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Abstract

This paper is concerned with the problem of testing the ro-
bust strict positive realness (SPRness) of a family of ratio-
nalfunctions with both numeratorand denominator de-
pendent on the same set of parameters. We show that this
problem can be solved by using a series of Routh tables. In
otherwords, the robust SPRness of the whole familycanbe
tested by performing only a finite number of elementary
operations (arithmetic operations, logical operations and
sign tests).

1 Introduction

Itis well known that the problem of strict positive
realness (SPRness) plays an important role in
many system analysis and design problems. Exam-
ples range from absolute stability analysis for linear
systems with uncertain/nonlinear perturbations[1]
to the convergence study of adaptive control-
lers[2]. There are already several papers on the
SPRness of rational functions with uncertain pa-
rameters. A family of rational functions called in-
terval plant was considered in [S]and it is shown that
the robust SPR of this family of rational functions
is equivalent to the SPR of 16 special members.
This result is extended in [3]to the SPR problem of
a real shifted family of interval transfer functions.

In [7], the condition in [5] is strengthened such
that the the number of functions need to be
checked is reduced to 8. 1In[6] a family of rational
functions with the denominator and the numerator
multilinearly or linearly dependent on two inde-
pendent sets of parameters is considered and it is
shown that the whole family is robustly SPR if and
only if the rational functions associated with the
extreme values of the parameters are SPR. A more
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general case is considered in [4] where the transfer
function is allowed to have both independent mul-
tilinear parameters and dependent linear parame-
ters in both numerator and denominator. It is
shown that only certain extreme points and edges
of the parameter set need to be tested for the
SPRness of the whole family.

This paper considers the same problem as in [4],
i.e., the SPR problem of a family of rational func-
tions with dependent linear parameters in both nu-
merator and denominator. Following some recent
papers on finite decidability of stability and other
related problems, we show that the SPRness of the
whole family can be determined by using a series
of Routh tables which involve only a finite number
of elementary operations (i.e. arithmetic opera-
tions, logical operations and sign tests). The struc-
ture of this paper is as follows: in Section 2 we for-
mulate the robust SPR problem and recapture the
main result in [4] and results for testing the positiv-
ity of polynomials. The main result is given in Sec-
tion3 and its computational aspects are discussed
in Section 4.

2 Problem Formulation and Preliminaries

Definition: [9] A rational function
N(s)
G(S) = -D—(;'S
is called positive real (PR) if
i) G(s)is real for real s, and
ii) ReG(s) = 0, VRe[s] > 0.
Suppose G(s) is not identically zero. Then G(s) is
called strictly positive real (SPR) if G(s — ¢)isPR
for some ¢ > 0.
Properties: G(s)is PR iff 1/G(s) is PR; G(s) is SPR
iff 1/G(s) is SPR. Further, a family of rational
functions is said to be robustly SPR if every mem-
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ber of the family is SPR.
Consider the following parameterized rational
function:
b i (qm q b)s i
N(Sa qm qb) - ,Z(;
D (S s 4 d> qb) i

G(s.9n 90,9 =
a;(q4q5)s
” i=0
Z[bio + bi(gn qp)1s’
= £ (2)
Z[am + a4(q4 b))s

i=0

where a,and b;,are the coefficients of the nominal
parts of the denominator and numerator respec-
tively; a;,(.) and b;,(.) represent uncertainties in the
coefficients;
9.€Q2,CR"q, €Q,CR"%, q,EQ,CR"
Qm Qd1 Qb
are given bounding sets. It is assumed that
Al). a,(q, q,) are multilinear functions of ¢, and
linear functions of ¢,;
A2). b,(q.,q,) are multilinear functions of ¢, and
linear functions of ¢q,;
A3). Q., Qs Q,are hyperrectangles, all contain-
ing the origin;
A4 ).The leading coefficients
a0 + au(s 9») and b + by(g. g,) do not
vanish for any q, € Qm 94 € Qd, 9 € Qb-

In the sequel, let
q = (qquvqb)’ Q = QnQQdQQb (3)
and denote the set of vertices and the set of edges
of a hyperrectangle H by V(H) and E(H), respec-
tively. We also define two subsets of Q as follows:
Qe = V(Q) ® V(Q,) & E(Q,) (4)
0, = V(Q,) & V() & V(Q,) (5)
and define the set of admissible rational functions
as

G:= (G(59.969): 9, € Qn
2.E€0, ¢, €0} (6)
or equivalently
G:= {G(s, g : q € Q). (7)

Then we have the following result.

