries. Section III
gives a series of results connected to Problem 1. Section IV
develops a Lyapunov matrix needed in the solution to Prob-
lem 2. Section V then solves Problem 2. Section VI is the
conclusion.

II. PRELIMINARIES

This section derives a number of preliminary results and
definitions. First, we define the technical concept of uniform
complete observability (UCO) [9], which is needed for some
of our analysis.

Definition 2.1: The pair of matrix sequences and
, respectively, and , is called UCO if there

exist and integer such that for all

(2.1)
Here, the products are identity should the lower index exceed
the upper, and the order is exemplified by

We next recount a fact from stability theory that provides the
principle tool to be used in out LTV analysis.

Theorem 2.1 [6]: Consider (1.4)–(1.5) with the various
quantities defined in Definition 1.1. Then, (1.6) holds iff there
exists a symmetric Lyapunov matrix satisfying

(2.2)

for which

(2.3)

with real and UCO. In the LTI case of
constant will be constant as well.

Much of our analysis relies on the concept of bounded real
(BR) transfer functions defined below.

Definition 2.2: An LTI system with transfer function
is BR if is stable and for all

(2.4)

An important tool in robust stability analysis of LTI systems
is thezero exclusion principle[11], which is presented below.

Proposition 2.1: Consider the set of polynomials

(2.5)

with continuous functions of and for all
Then, all members of are Schur (have

zeros strictly inside the unit circle) iff one member is Schur
and for all

(2.6)

We next present a recursive formula for determining the
transfer function of a lattice filter.

In the sequel (see Fig. 1), we will define

(2.7)

and for

(2.8)

Thus

(2.9)

which is the overall transfer function of the lattice. Then, we
have, from [12], that for all

(2.10)

Further, we will define the transfer function sets

(2.11)

(2.12)

Finally, we present a similar result for LTV lattice SVR’s.
In the sequel, unless necessary, we will drop the explicit
dependence on the

Define to be an SVR of the
system with input and output , as in Fig. 1
[i.e., the system that in the LTI case has transfer function

]. The state vector is the output of the
delay elements appearing in the system and is given by

(2.13)

In Theorem 2.1, we provide recursions that relate
to

for The recursion is initiated with
the nondynamic system corresponding to in (2.7),
i.e., and are zero dimensional objects,
and
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Theorem 2.2:Consider, with , the SVR
of the system with input

and output in Fig. 1, with state vector , as in
(2.13). Then

(2.14)

(2.15)

(2.16)

(2.17)

where the vector obeys

(2.18)

Proof: By definition

(2.19)

(2.20)

Further, from (1.1)

(2.21)

From Fig. 1, (2.20), and (2.21)

(2.22)

Thus, substituting into (2.19), we have

(2.23)

Since, by the definition (2.13),
this proves (2.14), (2.15). Further, from (1.1)

(2.24)

This proves (2.16)–(2.17) because of (2.18).
An important consequence of this theorem is that if

, then

(2.25)

Together with the initiating process stated just
before the theorem statement, this provides the SVR

of the lattice filter in Fig. 1.
As an illustration, observe that

(2.26)

III. ROBUST RELATIVE STABILITY OF THE LTI L ATTICE

We call a set of transfer functionsstable invariantif all its
members are stable. In this section, we provide a necessary
and sufficient condition for to be stable invariant,
given Thus, this solves the problem of determining
whether each member of has degree of stability

In addition, where appropriate, we will point out certain
salient points on which-stability properties differ from mere
stability. A third contribution of this section is to answer the
following question. Are there any distinguished members of

whose stability implies the stability of all members
of ?

It is known that for any
is stable iff for all is stable.
Example 3.1 shows this not to be the case forstability in
general.

Example 3.1: Consider the lattice filter as in Fig. 1 and
(1.1) with

Then, we can verify that is stable for
all Yet, is unstable for all

Nonetheless, Lemma 3.1 below shows that when it comes
to verifying thestable invarianceof the entire set , an
order reductibility property does hold.

Lemma 3.1:The set is stable invariant iff
is stable invariant for all

Proof: Sufficiency is clear. To prove necessity, assume
that for some is not stable
invariant. Then, there exists such
that is unstable. Now, observe
Thus

(3.1)

Observe from (2.10) that

(3.2)

Thus, is unstable. Hence, we have
the result.

