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1. INTRODUCTION

The objective of this paper is to provide a useful tool for
robustness analysis of linear systems which are subject to
time-varying parameters. More specifically, we consider the
following uncertain system

& = A(q(t))z = (Ao — BD™(¢())C(a())=z, (1.1)

where g(t) € RP represents uncertain parameters, belong-
ing to a bounding set @ = [—1, 1]?; ¢(-) is assumed to
be differentiable and belongs to a set Q; 4y € R"*",
B € R™*™ is a constant full column rank matrix, m < n,
C(g) € R™*" and D(q) € R™*™ are affine in q:

4 P
Cla)=Y_uCi, D@)=I+Y aD; (1.2)
i=1 i=1

The inverse of D(g) exists and is uniformly bounded in Q.

Further, the uncertain parameter vector g(t) is assumed
to be differentiable with its derivative constrained to be spec-
ified later. The set of admissible g(-) is denoted by Q.

Our problem is of two-fold. First, we want to determine
if the uncertain system (1.1) is robustly asymptotically sta-
ble when the parameters are time-invariant. We will call this
property frozen-time robust stability. Second, if the system
is frozen-time robustly stable, we want to determine how
much time variation, in some appropriate sense, can the pa-
rameters have without losing robust stability. That is, we
want to characterise the set Q that preserves the robustness.

A general framework for studying the uncertain system
(1.1) is to transform it into a structure depicted in Figure 1.
This is done by rewriting the system as follows:

= Agz+ Bu
y = Cz+ Du
v = Ay (1.3)
where
Cl D]_
é = eRme"; D= I_GRmpxmp
Cp D,
B = BIeR™™, I=[I.--- [J€eR™™ (14)

A= dlag{_QI (t)I) M) _Qp(t)[} € Rmpxmp (1.5)
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with the corresponding bounding set A defined implicitly.
The transfer matrix G(s) in Figure 1 is given by

G(s)=C(sI - Ay))"'B+D (1.6)

Using the representation above, a general technique called
integral quadratic constraint approach can be applied. In
this regard, results can be found in many references; see,
e.g., [7]. However, the essence of this paper is to present a
new approach which utilizes the particular structure of the
system, i.e., the structure of B, D and A.

G(s)

+
g + M)

Figure 1: Pictorial Representation of System (1.3)

The approach we propose in this paper is based on the
classical multiplier theory. Instead of dealing with the ro-
bust stability using the representation in (1.3) (or Figure 1),
we deal with an equivalent problem of a much lower dimen-
sion by exploring the special structure of the system (1.1).
Subsequetly, our results are easier to use in comparison with
those derived from the IQC approach which relies on the
structure in Figure 1.

The main result of the paper can be viewed as a gener-
alization of the classical result of Freedman and Zames [6]
and the result of Dasgupta et. al. [2]. More specifically, we
give an upper bound on the time-varying rate of the parame-
ters for preserving robust stability. This bound is an average
logarithmic variation rate (ALVR), a term used by Freed-
man and Zames. A unique feature of the ALVR is that a
clear tradeoff is presented between the time-varying rate of
the parameters and the degree of the stability (characterized
in some sense) of the “frozen-time” system.
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Due to page limit, thoerems and lemmas are presented
without proofs.
Notation. We will use L to denote a set of L2[0, oo) time
functions, but the superscript n will usually be suppressed.
For u € L, (also denoted by u(t)), its Fourier transform is
u(jw). For u,v € L,, the inner product is given by

(wo) = [ " He(uw(up(w)ds  (L7)
_where He(z) = (z + z*)/2 and ||ul| = /(u, u).

2. PASSIVITY CONDITION

Based on the classical multiplier approach, a simple yet fun-
damental result, called passivitiy condition, is derived. This
condition utilizes the special structure of the system (1.1)
and avoids the use of the high dimensional representation in
Figure 1. It will be shown in the next section that this passiv-
ity condition is not conservative under some mild condition
when compared with the IQC approach.

To understand the passivity condition, we first consider
the following system:

t = Aoz + Bu
y; = Ciz+ D;u
p
y = u+ gl
i=1
= C(g(t))z + D(g(t))u (2.8

It is trivial to verify that this is the inverse system of
¢ = (4o—BD7'(q(t))C(q(t)) z+ BD™(a(t))i
§ = —D7(a(t)C(a(t))z + D~ (q(t))t 2.9)
Denoting the transfer function from « to y; in (2.8) by
Gi(s) = C;(sI — Ay)™'B + D; (2.10)

and the corresponding input-output mapping by G;, then the
input-output mapping of (2.8) is given by

I+G(q)=I+ijq,-(t)oG.~

i=1

(2.11)

Next, we consider the system depicted in Figure 2, where
M; and M, called multipliers, are bistable, i.e., stable with
a stable inverse.

