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ABSTRACT

This paper considers the robust strict positive real (SPR)
problem for a family of plants of the form G(s,q) =
N(s,q,)D7 (s, qq4)—a, where N(s,q,) and D(s, g4) are
multiaffine in uncertain parameters ¢, and g4, respec-
tively, and o > 0. In the discrete-time setting, this
problem plays an important role in digital quantiza-
tion. Several results are presented. First, we prove
that this plant family is robustly SPR if and only if
all “corner plants” in the family are SPR. Secondly,
we show that, if this plant family is robustly SPR, it
admits a multiaffine Lyapunov matrix for the Kalman-
Yakubovic-Popov (KYP) inequality, i.e, the Lyapunov
matrix is multiaffine in the uncertain parameters. This
result is useful in robustness analysis of time-varying
systems. Thirdly, we relate the robust SPRness of
this plant family to the robust strict bounded real-
ness (SBRness) of a plant family involving the inverse
of N(s,¢,)D71(s,q4). We show that multiaffine Lya-
punov matrix for the KYP inequality of the first plant
family yields a multiaffine Lyapunov matrix for the
bounded real inequality of the second plant family. Fi-
nally, the robust SPR problem is considered for a more
general plant family with applications in circuits and
communication systems.

1. INTRODUCTION

Consider a family of linear time-invariant plants
G={G(s,9): ¢€Q} 1

where () is a hyperrectangle representing the set of un-
certainty. We are interested in necessary and sufficient
conditions for the family G to be robustly strictly pos-
itive real (SPR), i.e., every member of G being SPR.
For an interval plant family, i.e., G(s,q) is a ratio
of two interval polynomials, Dasgupta et. al. [3] show
that this family is robustly SPR. if and only if 16 special
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“corner plants” called Kharitonov plants are SPR. This
result is recently generalized by Chapellat et. al. [2] to
the case

G(s,9) =Gi(s,9) —a (2)

where Gj(s,¢) is an interval plant and « is any scalar
number. Again, they show that it is necessary and
sufficient to check the 16 Kharitonov plants.

Since interval plant families are often very restric-
tive in applications and that the results above do not
generalize to discrete-time plants, many other results
have been reported. It is shown in Dasgupta et. al.
[3] that, when the numerator and denominator of the
plant are multiaffine functions of two separate sets of
uncertain parameters, the robust SPRness of the whole
family is equivalent to the SPRness of all corner plants.
For the case where the numerator and denominator are
affine functions of the same set of uncertain parame-
ters. It is shown in Fu [5] that the family of plants is
robustly SPR if and only if all the “edge plants” (the
plants corresponding to the edges of Q) are all SPR.
Also analyzed in [5] is a more general case where the
numerator and denominator of the plant are multiaffine
functions of two separate sets of uncertain parameters,
and they both are affine in a third set of parameters.
The results above are applicable to both continuous-
and discrete-time plants.

This paper considers the robust SPR problem asso-
ciated with the following uncertain plant family:

g = {G(s,q) = N(S»qn)D—l(qud) —a:
Gn € Qn, qq4 € Qq}, a >0, (3)

where N (s, ¢,) and D(s, g4) are square polynomial ma-
trices in s and are multiaffine in ¢, and g4, respectively,
@n and Qg are hyperrectangles, s denotes the Laplace
operator for continuous-time plants or the z-operator
for discrete-time plants.

The robust SPR problem above in the discrete-time
setting is motivated from applications in digital com-
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munications. For example, in decision feedback equal-
ization, finite time recovery from errors is guaranteed
if the channel transfer function G(z) obeys

G(z) - % is SPR 4)

See, e.g., Kennedy, Anderson and Bitmead [7]. In the
continuous-time setting, this problem arises in robust-
ness analysis for electrical circuits and tuned filters in
communication systems; see Example 2 in Section 3 for
details.

In addition to finding simple conditions for deter-
mining the robust SPRness of a plant family, we are
interested in a perhaps more important problem: Find
a simply parametrized Lyapunov matrix P(q) which es-
tablishes the robust SPRness in the state-space via the
well-known Kalman-Yakubovic-Popov (KYP) Lemma
[1]. It is known that such Lyapunov matrices play
a critical role in robust stability analysis of systems
which involve time-varying uncertain parameters; see,
e.g., Dasgupta et. al. [4].

