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Abstract In this study, consensus problem for general high-order multi-agent systems with communication

delay is investigated. Given the unstable agent dynamics and a known communication delay, two consensus

protocols are designed to guarantee consensus over undirected network. By jointly researching the effects of

agent dynamics and network topology, allowable delay bounds depending on the maxima of concave functions

are easy to calculate. Especially, the maximum delay bound is derived when the network topology is completely

connected. The main approach for the same involves designing the control gains on the basis of the solution

of a parametric algebraic Riccati equation. Finally, the theoretical results are demonstrated via numerical

simulations.
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1 Introduction

In recent years, increasing attention has been given to the problem of consensus because of its broad

ranges of applications, such as sensor fusion [1], multiple vehicle control [2], distributed filtering [3].

Consensus aims at analyzing the way in which an agreement can be reached through local interactions

among agent individuals. A number of results on consensus have recently been established. Consensus

for single-integrator multi-agent systems has been previously researched in [4]. By investigating the joint

impact of the network topology and agent dynamics, a necessary and sufficient condition was provided

in [5] for linear multi-agent systems to reach consensus. Furthermore, consensus conditions for a class of

multi-agent systems with noise disturbances were reported in [6].

Time delays related to information transmission will inevitably occur in practical applications. This

delay usually significantly degrades closed-loop performance and stability [7]; therefore, conducting re-

search on the effects of delay on consensus is highly important. Many studies have been conducted till
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now to address this issue. For single-integrator multi-agent systems, a necessary and sufficient condition

on the upper bound of communication delay was established in [8] to guarantee consensus. In addition,

the consensus problem with delayed noisy measurements was considered in [9,10]. Furthermore, ref. [11]

researched systems with communication delays and limited data rates. By introducing delayed state infor-

mation into the protocol design, consensus conditions were obtained in [12] for second-order multi-agent

systems with communication delay. A new consensus methodology was introduced in [13] for high-order

integrator multi-agent systems with input delay. For high-order multi-agent systems that are at most

critically unstable (all the eigenvalues of the system matrix are in the closed left-half plane), refs. [14,15]

considered a consensus problem with constant communication delay. Furthermore, if the agent dynamics

is exponentially unstable (the system matrix has eigenvalues in the open right-half plane), the maximum

input delay margin was determined in [16] for multi-agent systems with only one unstable pole to achieve

consensus. For information transition affected by diverse communication delays, consensus for a class of

high-order multi-agent systems with single input was investigated in [17]. For general linear multi-agent

systems with communication delay, allowable delay bounds related to linear matrix inequalities (LMIs)

were reported in [18, 19].

This study considers the consensus problem for general high-order multi-agent systems in the presence

of communication delay. Thus, the agent dynamics studied in this paper is more general than those

studied in [13–17]. The consensus problem in this study is converted into a simultaneous stabilization

of a number of delayed systems. The agent dynamics may be exponentially unstable; therefore, the low-

gain feedback method for dealing with the consensus of critically unstable systems, reported in [14, 15],

is unavailable for this study. Moreover, the tools for analyzing the roots of the characteristic equations

of delayed systems reported in [13, 16, 17] become more complicated or even incapable of dealing with

the stability of general high-order delayed systems. Thus, the generality of state and input matrix for

high-order agent dynamics and the existence of a time delay result in difficulties in the research about

consensus. In addition, the delay bounds in [18,19] are considered to be conservative to a certain extent

because several matrices are required to be defined and they must satisfy a set of LMIs. To overcome the

above difficulties and derive consensus, the truncated predictor feedback method reported in [20] can be

employed, i.e., the solution of a parametric algebraic Riccati equation (ARE) and delay information are

used to design the control gains. However, compared with the parameters of the control gains designed

in [20], new parameters need to be designed to simultaneously stabilize a number of delayed systems,

rendering the problem in this study more challenging.

Two consensus protocols are proposed in this study to guarantee consensus under the assumption

that the undirected network topology is affected by communication delay. The Razumikhin Stability

Theorem in [21] is adopted to deal with the communication delay. The main contribution is three-fold.

First, for general multi-agent systems that are exponentially unstable, allowable delay bounds in terms

of the maxima of concave functions are provided on the basis of two protocols proposed in this study.