The multiplier approach used in this paper is based on
the following result:

Theorem 2.1 Consider the uncertain system (1.1) and the V

corresponding inverse system (2.8). Suppose there exist mul-
tipliers My and M, such that the mapping from i to § in

Figure 2 is strictly passive, or equivalently,
(Myou,Myo(I+G(q))ou) —e{u,u) >0 (2.12)

holds for all u € L, q(-) € Q, and some constant € > 0.
Then, the system (1.1) is robustly stable.

N u N
_Y ) M I+G(q) y M, Y,

Figure 2: The Multiplier Approach

For the case where M; and M, are linear time-invariant
systems of finite dimensions and the uncertain parameters
are time-invariant, the inequality (2.12) is simplified to

He (M7 (jw)M2(jw)(I + G(jw,q)) —el) 20 (2.13)
for allw € R and ¢ € Q and some constant € > 0.

3. MULTIPLIERS VS. INTEGRAL QUADRATIC
CONSTRAINTS

The simplicity of the multiplier approach in the previous
section may lead one to wonder whether it would be very
conservative. It turns out that this is not the case. Indeed,
we compare it with the IQC approach and show that the
multiplier approach is equivalent to the IQC approach under
a mild convexity condition, but with the advantage of lower
computational complexity.

Before we carry out the comparative study, a brief in-
troduction to the IQC theory is in order. Consider the in-
terconnected feedback system in Figure 2, where G(s) =
C(sI — Ap)™' B + D with an asymptotically stable Ay, and
A € A is, for simplicity, assumed to be an L, operator.
Further, G¢(s) = Cy(sI — Ay)~1 By + Dy is a stable filter
to be designed for testing the robust stability of the feedback
loop.

T u y
4 _
(z) G
+
w V4 ++ v
A \ZJ
Gy
Jyf

Figure 3: Interconnected Feedback System

The essence of the IQC approach is to construct a filter
G (s) and a constant kernal matrix ¢ such that the follow-
ing two conditions are simultaneously satisfied:

[ o w e | 269 |aw 20,

—0 w(jw)
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VAeA,w=Aoz,z€ Ly (3.19)
Sn g , Gjw)
(6*Gw) NG | T4 | +er <0, Vi € (~o0,00)

(3.15)
for some € > 0, where

¥(s) = G} (—8)3Gs(s) (3.16)

The fundamental result of the IQC approach is as follows
(see, e.g., Megretski and Rantzer [7]):

Theorem 3.1 (The IQC Theorem) The interconnected sys-
tem in Figure 3 is robustly stable if there exists some ®(8) of
the form (3.16) (or equivalently, G¢(s) and &) and a con-
stant € > 0 such that both (3.14) and (3.15) are satisfied.

The IQC approach can be viewed as a generalization of
the classical multiplier approach depicted in Figure 4, where
M, (s) and My (s) are bistable linear time-invariant transfer
matrices. Typically, these multipliers are constructed such
that either of the following (sufficient) robust stabiity con-
ditions can be satisfied:

¢ Bounded Realness Condition:
[1Ma(s)G ()M (s)] < L; [|Mr0 Ao M| < 1
forall A € A, where || - || is the induced £z norm;

o Passivity Condition:

M;(s)G(s) My (s) is strictly passive and —Mj0 Ao
Mt is passive forall A € A.

G(s)

Figure 4: Transformed Sysmtem Using Multipliers

Not only the bounded realness condition and passivity
condition are examples of the IQC apporach, many other
1IQCs have been proposed, as summarized in Megretski and
Rantzer [7]. Partitioning

QUw) F(jw) }

0= | Flw) RGw)

the most relevant ones corresponding to the structure of A
in (1.5) are listed below:

e Time-invariant Parameters:

[ X(Gw)  Y(w)
.“’"“’"[Y*(ﬁ) —X(?’w)]

with X (jw) = X*(jw) > 0,Y (jw) = =Y *(jw).

(3.17)

(3.18)

o Fast Time-varying Paramters: Same as above ex-
cept that X and Y must be real constant matrices.

¢ Slow Time-Varying Parameters: For time-varying
parameters with derivative bounded by d,

B(jw) = | P11 0) __H.(j‘S)H(jw)] (3.19)

where

B (jw) = (1 + p)(H* (jw)H (jw) + ¢(H, d)/p),

p is any positive scalar, H(jw) is any linear time-
invariant stable operator, and ¢(H, d)/p) is any bound
of the operator Ho A - Ao H.