The fact that the order reductability property applies to
stable invariance of sets such as even for is
crucially dependent on the fact that the sets contain
elements involving

Henceforth, we consider the stable invariance of all the
We are now in a position to state the main result

of this section. This result requires that

(3.3)

(3.4)

be considered. Then, the necessary and sufficient condition for
the stable invariance of the is as follows.
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Theorem 3.1:Consider the sets , as
defined in (2.8)–(2.12). Then, with is stable
invariant iff the defined in (3.3)–(3.4) exist and obey, for
all

(3.5)

Further, under (3.5), for all

(3.6)

The proof of this result is developed in the sequel. However,
before embarking on this proof, we make a few pertinent
observations.

Note that with , the recursion in (3.3)–(3.4) gives
for all , and (3.5) boils down to

(3.7)

which is a fact well known about lattice filters. Note, however,
that (3.7) is necessary and sufficient for stability of any

, whereas (3.5) is not necessary for the
stability of Indeed, return to the filter
in Example 3.1. is stable for
Yet, for this value of , taking

and

Example 3.1 illustrates a further departure from
the case. Despite the fact that for the given

is stable for all
is unstable for Thus,

although the stability of a solitary lattice filter is determined
entirely by the magnitude of the reflection coefficients, this is
not the case for the relative stability of a solitary lattice filter.

Observe that (3.6) implies that

(3.8)

whence we have that a necessary, although not sufficient,
condition for stable invariance of is

(3.9)

Finally, observe that the number of computations needed to
check the condition in question grows only linearly with

We now turn to proving this theorem through a series of
lemmas. The first of these concerns a sequence related to the

(3.10)

(3.11)

Lemma 3.2:Suppose the set is stable invariant.
Then, for all and exist

(3.12)

and

(3.13)

Proof: Use induction. First, observe that (3.12) guar-
antees the existence of Now, clearly
exists. Suppose for some and all

exists. Then, as (3.12) holds at
and for , its violation will imply that for some

(3.14)

For this choice of

(3.15)

as otherwise, , which violates Thus, for this
choice of , from (3.11)

(3.16)

Observe from (2.7), (2.10), (3.10), and (3.11)

(3.17)

Hence has a pole at 1, and is
not stable invariant. Then, from Lemma 3.1, is not
stable invariant. The contradiction proves (3.12).

To prove (3.13), again use induction. Suppose it holds for
some Then, because of (3.10),

(3.18)

Clearly, the satisfaction of (3.12)–(3.13) is a necessary
condition for the stable invariance of From (3.11),
it is also sufficient for the existence of the
for all Comparing (3.10)–(3.11) with (3.3)–(3.4),
we find that for all

(3.19)

should, of course, exist. Thus, we have shown
the following.

Lemma 3.3:The set is stable invariant only if the
in (3.3)–(3.4) exist and obey (3.5). Further, (3.6) also holds.
Remark 3.1:An interesting consequence of Lemma 3.3

is the fact that the violation of (3.5) is equivalent to the
requirement that for some has a member with pole
at In view of this, must also have a member with
a pole at

Henceforth, we will assume that (3.5), and thus (3.6), holds.



DASGUPTA et al.: ROBUST RELATIVE STABILITY OF TIME-INVARIANT AND TIME-VARYING LATTICE FILTERS 2093

Lemma 3.4: Consider (3.3)–(3.4) and (3.10)–(3.11). Sup-
pose the exist and that (3.5) holds. Then, for all
and , the exist

(3.20)

and (3.12)–(3.13) holds.
Proof: Clearly, should (3.20) hold and the exist, then

the must exist, and as , (3.12) must hold. We use
induction to prove (3.20). This clearly holds at Now,
suppose it holds at some Then

(3.21)

whence from (3.11), exists.
Further, , from whence

Further, observe that as and

Thus, as

(3.22)

The fact that (3.13) holds follows similarly to the proof of
Lemma 3.2.

The next lemma points to a BR result.
Lemma 3.5: Consider (3.3), (3.4), (3.10), and (3.11), with

Suppose (3.5) holds for all Then, for all
, and for all

(3.23)
Proof: That the first two inequalities imply (3.23) is a

consequence of Lemma 3.4. Observe also from this Lemma
that exist and obey

(3.24)

Now, use induction. From (2.7), (3.23) clearly holds for
Now, suppose it holds at for some Then,
dropping the arguments at any , there exist
and such that

(3.25)

with

(3.26)

Now, at this from (2.10), with

(3.27)

Now, observe under (3.26)

(3.28)

because of (3.26) and the facts that Thus, the
lower bound in (3.23) holds at Consider next the
maximum of with respect to

(3.29)

Thus, because of (3.26), , and , the maximum
occurs according to the following rule: At

if
if

(3.30)