In particular, so long as the network topology and agent dynamics are provided, maxima of the concave

functions, i.e., the delay bounds for consensus are easy to calculate. Second, based on the above method,

any large but bounded delay is tolerant for consensus if the agent dynamics is at most critically unstable,

which is consistent with the previous results obtained in [15]. Third, if the network topology is complete,

any large yet bounded delay is allowed for consensus under the new designed protocol, which comprises

the delayed relative information and a part of agents’s own historical input information.

The remainder of the paper is organized as follows. In Section 2, some preliminary results on graph

theory are reviewed. Section 3 delineates the problem formulation. In Section 4, allowable delay bounds

guaranteeing consensus are shown based on two designed protocols. In Section 5, simulation examples

are delivered. Finally, the conclusion is stated in Section 6.

Before ending this section, some notations used in this study are listed as follows. The set of real

numbers is denoted by R. For any integers p and q, we define I[p, q] , {p, p + 1, . . . , q}. We use

1N = [1, 1, . . . , 1]T to denote a column vector with all entries as one. Let ‖ · ‖ represent the 2-norm of

a vector. For a matrix A, λ(A) and Re(λ(A)) represent the eigenvalues of A and the real part of λ(A),

respectively. In addition, the Kronecker product [22] between matrices A and B is denoted by A⊗B.
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2 Preliminaries

This section reviews some notations and results about the algebraic graph theory. We use an undirected

graph G(V , E ,A) to describe the network topology among multiple agents, where V = {1, 2, . . . , N} and

E = {(i, j) : i, j ∈ V} ⊆ V×V represent the agent set and edge set, respectively. MatrixA = [aij ] ∈ RN×N

is the adjacency matrix of G with symmetric nonnegative elements. Here, aij > 0 means that there

exists an information flow between agents i and j, i.e., (i, j) ∈ E . In addition, assume aii = 0 for

all i ∈ V . The degree of agent i is represented by di ,
∑N

j=1 aij . If we denote the degree matrix as

D , diag{d1, d2, . . . , dN}, then the Laplacian matrix of G is defined as LG , D−A, and this matrix LG is

clearly symmetric. Undirected graph G is connected if any two distinct agents can be connected via a path

that follows the edges of G. If G is connected, it follows that LG has only one zero eigenvalue and all other

eigenvalues are positive [23]. In this case, all the eigenvalues of LG are ordered as 0 = λ1 < λ2 6 · · · 6 λN .

In addition, eigenratio, λ2

λN
known as synchronizability, is an important index of a network topology [24].

In particular, λ2 = λN holds if G is complete, i.e., every agent can directly communicate with the others.

3 Problem statement

In this study, the dynamics of the i-th agent is described as

ẋi(t) = Axi(t) +Bui(t), i ∈ I[1, N ], (1)

where xi(t) ∈ Rn, ui(t) ∈ Rm are the state and input of the i-th agent, respectively; A ∈ Rn×n and

B ∈ Rn×m are general constant matrices.

In network control, communication delay is non-negligible because of data packet losses during infor-

mation transmission and asynchronous agent clocks [25]. Assume that every agent receives a message

sent by its neighbors after a delay of τ . The protocol employing the delayed state information is given as

ui(t) = K

N
∑

j=1

aij [xj(t− τ)− xi(t− τ)], (2)

where K ∈ Rm×n is a constant matrix to be designed.

Similar to the assumption in [15], the communication delay in this study is also known for every agent.

To further eliminate the effect of delay on consensus, we design the following new protocol:

ui(t) = K1

N
∑

j=1

aij [xj(t− τ) − xi(t− τ)] +K2

∫ τ

0

eAsBui(t− s)ds, (3)

where K1 ∈ Rm×n, K2 ∈ Rm×n and K2 6= 0 are the control gains to be designed.

Remark 1. The idea that protocol (3) contains a part of agent’s own historical input information is

inspired by previous studies [26,27], in which historical input information is used to design the stabilizing

controller. To make this protocol practical, we further assume that all agents have memory for storing

data packets.

To make systems (1) operational under protocols (2) or (3), we additionally take the initial values

xi(θ) = 0, ui(θ) = 0 for any θ < 0 and i ∈ I[1, N ].

Definition 1. The multi-agent systems defined in (1) under protocols (2) or (3) are said to reach

consensus if for any initial values, there holds limt→∞ ‖xj(t)− xi(t)‖ = 0, ∀i, j ∈ I[1, N ].

If all the eigenvalues of A lie in the open left-half plane, i.e., Re(λ(A)) < 0, it is easy to observe

that consensus can be achieved by designing ui(t) ≡ 0 using the above definition. Thus, for the sake

of making the problem meaningful, it is sensible to assume that matrix A in (1) has eigenvalues in the

closed right-half plane.