Now we are ready to compare the multiplier approach in
Theorem 2.1 with the IQC approach. The comparison relies
on the following key observation which arises not only from
the examples above but also from systems involving many
other types of uncertainties: In almost all applications of
the IQC approach, the matrix R(jw) in ®(jw), is always
non-positive definite. We will call this the convexity condi-
tion for IQC for the reason below.

Rewrite the condition (3.14) using the partition in (3.19):

oo
/ (z*Qz+2"Fw+ w*F*z + w* Rw)dw >0 (3.20)
-—00

Then, it is clear that the above condition is convex in A.
Subsequently, if A is a compact (bounded and closed) con-
vex set, then only the boundary of A needs to be considered
for robust stability analysis. In particular, if A is a polytope,
only its vertices need attention.

The observation above leads to an interesting conclusion
that the IQC approach is indeed equivalent to the multiplier
approach under the convexity condition for IQC:

Theorem 3.2 Consider the interconnected feedback system
in Figure 3. Suppose a stable G¢(s) and a kernal matrix ®
exist such that the IQC conditions (3.14)-(3.15) are satisfied
and that the convexity condition R(jw) < 0 holds. Then,
the multiplier condition (2.12) is satisfied for some bistable
multipliers M, (8) and M, (s). A special choice of them is
given by the following steps:

1. ~
X(s) = —2G(s) [ Gle) ] ;
i 0 321
Y(o) = 8600 | ] |
2. Let U be any unitary matrix which converts X (8) and
Y (8) into
vx@) = | ) |
(3.22)
Yi(s)
UY (s) Z1(s)
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3. Set

Xa(s) =I'X[1(s); Yo(s) =T'YM(s) (3.23)
4. Let V be any unitary matrix which converts Xs(s)
and Y2(s) into

Z3(s)
(3.24)

Xa(s)V = [ Xs(s) 0]; Yala)V = [ Ya(s) ]

5. Set

M(s) = X7'(s); Ma(s) =Y5'(s) (3.25)

4. TIME-INVARIANT PARAMETERS

In this section, we consider several types of uncertain sys-
tems with time-invariant parameters and discuss the struc-

tures of the associated multipliers. We will use G(s,q) to

denote the transfer function of G(g).

The relevant stability notion used here will be the so-
called o-stability [2]. A system G(s) is called o-stable for
some scalar ¢ > 0 if G(s — o) is stable. Also, an uncertain
system G(s,q),q € Q is called robustly o-stable if every
G(s,q) is o-stable. A system G(s) is called o-bistable if
G(s) is invertible and both G(s) and G~ (s) are o-stable.
Similarly, G(s) is called o-SPR if G(s8 — o) is SPR. Robust
o-SPR can be defined accordingly.

The value of o can be viewed as a sort of stability mar-
gin. As shown in [2], this margin plays a key role in deter-
mining the time-variation rate that the uncertain parameters
can have without losing robust stability.

It is worth to know that the passivity condition in Theo-
rem 2.1 now becomes the following:

Theorem 4.1 The system in (1.1) with time-invariant pa-
rameters is robustly o-stable for a given o if there exist
o-bistable multipliers My (s,q) and Ms(s, q), possibly pa-
rameterized in q, such that the transfer function

H(sv q) = M2(37 Q) (I + G(S, Q))Ml—l (3) q)
is robustly o-SPR.
Single-input and Single-output (SISO) Systems

Consider the case where I + G(s, q) is SISO, i.e.,

N P
I+G(s,q) =1+9(s,9) =1+ Y _ gigi(s),

=1

4.27)

where g;(s) = ¢;(sI — Ag)~'b are SISO transfer functions.
Inthis case, the multiplier approach given in Theorem 4.1
is non-conservative. It is known (Anderson, et. al. [1]) that
the inverse of 1 + g(s, g) is robustly o-stable iff there exists
a SISO o-bistable multiplier m(s) such that m~1(s)(1 +
9(s,q)) is robustly o-SPR. This corresponds to M, (s) =

(4.26)

m(s), Ma(s) = 1 in Theorem 4.1. A procedure for con-
structing m(s) is given in [1]. It is worth to note that the
order of the dynamics in m(s) may exceed that of g(s, q).

We also note that if m(s) is given, a (possibly non-
minimal) state-space representation of m(s) and g;(s) can
be given in the following way:

m(s) = &(sI — Ag) b+ di (4.28)

gi(s) = &(sI — Ao) b+ di, i=1,--,p
That is, they share the same /io and b.