In either case, because of (3.26)

(3.31)

Then, (3.23) follows from (3.11).
We can now prove the sufficiency part of the theorem.
Lemma 3.6:Consider the sets as defined

in (2.8)–(2.12) and the sequenceas in (3.3)–(3.4). Suppose
the exist and for all obey (3.5). Then, for all

is stable invariant.
Proof: We use induction. Clearly, is stable

invariant. Now, suppose is stable invariant for some
Observe that all elements of have

degree Further, from (3.2)

is stable for all Thus, from Proposition
2.1, is not stable invariant only if there exists

such that for some

(3.32)

i.e., because of (2.10)

(3.33)

i.e., because of Lemma 3.5

(3.34)

violating (3.12).
Thus, Lemmas 3.3 and 3.6 prove Theorem 3.1. We conclude

this section with two results of independent interest. The proof
of the first follows from Lemma 3.5 and the fact that BR
systems are stable.
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Theorem 3.2:The set is stable invariant iff for all
and

(3.35)

and

(3.36)

are BR. Further, for all

(3.37)

Compare this with the allpass property when
The next theorem relates the stable invariance of

to the stability, in fact, the real poles, of a “worst” member.
Theorem 3.3:Given The

following are equivalent.

1) The set is stable invariant.
2) is stable.
3) has no poles on

The proof of the Theorem relies on the following Lemma.
Lemma 3.7: Suppose has no poles in

Then

Proof: Since is stable all-
pass. Thus, with

Since has real coefficients, it readily follows
that

Suppose Since
has no poles on , the only way
changes sign as travels from to 1 is if there exists some

such that

Using (2.10), we have

or

(3.38)

We proceed to show that (3.38) implies , which
contradicts To see this by induction, we assume, for
some , that

Indeed, (2.10) gives

because and

Proof of Theorem 3.3:Since 1) implies 2) and 2) implies
3), it suffices to show that 3) implies 1). In view of Theorem
3.1, it suffices to show that 3) implies that
exist and obey (3.5). We proceed by contradiction. Obviously,

exists. Suppose 3) holds. Assume thatexists, ,
and for all and some
but that

Case I: Then

It follows from induction that are all negative.
Case II: Consequently, If ,

then , and follows from induction.
In either case, or Note that

By Lemma 3.7, this cannot happen.
Therefore, must hold. Hence,
all exist and obey (3.5).

Thus, Theorem 3.3 shows that the stability invariance of
the whole set boils down to the stability of a single
corner Lattice filter. Recall that when , the set of

stability preserving lattice coefficients form
a convex set Therefore, it is intuitive to conjecture
that the result in Theorem 3.3 can be generalized to the case
where the set of reflection coefficients lie in a nonsymmetric
interval, i.e.,

We show via the following example that when the parameter
set becomes nonsymmetric, relative stability of corner filters
will not imply the relative stability of the whole set.

Example 3.2:
It is straightforward to

verify that is stable at but unstable at
Note from this example that even lies in a

symmetric interval, although does not.
Remark 3.2:Condition 3) in Theorem 3.3 offers a simple

way of determining the maximum for which relative
stability of is guaranteed for all
Indeed, is the smallest pole of on the
positive real axis, which can be checked easily by solving the
real eigenvalues of in Theorem 2.2.

IV. L YAPUNOV MATRIX FOR

RELATIVELY STABLE LTI L ATTICES

In order to address the LTV problem considered in
Section V, we need to determine a Lyapunov matrix that
proves the stable invariance of It is known [7] that
with

(4.1)
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and , the SVR of

(4.2)

However, for the stable invariance of , we need to
find a positive definite symmetric that obeys

(4.3)

for , where is a completely
observable pair. The main result of this section, which is
presented below, solves this problem.

Theorem 4.1:Suppose is stable invariant
with Then, with , the SVR of

, and defined by

(4.4)

for all , we have and

(4.5)

Here, the are as in (3.10)–(3.11). We have dropped the
arguments in and

Observe from (3.10), Lemma 3.2, and (2.12) that the stable
invariance of ensures that is positive definite for
all Further, from Lemma 3.2

(4.6)

Thus, in (4.3) is

(4.7)

Further, observe that

(4.8)

where

...
(4.9)

Then, it is readily verified (see the Appendix) that is
positive definite throughout

Observe that as for all , whenever
, we recover the result of [7] when A few

further comments on the nature of the derived Lyapunov
matrix are in order. In the setting of [5] involving direct-
form realization, the Lyapunov matrix was multiaffine in the
coefficients of the transfer function denominator. This fact
considerably simplified the LTV analysis conducted in [5].
The Lyapunov matrix in (4.4) is clearlynot multiaffine. There
is, however, one vast simplification in the form of (4.4) over
its counterpart in [5], namely, that it is diagonal. As will be
shown in Section V, this diagonal nature aids the LTV analysis
conducted there. Two other points to be exploited in Section V
are as follows. First, is independent of Further, because

of (3.10)–(3.11), the Lyapunov matrix in (4.4) depends only
on as opposed to depending on directly.
The rest of this section is devoted to proving Theorem 4.1.