It is known that the robustness analysis for sys-
tems with time-varying parameters requires a slightly
stronger notion of SPR called p-SPR. In this paper,
a continuous-time plant G(s) is p-SPR for p > 0 if
G(s — p) is SPR. Similarly, a discrete-time plant G(z)
is called p-SPR for p > 0 if G(z/(1 + p)) is SPR. Most
of our results will be in terms of p-SPR.

The third problem we are concerned with is to re-
late the robust SPR condition of G to the robust strict
bounded realness (SBR) of a corresponding plant fam-
ily. We also want to know how the Lyapunov matrix
for the robust SPR condition of the first plant family
is related to the Lyapunov matrix for the robust SBR
condition for the second plant family. The notion of p-
SBR will be used. Its definition is analogous to p-SPR.

Our main results are as follows: First we prove that
the family of plants G in (3) is robustly p-SPR if and
only if all corner plants are p-SPR. Secondly, we show
that when G is robustly p-SPR, there is a multiaffine
Lyapunov matrix P(g) for establishing the robust p-
SPRness via the KYP Lemma. Thirdly, we show that
G is robustly p-SPR if and only if the following family
of plants

G = {G’(s,q) =2aD(s,q4) N (s, qn) — I :

gn € Qn, @ € Qd} (5)

is robust p-SBR, and the latter occurs if and only if
the corner plants of G are all p-SBR. Note in particular
that G(s,q) is affine in gq while G(s, ) is affine in gp.
Further, the Lyapunov matrix P(q) for establishing the
p-SBRuess of G is also multiaffine and simply related to
P(q) by P(q) = 2aP(q). Finally, the corner result for

the plant family in (3) is extended to a more general
plant family which finds applications in robust SPR
analysis of circuits and tuned filters for communication
systems.

2. MAIN RESULTS

Consider the plant family G in (3), the first main result
of our paper is given as follows:

Theorem 1 Given p > 0, « > 0 and the plant family
G in (3). The following are equivalent:

(i) G is robustly p-SPR;
(ii) All the corner plants of G are p-SPR;

(iii) N(s,q) is invertible for all ¢, € Qn and the plant
family G in (8) is robust p-SBR;

(iv) N(s,q) is invertible at all corners of Qr and the
corner plants of G are p-SBR.

Further, the equivalence between (i) and (ii) above hold
also when a = 0.

Proof. We treat the continuous-time case only be-
cause the discrete-time case is almost identical. “Also,
we only need to consider the case when a > 0 because
the equivalence between (i) and (ii) when a = 0 is
known; see [3].

Note that G is p-SPR if and only if there exists € > 0
such that, for every complex s with Re[s] > —p—¢, the
following holds:

D(S, qd) 7& 07
N(S, qn)Dh—l(s, qd) + (D*(sa qd))_lN* (8, qn)
—2al > 0,

Vgn € Qn,q4 € Qq

The above is equivalent to
D*(5,qa)N(s,qn) + N*(s,4n)D(s, q4)

- QQD*(S, Qd)D(sa Qd) > 07
an < Qna qd € Qd (6)

which is in turn equivalent to
D*N + N*D D* N
D (2a)7 I
an € QTHQd € Qda

0,

which is multiaffine in (gn, qq). Hence, (i)<=> (ii).
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To see (i)<=>(iii) and (ii)<=>(iv), we simply note

that
G(s,q) is p— SPR
a~'G(s,q) is p— SPR
a™'(G(s,q) + G*(s,9)) > 0,

VRe[s] > —p — € for some € > 0
(I-a'GY(I-a'G)
<(I+ao Gy (I +a7'G),

YRe[s] > —p — € for some € > 0
(I-o 'GYI+a 'G)™'is p—SBR
G(s,q) is p— SBR

Remark 1 We require « > 0 in the extreme-point re-
sult above. It is shown in Chapellat et. al. [2] that,
when N(s,qn) and D(s,qq) are interval polynomials
and that the continuous-time robust SPR (rather than
robust p-SPR) problem is concerned, the assumption of
o > 0 can be removed. More specifically, they show that
the plant family G in this case is robustly SPR if and
only if 16 corner plants are SPR. However, we show
in the next example, the extreme-point result can no
longer be guaranteed in the general case when o < 0.