4.29)

Multi-input and Multi-output (MIMO) Systems

When G(s, ¢) is MIMO, finding non-conservative mul-
tipliers is in general difficult. In Fu and Dasgupta [3], we
have proposed to use parameter-dependent multipliers. More
specifically, we require
M (3,9) = Cr(g)(sI — Ag) ™' B + Di(q); Ma(s) =

. 30)
where

Cr(@) =Cro + Z ¢Cri; Di(q) = Dro + ZqiDm
=1 =1
4.31)
That is, M, is square and affine in g. The matrices Cj;
and Dy; are variables to be found. Using the Parametric
KYP Lemma (to be explained later), these matrices can be
searched using linear matrix inequalities.

Applying the multipliers as above, the robust o-stability
condition given in Theorem 4.1 becomes that the transfer
function H (s, q) is robustly o-SPR, where

H(s,q) = (I +G(3,0) M;(s,9) (4.32)

A more general version of the above can be easily given
as follows: First, we choose Mz(s,q) = Mz (s) to be any
fixed square, o-bistable system which is also monic, i.e.
M;(00) = I. Since the parameters are time-invariant, M, o
@i = g; o M2, for all i. Using these properties, we get

q
=I+G(3,9) = I+Go(s)+)_ Gi(s)
i=1
(4.33)
for some strictly proper G;(s),4 =0, - - -, p. We further take
a common-state representation of G;(s) and M; ! (s, q), i.e.,

Ma(s)(I+G(s,9)

Gi(s) = Ci(sI - Ay)~'B (4.34)

and

M;(s,q) = Ci(a)(sI — Ao) "B+ Di(q) (435
where Cy(q) and Dy (g) are similarly defined as in (4 31)
and are to be searched for. We note that Gi(s) and M1 (s, q)

share the same Ao and B,
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5. PARAMETER-DEPENDENT LYAPUNOV
FUNCTIONS

We show in this section how to transform the frequency do-
main conditions in the previous sections into a state-space
form to allow construction of parameter-dependent Lyapunov
functions. We will start by developing a generalized KYP
Lemma, called Parametric KYP Lemma. One of the main
contributions of this result is that it allows us to establish
multi-affine Lyapunov matrices of the following form:

P .
P(q) =P°+ZQiH+Zqiquij+"'
i=1 i#j

(5.36)

This multi-affine dependence will be crucial to analysis of
time-varying parameters. Another main contribution of the
Parametric KYP Lemma is that it permits us to search for
multipliers using linear matrix inequalities.

Parametric KYP Lemma

‘We first introduce a known generalized KYP lemma by
Willems [8].

Lemma 5.1 (Generalized KYP Lemma) Given A € R?*",
B € R"** and symmetric Q € ROHRX(04E) hore exists
a symmetric matrix P € R™X" such that

A'P+PA PB
B'P 0

if and only if there exists some € > O such that

[B'((s - 4)~1)* 1O [ (eI =475 ]

] +Q<0 (5.37)

<0,
VRe[s] > ¢ (5.38)

Further, if A is Hurwitz stable and the upper left n x n block
of QY is positive semidefinite, then P as above, when it exists,
is positive definite.

Our desired result is given as follows:
Lemma 5.2 (Parametric KYP Lemma) Given matrices
A € R™** B € R™™, m < n, a hyper-rectangular set

Q C RP, a parametric matrix Q(g) € R(ntm™)x(n+m) g
scribed by

j4
Qg) = 2 (g) = Wn(q) + Y 47 Ui (5.39)
i=1
where Qpr(q) is multi-affine in ¢ and
QiiZO, 'i=1,""P (5.40)

Then the following conditions are equivalent:
1) There exists € > 0 such that
' 1y sI —A)"lB
& (o= 47y na@| P | <o,

VRe[s] > —€,q€ Q (5.41)

il) There exists a multi-affine matrix of the form (5.36) such

that
_[ AP@)+P(@)A P(g)B
I(g) = [ B P(g) o ]+Q(q) <0
(5.42)
Jorallq € Q.

iil) The inequality (5.41) holds at all vertices of Q.
iv) The inequality (5.42) holds at all vertices of Q.

Parameter-Dependent Lyapunov Functions

Under a “convexity condition”, our main result below
provides a necessary and sufficient condition for the exis-
tence of parameter-dependent multipliers studied in the pre-
vious section. This condition automatically renders a multi-
affine Lyapunov matrix.