With and as defined in Theorem 2.2 (we are
assuming time invariance here), the transfer function

(4.10)

In other words, has SVR
Accordingly, we will call the

realization matrix of

(4.11)

Observe from Theorem 2.2 that

(4.12)

Our proof of Theorem 4.1 will use induction. To this end,
note from Theorem 3.2 that the stable invariance of
implies that for all and all

is BR. Consequently,
from [14], it follows that there exists a matrix

(4.13)

such that with

(4.14)

(4.15)

Observe that Then, the next Lemma shows that
acts as a Lyapunov matrix for the stability verification of

Lemma 4.1:Suppose that is stable and for some
is as in (4.13)–(4.15), with (4.11) in force.

Then

(4.16)

Proof: Because of (4.15) and (4.13)

(4.17)

Hence, we have the result.
Clearly, the stable invariance of and Lemma 3.2

ensures that the left-hand side of (4.16) is negative semidef-
inite.

The next step of the induction argument must relate
to To this, we need two intermediate Lemmas. The first
of these relates the positive semidefiniteness of a special class
of matrices to the definiteness of certain matrices.
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Lemma 4.2: Consider scalars and as in (2.18).
Then

(4.18)

iff

(4.19)

Proof: Consider to be scalar.
Then, (4.16) is equivalent to

(4.20)

for all This in turn is equivalent to

(4.21)

Hence, we have the result.
The next Lemma gives some key properties of
Lemma 4.3: Suppose that is stable invariant with

Then, under (3.10)–(3.11), for all

(4.22)

and

(4.23)

Proof: From (3.10), (3.11), and Lemma 3.2

(4.24)

Further

(4.25)

Then, (4.22) follows easily. Now, from (3.11)

(4.26)

Thus

(4.27)

hence, we have the result.
We are now in a position to proceed with the inductive step

of relating to

Lemma 4.4:Suppose is stable invariant with
Consider as in Lemma 4.1. Define

(4.28)

and

(4.29)

Then

(4.30)

Proof: We will treat the case separately from the
case.

Case I: In this case, from (3.11)

(4.31)

Further, from Theorem 2.2 and (4.11)

(4.32)

From (4.28) and (4.31)

(4.33)

Thus

(4.34)

Define the matrix

Note that Because of (4.11)

(4.35)

Moreover, because of (4.14)

(4.36)

Thus, from (4.34)–(4.36)

the last inequality following from (4.15). Hence, the result
holds.
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Case II: Because of (2.25), (4.11), and Theorem
2.2

(4.37)

Observe through direct verification that

(4.38)

Observe from (4.14) that

(4.39)

Because of (4.37) and (4.39), (4.30) is, in turn, equivalent to

and (4.40), shown at the bottom of the page. Because of (4.16)
and (4.39), (4.30) is guaranteed, provided we have (4.41),
shown at the bottom of the page. Observe from Lemma 4.2
that this is equivalent to (4.42), shown at the bottom of the
page. Now, select as in (4.28). Then, using (4.2), the (1,
1) block of (4.42) equals

(4.43)

where the last equality is from Lemma 4.2. Likewise

(4.44)

Finally, from Lemmas 4.3 and 3.2

(4.45)

Then, it is readily verified using Lemma 4.3 that

(4.46)

Consequently, (4.4) together with (4.45) implies that (4.42)
holds. Hence, (4.30) holds.

Then, the proof of Theorem 4.1 follows by noting that

and hence, Then, with the induction so initiated, we
can repeatedly use Lemmas 4.1 and 4.4 to obtain the desired
result that

(4.47)

V. RELATIVE STABILITY OF THE LTV L ATTICE

This section addresses the relative stability of LTV lattice
filters. We will assume that there exists arbitrarily small
such that for all

(5.1)

We will further assume that the in (3.3)–(3.4) obey (3.5) for
all , i.e., all frozen systems are stable with degree
of stability The question is, given

(5.2)

what rates of time variations can be sustained to ensure that
the LTV Lattice has degree of stability ?