Example 1: Consider the following family of plants:

G = {G(57 q) 1g € [07 1]} (7)
where
0.01s%

_ 1
G(s,q) 34+ (1.5+¢)s2 + (1.5+q)s + 2.06 + 4¢ +
: (8)

It is verified that both G(s,0) and G(s,1) are SPR. But
G(s,0.5) is not SPR because it is unstable.

The next result deals with parametric Lyapunov
matrices:

Theorem 2 Given p > 0, suppose the continuous-
time plant family G in (8) is robustly p-SPR. Let a(s)
be any Hurwitz-stable polynomial with its degree equal
to the larger of the McMillian degrees of the N(s,qxn)
and D(s,qq). Let

{A, B,Crn(gn), Dn(gn)} and {4, B,Ca(qa), Dalga)}

be state-space realizations of

N(S, Qn)
a{s + p)

D(qud)
a(s +p)’

respectively. Then we have the following properties:

(i) G(s,q) has the following realization:

G(s,q) = Ca(@)(sI — An(9)) "' Br(q) + Dn(q)
= (Cn—DuD;'Cy)(sI - A+BD;'Cs)™"
-BD;' + (D.D;" — o) (9)

(ii) When a > 0, G(s,q) exists and has the following
realization:

G(s,q) = Ca(g)(sI — Aa(q)) ™' Balg) + Dalg)
= 2a(Cq— D4D;'Cn) (sI— A+ BD;'Cy) "
-BD;' + (20DyD;t — 1) (10)

(iii) There ezists a parametric matriz P(q) = P(gn,qaq),
which is multiaffine in (gn,q4), symmetric and
positive-definite such that the following KYP in-
equality for G(s,q) holds for all ¢, € Qpn,q4 € Q-

P(¢)Bn(q) — C3 (q)
—DX(q) ~ Dnlg)

Qn(g)

B..(a)" P(q) - Ca(a) <0

(11)

where
Qn(q) = (An(a) + pI)" P(g) + P(q) (Anq) + pI)

(iv) Let P(q) be given as above and a > 0. Define
P(q) = 2aP(q). Then, (11) holds for all g, €
Qn,qq € Qg if and only if the following SBR in-
equality for G(s, q) holds for all ¢, € Qn,q4 € Q4

Qa(q) Ta(q)
rig) -I+Di(@pate) | <0 12
where
Q@) = (Aalg)+pD" Plg)
+  P(q) (Aalg) + pI) + CT(9)Calq)
and

Talg) = P(q)Ba(q) + C3 (@)Dalq)

(v) The inequality (11) (resp. (12)) holds for all ¢n €
Qn,qa € Qq if and only if it holds at all corners
of Qn and Qq.

Proof. See Appendix A. VWV
Remark 2 The significance of (v) above lies in the
fact that both (11) and (12) are affine in P(q). De-

noting

an = (@n1:Gn2, ), 4d = (Gnd,1,9d,2," ")
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P(q) can be written as

P(g) = By + Z Prigni + Z Pyiqq;

+2Pnuqn i9n,j +Zpdz](Idzqu (13)
i#£j i£]

Therefore, (11) (or (12)) represents a finite set of lin-
ear matriz inequalities (LMIs) for Py, Py, ;, Pg s, Pnj,
Pyij,+-+. That is, P(q) can be solved using standard
LMI algorithms. Alternatively, P(q) can be directly
constructed from the solutions of P(q) at all corners
of Qn and Qq; as demonstrated in Dasgupta et. al. [3]
for the case when the plant denominator is fized.