Lemma 1 [4]: Given the family of rational func-
tions G in ( 6 ) satisfying assumptions A1)—A4),
G is robustly SPR if and only if G(s, g) is SPR for

every q € Q.. D

This result shows that it is sufficient to test certain
number of edges of Q. To check the SPRness of an
individual rational function, we have the following
result.

Lemma 2 [8] Assume G(s) is a real rational func-
tion, notidentically zero for all s. Then G(s)is SPR
if and only if i ) G(s) is analytic in Re[s] = 0, i.e.
D(s) is strictly Hurwitz,
ii) Re[G(jw)] > 0, Vo € [0, ), and
iii) a) dmRe[G(jw)] >0 whenr*=0,
b) Jim w?Re[G(jw)] > 0 whenr*=1
,or
. , . G(jw)
c) J.‘l’}. Re[G(jw)] > 0, hl,ll_I.I}o o >0
whenr*= — 1,
where r * is the relative degree of G(s). D

Remark: Condition iii ) a ) above is actually im-
plied by ii ). We list it here simply for convenience.

3 Main Results

First, we need a robust version of Lemma 2. For
the robust SPRness of a family of rational func-
tions, we give the following result.

Theorem 1 Consider the family of rational func-
tions (7) then @ is robustly SPR if and only if the
following conditions hold:

i) D(s,q% is strictly Hurwitz, for some ¢° € Q.

’
ii) Re[N(jo, q)] Re[D(jw, q)] +
Im[N(jw, g)] Im[D(jw, g)] > O
Vo € [0, »), Vg € 0,4, and
iii) a) lim Re[G(jw,g)] > 0, Vg € Qg if
r*¥=0 ,or
b) lim »*Re[G(jw, q)] > 0, Vg € Q.. if
r¥=1,or ’
c) lim Re[G(w,q)] > 0 &
tim 802 0
ol Jo
if r¥=~—1,
where r* is the relative degree of G(jw, g).

Q

Proof: (Necessity) Follows directly from
Lemma 2, noting that

> 0’ Vq € Qedge’

Re[G(jw, q)] =
Re[N(i@, ¢)] RelD(,)] + Im[NGw, ¢)] ImD(iw, ¢))
Re[D(w, g))* + (Im[D(jw, g)])’ )
(8

(Sufficiency) Assuming that conditionsi
)—iii ) hold, we need to show that § is robustly
SPR. From Lemma 1, we only need to show that
G(s, q) is robustly SPR for every ¢ € Q... Sup-




pose there exists some § € Q,4,, such that
G(s, §) isnot SPR. Then, from ( 8 ) and Lemma 2,
the only possibility is that G(s, §) is not analytic in
Refs] = 0, i.e. D(s, §) has roots in the closed right
half plane (CRHP). Note that the set Q,,,, is a con-
nected set. Then from the continuity of the roots
of D(s, g) with respectto ¢, there mustbe another
4 € Q.4 and @ € R, such that D(jw,§) = 0,
which means
Re[N(j@, §)] Re[D(jo, §)] +
Im[N(j, §)) Im{D(ja, )] = O.
Clearly this contradictsii). So D(s,q) is analytic
in Re[s] = 0, Vg € Q...
Consequently, G(s,q)is SPRforall ¢ € Q,,, and,
by Lemma 1, this is equivalent to that G(s,q) is
SPRforallg € Q.

Now we concentrate on checking condition ii )
in Theorem 1, i.e., whether the image of an edge
stays in the open right half plane for all w. Foreach
edgein Q. , the corresponding transfer function
(2) is typically expressed as

_ N(s,,l) _ Ny(s) + ).N,(s)
" D(s,A)  Dy(s) + AD\(s)

8(s,A)

2 .