Problem statement. To establish conditions such that the multi-agent systems described by (1)

reach consensus under protocols (2) and (3), respectively.
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4 Main results

To present the main results, the following technical lemmas need to be provided first.

4.1 Lemmas

Lemma 1 ([28]). Suppose that (A,B) is controllable, and γ > 0 is a scalar such that γ >

−2min{Re(λ(A))}. Then, the parametric ARE

ATP (γ) + P (γ)A− P (γ)BBTP (γ) = −γP (γ) (4)

has a unique positive-definite solution P (γ) with P−1(γ) =
∫∞
0

e−(A+γ
2 I)tBBTe−(A+ γ

2 I)
Ttdt.

For the sake of convenience, we use P , P (γ) in the following. For given matrices A and B, it is easy

to see that the solution of (4) is only related to parameter γ from Lemma 1.

Lemma 2 ([20]). Suppose that all the eigenvalues of A are in the closed right-half plane and (A,B) is

controllable. Then, for any t > 0,

tr(BTPB) = 2tr
(

A+
γ

2
I
)

, PBBTP 6 2tr
(

A+
γ

2
I
)

P, and eA
TtP eAt 6 ewγtP

hold, where w = 2tr(A)
γ

+ n > 0, and γ is shown in Lemma 1.

Lemma 3 ([29]). For any scalars γ1 and γ2 with γ1 < γ2, vector function ω : [γ1, γ2] → Rn such that

the following integrations are well-defined, then

∫ γ2

γ1

ωT(β)dβP

∫ γ2

γ1

ω(β)dβ 6 (γ2 − γ1)

∫ γ2

γ1

ωT(β)Pω(β)dβ.

Lemma 4. Assume that 0 < λ2 6 λ3 6 · · · 6 λN are N − 1 non-zero constants, and δ > 0 is a

parameter to be determined. Then, the maximum value of h satisfying the following inequality:

1− 2(δλi) + (δλi)
2h 6 0 (5)

for i ∈ I[2, N ] is h∗ = 4λNλ2

[λN+λ2]2
. Specifically, h = h∗ if and only if δ = δ∗ = 1

2λ2
+ 1

2λN
.

Proof. Inequality (5), holding for all i ∈ I[2, N ], yields h 6 − 1
(δλi)2

+ 2
(δλi)

for i ∈ I[2, N ]. For any fixed

δ > 0, define function f(δλi) , − 1
(δλi)2

+ 2
(δλi)

. When 0 < δ 6 1
2λ2

, f(δλ2) =
2(δλ2− 1

2 )

(δλ2)2
6 0 holds. Thus,

in this case, the maximum h satisfying inequality (5) for i ∈ I[2, N ] is not more than 0. However, when

δ > 1
2λ2

, there holds f(δλi) =
2(δλi− 1

2 )

(δλi)2
> 0 for i ∈ I[2, N ], which means that the maximum value of h

satisfying inequality (5) for i ∈ I[2, N ] is more than 0.

Therefore, given the above analysis, the problem in this lemma is equivalent to asserting that

h∗ = max
δ> 1

2λ2

min{f(δλi), i ∈ I[2, N ]} =
4λNλ2

[λN + λ2]2

holds if and only if δ = δ∗ = 1
2λ2

+ 1
2λN

. When δ = δ∗ = 1
2λ2

+ 1
2λN

, it is easy to obtain f(δ∗λ2) =

f(δ∗λN ) = 4λNλ2

[λN+λ2]2
and

f(δ∗λN )− f(δ∗λi) = − 4λNλ2

[λN + λ2]2
(λN − λi)(λi − λ2) 6 0.

Thus, it yields f(δ∗λN ) 6 f(δ∗λi) for i ∈ I[2, N ].

The following shows that, for any δ 6= δ∗, min{f(δλi), i ∈ I[2, N ]} < h∗ holds. The proof is divided

into two cases.

(1) 1
2λ2

< δ < δ∗. In this case, 1
δλ2

> 1
δ∗λ2

= 2λN

λN+λ2
> 1 holds. Thus,

min{f(δλi), i ∈ I[2, N ]} 6 f(δλ2) = − 1

(δλ2)2
+

2

(δλ2)
< − 1

(δ∗λ2)2
+

2

δ∗λ2
= h∗.