Theorem 5.1 Given the uncertain system in (1.1) and o >
0, suppose there exists an affine multiplier My (s, q) of the
form (4.30) such that the transfer matrix H(s,q) in (4.32)
is 0-SPR at all vertices of Q. In addition, the convexity
condition below is satisfied:

He H i ][Ck,- D;,i]] <0, i=1p  (543)

Then, the following properties hold:
i) H(s,q) iso-SPRforallq € Q.
il) H(s,q) has the following n-th order realization
H(s,q) = (Crla)—Di(9)D™(9)C())
«(sI — Ao+ BD™*(q)C(g))* BD™(g)
+Di(9)D 7" (g) (5.44)

iii) There exists a multi-affine P(q) = P'(q) of (5.36) to
establish the robust o-SPR property of H(8,q), i.e.,

= [ Mu(g) Tya(g)
o= nig me] <

holds for all q € Q, where

(5.45)

Mii(g) = (of +A(q)) P(g) + P(g)(al + A(g))

Ma(g) = P(g)BD™'(q) - Cx(9)
+C"(q)(D'(g)) ' Di ()

Mx(g) = —(Dk(@)D'(g) - (D'(g)) ' Di(a))

iv) (5.45) holds ¥ q € Q iff it holds at all corners of Q.

v) The same P(q) above is a Lyapunov matrix for estab-
lishing the robust a-stability of (1.1).

Conversely, if there exists P(q) of the form (5.36) and
a multiplier M, (8,q) of the form (5.37) such that the con-
vexity condition (5.36) is satisfied and that the LMI (5.45)
holds at all vertices of Q. Then, (I + G(s,q))M;'(s) is
robustly o-SPR.
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6. TIME-VARYING PARAMETERS: AVERAGE
LOGARITHMIC VARIATION RATES

The key to analysis of time-varying parameters is the fol-
lowing result modified from Dasgupta et. al. [2].

Lemma 6.1 Consider the time-varying system:
& = A(g(£))=(t)

where A(q) is any continuous function of ¢, q(t) € @ =

[=1, 1) for all t > 0. Suppose there exists a multi-affine
Lyapunov matrix P(q) = P'(q) > 0 for frozen system of
(5.36) and o > 0 such that

(oI+A(q))P(q)+P(g)(cI+A(q)) <0,VqE€EQ (647)

(6.46)

Then, the time-varying system (6.46) is robustly stable if the
Jollowing conditions are satisfied:

1. q are restricted to a slightly smaller region in Q, i.e.,
q,-(t) € [—1 +€0,1 — 60], Vi=1,---,p (648)
Jor some (sufficiently small) ey € (0, 1).

2. For some (sufficiently large) T > 0,

1 HTZ [d Qi(r)+1]+
sup —~ —In—"——1 dr<2
020 T J, Z; dr  1-q(r)
(6.49)
where [z]* = max{z, 0}.

Remark 6.1 The condition 2 above is known as the aver-
age logarithmic variation rate. This is actually generalized
Jrom Freedman and Zames [6]. The condition 1 is needed
to assure that the second condition is properly defined. It
should be noted that this condition is used only for conve-
nience and can be removed [3].

Applying the lemma above and Theorem 5.1 to the sys-
tem (1.1), we obtain the following result:

Theorem 6.1 Consider the uncertain system in (1.1) and
an affine multiplier M, (s,q) of the form (4.30). Let P(q),
Ci(q), Dx(q) and ¢ > 0 be any solution to (5.45) and
P(q) > 0 at all vertices of Q and (5.43). Also, let the
time-variations of q(-) satisfy (6.49) for some T > 0 and
8 € (0,0). Then, the system (1.1) is robustly stable.

Remark 6.2 It is worth to know that the maximum o (supre-
mum in fact) can be approximated using the semidefinite
programming techniques because (5.43) and (5.45) are joinily
linear in-Cy;, Dy;, P, Py, ...

7. CONCLUSIONS

In this paper, we have studied the robust stability problem
for linear systems with uncertain time-varying parameters.
This is done using a multiplier approach in conjunction with

parameter-dependent Lyapunov functions. The main result
of the paper is an average logarithmic variation rate for the
uncertain parameters for robust stability. In the process of
doing so, we have derived an extended version of the KYP
lemma, parametric KYP lemma, as a general tool to study
the robust stability with parameter uncertainty. Using this
lemma, we have provided conditions under which an affinely
parameterized multiplier exists to establish the robust stabil-
ity of the uncertain system. This type of parametric multi-
plier then naturally leads to a multi-affine Lyapunov func-
tion for robust stability analysis in the state space domain.

The multiplier approach used in this paper is very gen-
eral. In particular, many previous results in the literature
on parametric Lyapunov functions and time-varying param-
eters lead to special multipliers.

Another advantage of the proposed multiplier approach
is that discrete-time systems can be treated in a similar way.
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