The discrete-time version of the above result is given
below:

Theorem 3 Given p > 0, suppose the discrete-time
plant family G in (3) is robustly p-SPR. Let a(z) be
any Schur stable polynomial with its degree equal to
the larger of the McMillian degrees of the N(z,qn) and
D(z,q4). Let

{A7 B, Cn(Qn)> Dn(qn)} and {A, B, Cd(‘hz); Dd(‘]d)}

be state-space realizations of

N(Z,qn) D(zyqd)
a(z(1+p)7") a(z(1+p)71)’
respectively. Then the properties (i) -(v) in Theorem 2

hold when (11) and (12) are replaced by the following
two inequalities:

ATPA, - ATPB, —CT
(£ + ) n n n
{ BTPA, ~C.  BTPB,-DT—p, | <0 (4
Ad PAs - —1:—)7 +C§Cd .A:{ISBd +C5Dd <0
B PA4+DICy BIPB, -1+ DID,
(15)

Proof. See Appendix B. VW

For single-input-single-output (SISO) plants, we gen-
eralize G in (3) to the following plant family:

_ nl(s n.) 10(S,n,) |
{Z (5,94,)  do(s)

n; € Qnm qd; € Qdi}

(16)
where Q,, @n; and Qqg;,% = 1,---, k, are all hyperrect-
angles. When k£ = 1 and Gy(s,q) = @, we obviously
return to the plant family in (3).

The motivation for this problem stems from robust-
ness analysis of circuits and tuned filters for communi-
cation systems. This will be demonstrated through an
example (Example 2) in the next section.

Define

ni(37qn') y
Gi={5F—":qn € nis c€Qati=1,---,k

{di(Sani) ¢ Q da Qd} '
(17)

and
10(8, ¢ng

Go = {2elB0) o e g} (18)

do(s)
We then have the following result, which holds for both
continuous-time and discrete-time plants.

Theorem 4 Suppose all the corner plants of G;,i =
0,1,---,k, are p-SPR. Then, G is robustly p-SPR if
and only if all the corner plants of G are p-SPR.

Proof. As before, only the continuous-time case is
considered. The necessity is obvious. To see the suf-
ficiency, we assume that all corner plants of G and G;
are p-SPR. Let € > 0 be such that

Re[G;(s)] > 0,YRe[s] > —p — ¢ (19)

holds for every corner plant of G and G;,7 =0,1,---, k.
Suppose there exist some G(s,¢) € G and some s with
Re[s] 2 —p — € such that

Re[G(s, )] <0 (20)

Since (20) is multiaffine in g¢n,, it must also hold for
some (different) ¢ for which every g, takes a corner
vector. Suppose some qq; component, 1 < j < k,
takes an interior vector, we claim that (20) holds when
this gq; is replaced by a corner vector. To see this, we
rewrite (20) as follows:

n;(8,qn;)
Re[-125] ~ <0 21
[dj(s’qdj)] < (21)
where
_ ni (3, ¢n;) nO('s: ny)
a=Re =) GG T dole)

i#j

From (19), we know that Re[%] > 0 even when

qa; doesn’t take a corner vector (see, [3]). Subsequently,
a > 0. Since (21) is equivalent to

f(qdj) = Re[nj('S:‘Inj)d;(sanj)]
- ad;(sanj)dj(57de) < 0

The minimum of f(-) over gz; must occur at a cor-
ner because a > 0. Therefore, the above inequality
(and hence (21)) must also hold when gy, takes one of
the corner vectors. Since the analysis above holds for
all j = 1,---,k, (20) must hold at a corner g, which
contradicts our assumption. This completes our proof.
WV
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3. APPLICATION EXAMPLE

In this section, we demonstrate via an example how
Theorem 3 is applied in the so-called tuned filters for
communication systems.

Example 2: Consider the tuned filter in Figure 1. The
impedence of the circuit is given by

s 1
2(s) = R+ 5+ TG,  CstGa (22)

where Go = R;',G3 = R;',T = L~'. Suppose R,
9, (3, I' and C are,say, all normalized to be 1 with
+10% tolerance value. We are interested in determin-
ing the largest a > 0 such that Z(s) — a remains to be
SPR. Obviously, each individual term in Z(s) is SPR.
Using Theorem 4, we know Z(s) — a is SPR for all
admissible parameters if and only if it is so at all 32
corners. SO amax can be simply determined, e.g., from
the 32 Nyquist plots of G(s).

Alternatively, for a given 0 < & < qax, we can seek
for the maximum p such that p-SPRness of Z(s) - a
is preserved for parameter values. Again, we only need
to seek at all the corner plants only.

Collectively, p and a provide two different measures
of the “degree” of passivity for the filter.