Z ciSl Z[Cio + lcn]si
= i=0 = i=0 ,

Ddis Y ldg + Adyls

i=0 i=0

A<=

=

(9)
Where A represent the free parameter in Q, .
From (9) it follows that
Re[g(jw,A)] > 0
if and only if

PQ , @) := A2Re(N,D}) + ARe(N,D} + N,Dj)
+ Re(N,D}) > 0,
(10)

Vwe [O,M), }'e M’ j:]

In the sequel, we will derive a finite algorithm
for checking (10).
Lemma 3 (Key Lemma): Denote
PQ,0) = a0’ + a @)} + axw) (11)
where a(w), i = 1,2,3, are real polynomials in w.
Then
P, @) > 0, YA € [A,A] and Vo € [0, + «)
if and only if the following conditions hold:
i) a(+ 02+ a)(+ o) +

ax(+ ©) > 0, YA € [A,1];

@@ + a) + a,@) > 0,

i)
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a (@’ + g + a;@) > 0, Vo € [0, + ) ;
and
iii ) 2a,(0) + a,(@)A + A) + 2a,(w)d > 0

whenever ai(w) — 4a,(w)as(w) = 0. D

Proof: For each o € R, consider two cases ac-
cording to the value of a,(w).

Case One: a(w) # 0. In this case P(A,w) is part
of a parabola with two end points
8=alfz+azf+a3 and .‘l’=a,&2+aﬁ+a3.
This parabola attains its minimum or maximum

valueat A= — 5%2_ with the corresponding
1
4a,a; — a?
0 ) = 2
PQ% w) ia

So, we need to show that, underI conditions i) and

i), Phw)>0, VAE} 1]
and Vo € [ 0, + »),

if and only if iii ) is true. For this purpose we con-
sider two sub—cases .

Sub—caseone: a,(w) < 0. Inthiscase, 1°corre-
sponds to the maximum of P(4,w) . Therefore
m‘in P, ) = min(¥,8) > 0 will guarantee that

4a,a; — a; = 0.Thatis, the condition iii ) is void.

Sub—case two: a,(w) > 0. Now
4a,a, — a?
. — 0 = 2

min P@A,w) = PA%, ) —da
From i) we know that
PA, + ©)> 0, VA€ L A]. Since P, w)is
a continuous function of 4 & w, if there were
1 & @ suchthat P(1,&) < 0, there would exist an
@ € [0, + ») suchthat P(A% @) = 0. Soitis
enough to check that

A0 ¢4 A,

da,a, — a?
2
et B S,

PR, ) = 2
To check (12) we observe that
RERANSs@R-DA"-H>0
< al+2aa,A+)+4a >0 (13)
which is equivalent to the condition iii ) after sub-
stituting in a} — 4a,a; = 0.
Case Two: a,(w) = 0. Obviously, ii ) is both neces-
sary and sufficient for
PAw) >0, ViER 1.
We need to confirm that iii ) hold automatically. In-
deed, if a2 — 4a,a; = 0,then a, = 0. Consequent-
ly, 2a; + a,(A + A) + 2a,Ad = 2a; > 0, duetoii).

whenever

(12)
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From Lemma 3 and the following result, it become
clear that the SPRness of an edge can be tested
with a finite number of elementary operations.

Lemma 4 [15] Given two real polynomials r (w)
and ry(w), the following two statements are equiv-
alent:

i) ryfw) > 0, whenever
®wE(—~ ©, + ®);

. Fi @)

=T ) d

Now, it is straightforward to obtain the follow-
ing theorems.

ri(w) = 0, for every

Theorem 2 Define
fi=a} —4aa;, f,=2a;+ a@ + ) + 2a M

(14)

i) 1tz ,and

Then, the transfer function in (9) is SPR
VIE[ A]and Vo ER
if and only if the following conditions hold:
i) Dy(s) is strictly Hurwitz,
ii) Conditionii) in Lemma 3 are satisfied,
f @ £, @),@)
- = [
filw) filw)
iv) a) CdA > 0,if r*= 0 (ie., m=n);
b) Cn'-ldn—l - C,l_zdn > 0, if r*= 1 (i.e.,
m = n—1); v
Cndn - cn+ldn-l >0
c Cnt1 , fr*= —1
) 4. >0
(ie, m=n+1). D
Proof: The proof of Theorem 2 follows from
Theorem 1, Lemma 3 & Lemma4. It is obvious
that condition (i) is the same in both Theorem 1
& Theorem 2. From the definition of P(A , w) in
(10), it is clear that condition ii ) in Theorem 1
holds if and only if conditions i )—iii ) in Lemma 3
do. Note that condition iii ) in Lemma 3 is the same
as condition iii ) in Theorem 2 ( due to Lemma 4
). Also, condition i ) in Lemma 3 is implied by
condition iii ) in Theorem 1. Therefore, it suffices
to show that condition iii ) in Theorem 1 is equiva-
lent to condition iv ) in Theorem 2. To this end, we
obtain from (9) that
g(jw,4) =
(= Dreadnjo)™n + (= D*'end,— (o) *"~!
(= Drd,? o)
+ (= 1), dyjo)y™+n=! + ...
+..
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(15)

and analyze three cases:
a) r*= 0. Inthiscase, ulnim Re[g(jw,A)] = %"— .