To this end, we present two results. The first is a simple
consequence of the comments made at the end of the previous
section. The second constitutes the main result of this section.

(4.40)

(4.41)

(4.42)
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Theorem 5.1:Consider the lattice filter depicted in Fig. 1.
Suppose that (5.1) holds and that is stable invariant
for some Suppose also that there exist such that for
all and all

(5.3)

Then, the LTV lattice filter is stable with degree of stability

Proof: Suppose is the
SVR of the lattice filter as exemplified in Theorem 2.2. Define

(5.4)

Observe that because of Lemma 3.2, (3.10), (3.11), and (5.1),
there exists such that for all

(5.5)

Further, because of (5.3) and (3.10)–(3.11)

(5.6)

Then, because of Theorem 4.1

(5.7)

Then, we show in the Appendix that

(5.8)

obeys (2.1). Note that (5.8) is real for all Hence,
we have the result.

Observe that this theorem states that as long as the frozen
LTI systems have degree of stability , the LTV filter
sustains the same degree of stability for arbitrary rates of
variation in as long as the sustain
only changes in sign, and (5.1) holds for all

The next theorem addresses relative stability under simulta-
neous magnitude variations in multiple reflection coefficients.

Theorem 5.2:Consider the LTV lattice in Fig. 1, which
obeys (5.1). Suppose that is stable invariant and that

Then, the LTV lattice is stable with degree of stability
obeying (5.2), if the following holds: There exists an integer

and such that

(5.9)

where

(5.10)

Proof: Consider the Lyapunov matrix in (5.4),
and observe that (5.5) prevails. Note that two diagonal
matrices and obey

(5.11)

iff for all , the th diagonal of is less than or
equal to the th diagonal of Then, from (5.4), it is readily
observed that is the smallestscalar for which

(5.12)

The “ ” notation in (5.10) accounts for the fact that the
elements of both and equal 1.

With the state vector of the lattice (see Theorem 2.2),
consider the zero input state solution of

(5.13)

Consider

(5.14)

Then, because of (5.5), it suffices to show that under (5.10),
there exists such that along (5.13), for all

(5.15)

Now, observe that under our assumptions, is a bounded
matrix. Hence, (5.13) cannot have finite escape time. In fact,
because of (5.5) along (5.13), there existssuch that for all

(5.16)

Now, consider

(5.17)

Then, because of Theorem 4.1

(5.18)

Then, the recursive application of (5.18) reveals that for all

(5.19)

where the last inequality is because of (5.9). Then, because of
(5.16), for all

(5.20)

Hence, we have the result.
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A few comments concerning (5.9)–(5.10) are now appropri-
ate. Essentially, this condition represents a tradeoff between
frozen systems and LTV system degree of stability with the
rate of variations in themagnitudeof the Sign changes
are inconsequential.

Observe that with

(5.21)

(5.22)

Thus, (5.9)–(5.10) essentially quantify the potentially destabi-
lizing time variations as those that increase and limit
the average increase in these Declining values of
are found not to be destabilizing.

VI. CONCLUSION

We have studied the relative stability of both the LTI and the
LTV lattice. We have shown that when the LTI set of lattice
filters is defined by bounds on the reflection coefficients, then
there is a simple necessary and sufficient condition for all such
LTI lattices to have degree of stability We also show that
verification of stable invariance can be effected by checking
a single corner of

We provide a Lyapunov matrix for checking this degree of
stability requirement and show that it specializes to the matrix
of [7]. Finally, we give a logarithmic rate of variation result
that suffices for the relative stability of LTV unnormalized
lattices.

Although the LTI results of Section III apply to the nor-
malized lattice as well, the LTV and Lyapunov results do
not. An important issue is a generalization that captures this
normalized case.

APPENDIX

This appendix shows that is UCO for
and defined in Theorem 2.2 and (5.8), respec-

tively. When are LTI, the UCO property of
implies that in (4.8) is positive definite. In (2.1), choose

Call

(A.1)

Observe from Lemma 3.4 that is real for all and,
because of the stable invariance of , obeys for some

(A.2)

Then, with

diag (A.3)

...

(A.4)

and

(A.5)

the matrix in (2.1) is Observe from (2.14) and
(2.16) that has the form

(A.6)

where is upper triangular with the
th element

Thus, is triangular with the property that its th
element is zero whenever Further, for all ,
its th element is

(A.7)

Clearly, since elements in (A.7) are bounded away from zero
and all elements of and, hence, are bounded,
(2.1) holds.
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