4. CONCLUSIONS

In this paper, we have established simple necessary and
sufficient conditions to determine the robust strict pos-
itive realness of a plant family in (3). We have also
shown how to derive simple parametric Lyapunov ma-
trices for the plant family. This result is of particular
use in robustness analysis of time-varying systems. Due
to the nature of SPRness, we are able to treat both the
continuous-time setting and the discrete-time setting
by using the same framework. It is also interesting to
note that the results in Theorems 1-3 allow the plant
family to be multi-input-multi-output. In the single-
input-single-outut case, the robust SPR result for the
plant family (3) is generalized to the plant family (16)
which finds applications in robustness analysis for elec-
trical circuits and communication systems.

A. PROOF OF THEOREM 2

The following lemma, called Parametric KYP Lamma,
will play an vital role in the proof of Theorem 1. This
result is quoted from Fu and Dasgupta [6].

Lemma 1 (Parametric KYP Lemma) Given ma-
trices A € R™*™, B € R"™™, m < n, a hyperrectangu-

lar set Q C RP, a parametric matriz described by

Q) =07 (g) = )+ Z g;Qy; € RIMEm)x(ndm)
(23)
where Qp(q) is multiaffine in q¢ and
Qi>0, i=1,--,p (24)
Then the following two conditions are equivalenit:
i) There exists € > 0 such that
BT (-4 e | TP | <o
VRe[s] > —€ (25)

forallqge Q.

ii) There exists a multiaffine matriz

P(g)=PT(g) eR™", geQ  (26)

such that
T
g = | 4R @4 POP o <o
(27)
Jor allq € Q.

ili) The inequality (25) holds at all vertices of Q.
iv) The inequality (27) holds at all vertices of Q.

Proof of Theorem 2: The conditions (i) and (ii) of
Theorem 2 are straightforward to verify, so the details
are omitted. We set out to prove (iii)-(v).

Following the proof of Theorem 1, G is robustly p-
SPR if and only if (6) holds. Using the state-space
realization of N(s,qn)/a(s + p) and D(s,q4)/a(s + p),
{6) is equivalent to the following:

naw| P <o

VRe[s] > —p—€,4n € Qn,qa € Qa  (28)

[ ((s1-4)B)"

for some € > 0, where Q(q) is given by
cTr
Qg = - [ g ] Cn Dn
- [ D?T‘ ] [ Cd Dy ]

+ Qa[Cg][cd Dy | (29)
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Shifting s by p and denoting A —pl by 4,, (6) becomes
(sI —4,)”

'B
[ ((sI=A4,)7'B)" I ]9(q) [ I} } <0,
YRe[s] > ~¢€,qn € Qn,q4 € Qu (30)

Now applying the Parametric KYP Lemma, we know
that (30) holds if and only if there exists a multiaffine

P(q) = P(¢)" such that the following holds
[MT+M7é?a£@%%Hﬂ P@) Q) <0
(31)

for all ¢, € Qn and g4 € Qq, or equivalently, at all
corners of @, and Q4. Now, (11) is obtained by right-
and left-multiplying (31) with

I 0
-D7'Cqy D7t

and its transpose. Similarly, (12) is obtained by right-
and left-multiplying (31) with

I 0
V2a [ -D;'C, Dt ]

and its transpose. The details are straightforward (but
a bit tedious) and thus omitted.

B. PROOF OF THEOREM 3

Similar to the proof of Theorem 1, we need to have a
discrete time version of the Parametric KYP Lamma.
This result is also quoted from Fu and Dasgupta [6].

Lemma 2 (Discrete-time Parametric KYP Lemma)

Given matrices A, B, 2q),Q as in Lemma 1. Let
0 < pu < 1. Then the following two conditions are
equivalent:

i)
BT((zI - A7) 110(g) [ (ZI_}‘D_IB ] <0,
izl 2 p, g €Q (32)

forallqge Q.

il) There exists a multilinear matriz

P(g)=PT(g) e R™", qe @  (33)

such that
[ ATPA- 2P ATPB
H(Q)— BTPA BTPB +Q()<O
(34)
foralge Q.

iii) The inequality (32) holds at all vertices of Q;
iv) The inequality (33} holds at all vertices of Q.

Proof of Theorem 2: The proof is almost identical
and thus omitted. -

o I
Y
+ o—r—3— L C
Rl ) — 1
Z(s) R, Ry
—

Figure 1: Tuned Filter
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