n

b) r*= 1. This implies that
: 2 . - Cho1lp-y = Cpnd,
hl“l_l‘.l“l” o’Re[g(jw,A)] = p7 > 0.
c) r*= — ].Thisgives
: . — cndn_cn+ld ~1
lim 8924 _ Caus
e JO d,

It is therefore clear that condition iii ) in
Theorem 1 is equivalent to condition iv ) in

Theorem 2. \A A/

Inview of Lemma 1 and Theorem 2, we have the
following general result ( the proof is omitted due
to its triviality ).

Theorem 3 Similar to thatof (10 ) — (14 ), we de-
fine

Sy = agj - dayay,
foj = 2ay + ayA + 1) + 2a, M4 (16)
where j denote the jth edge of Q,,.. Then, G in
(7) is Robustly SPR if and only if the following
conditions hold:

i) z a(g®s’ is strictly Hurwitz for some
i=0 ’
q° € V(Q,) ® E(Qy);

ii) ReG(w,q) >0, Vg € Q,,
w € [0, + »); and

f,@  f @)

wflj(w) Sio) ’
j=1,..,2P 224 p, 27" ; and

i) 1+

— Jt®
1Z5

M 2D 50, € 0y it 1*= 0
or
b) b, (@a,-1(@) = b,—2(q)ailg) > O,

Vq € Qupe, if r*= 1;0r
bn(q)an(q) - bn+l(q)an—l(q) >0
bn+l(q)

a,(q)

©)

>0 ’

Vg € Q,,, ifr*= — 1. D

4 Computational aspects

'We now briefly exam the computational require-
ment of the algorithm in Theorem 3. Note that
there are all together 27 274 27 vertices and
27 2P¢ p, 277! edges in . To check



Theorem 3 i), one Routh table of degree n is
needed. In Theorem 3ii ), a polynomial is strictly
positive if and only if it has not real zero, i.e. its
corresponding Cauchy index is zero. This requires
one Routh table of degree 2n for each vertex. As
for Theorem 3 iii), if we express

£, b 7,

flj-le+f—lj, (17)

where R,; is a polynomial and deg fz < degfy;,
e
then

[ fa 5
L %
Ity —= [t3— .
=R R (18)
Hence, we can check Theorem 3 iii ) by two Routh
tables of degree 2n for each edge.

In addition, some simple computation is needed
for Theorem 3 iv), i.e., we have to determine
whether for each edge of Q,,,, aportionofa pa-
rabola stays positive. We can summarize the above
in the table at the end of this paper. Note that a
Routh table of degree n requires O(n*) number of
calculations, so the complexity of the algorithm is

o®n?).
5 Conclusion

The results above address the SPR problem of
a family of rational functions with respect to the
open left half plane. We have provided a finite al-
gorithm which can test the robust SPRness by using
only O(n?) elementary operations, where n is the
degree of the rational functions. Thus, the com-
monly used value set approach, or frequency
sweeping, is obviated. Although our results are for
the Hurwitz stability region, an extension of the re-
sults can be obtained for more general stability re-
gions, such as the unit circle or other circular re-
gions which are of importance to filter designs[16].
This can be done by using the bilinear transforma-
tion which converts the circular regions to the open
left plane. For more general stability regions, simi-
lar results can also be developed provided that the
region can be converted into the open left half
plane by using the so—called strongly admissible
rational function( see[18] for definition ).
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*|

Number of Routh tables Deg. Required by

Note

Z ays' | Theorem 3 i)

one n Hurwitzness of
i=0
2Pn 274 2P 2n Re G(jw,q) > O Theorem 3 ii)
2°n 204 p, 2P 2n Cauchy indices Theorem 3 1ii)

* Denotes the degree of the polynomial.