Wang Z H, et al. Sci China Inf Sci September 2017 Vol. 60 092204:5

(2) δ > δ∗. In this case, we have 1
δλN

< 1
δ∗λN

= 2λ2

λN+λ2
6 1. Then,

min{f(δλi), i ∈ I[2, N ]} 6 f(δλN ) = − 1

(δλN )2
+

2

δλN

< − 1

(δ∗λN )2
+

2

δ∗λN

= h∗.

Combining the above discussion, it can be seen that h takes the maximum value h∗ = 4λNλ2

[λN+λ2]2
if and

only if δ = δ∗ = 1
2λ2

+ 1
2λN

. The proof is complete.

Lemma 5. Assume x ∈ Rn, y ∈ Rn, r ∈ R. Then, for any l > 0,

rxTy + ryTx 6 lxTx+
|r|2
l

yTy.

Proof. For any l > 0, it follows that

[rxTy + ryTx]−
[

lxTx+
|r|2
l

yTy

]

= −1

l
[ry − lx]T[ry − lx] 6 0.

Thus, the proof is complete.

Lemma 6. Suppose that 0 < λ2 6 · · · 6 λN are N − 1 nonzero constants. Then, the minimum value of

function 1
l
× (maxi∈I[2,N ] |h1λi − h2|2) subject to constraints l > 0, h1 ∈ R, h2 ∈ R and 1 − 2h2 + l 6 0

is (λN−λ2

λN+λ2
)2. In this case, l = 1, h1 = 2

λN+λ2
and h2 = 1.

Proof. For any fixed l > 0, relation h2 > 1+l
2 > 1

2 holds from the constraint 1 − 2h2 + l 6 0. Take

h1 = 2h2

λN+λ2
. Then

|h1λ2 − h2|2 = |h1λN − h2|2 = h2
2

(

λN − λ2

λN + λ2

)2

.

Consider that

|h1λi − h2|2 − |h1λN − h2|2 =
4h2

2

[λN + λ2]2
(λi − λ2)(λi − λN ) 6 0.

Thus, when h1 = 2h2

λN+λ2
, |h1λi − h2|2 6 |h1λN − h2|2 holds, i.e.,

|h1λ2 − h2|2 = |h1λN − h2|2 = max
i∈I[2,N ]

|h1λi − h2|2.

Next, we prove that maxi∈I[2,N ] |h1λi − h2|2 > h2
2(

λN−λ2

λN+λ2
)2 holds for any h1 6= 2h2

λN+λ2
. On the one

hand, if h1 < 2h2

λN+λ2
, it follows from h2 − h1λ2 > h2 − 2h2λ2

λN+λ2
> 0 that

|h1λ2 − h2|2 >

∣

∣

∣

∣

h2 −
2h2λ2

λN + λ2

∣

∣

∣

∣

2

= h2
2

(

λN − λ2

λN + λ2

)2

.

On the other hand, in case of h1 > 2h2

λN+λ2
, it yields from h1λN − h2 > 2h2λN

λN+λ2
− h2 > 0 that

|h1λN − h2|2 >

∣

∣

∣

∣

h2 −
2h2λN

λN + λ2

∣

∣

∣

∣

2

= h2
2

(

λN − λ2

λN + λ2

)2

.

Thus, for any l > 0, h1 ∈ R and h2 ∈ R, the following holds

1

l
×
(

max
i∈I[2,N ]

|h1λi − h2|2
)

>

(

λN − λ2

λN + λ2

)2

× min
h2∈R

h2
2

l
.

In light of h2 > 1+l
2 , it follows minh2∈R

h2
2

l
= (1+l)2

4l when h2 = 1+l
2 , and then

1

l
×
(

max
i∈I[2,N ]

|h1λi − h2|2
)

>

(

λN − λ2

λN + λ2

)2

× (1 + l)2

4l
>

(

λN − λ2

λN + λ2

)2

.

The minimum (λN−λ2

λN+λ2
)2 is taken if and only if l = 1, and in this case h1 = 2

λN+λ2
, h2 = 1. The proof is

complete.
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4.2 Consensus results

Using the parametric ARE given in (4), the control gains for (2) and (3) are designed in what follows. It

is known from Lemma 1 that the key to deriving consensus is finding appropriate parameter γ. We first

give the consensus result for the multi-agent systems (1) under protocol (2). In this case, the analysis

in [30] shows that the stable eigenvalues of the system matrix have no effect on consensus. Hence, the

following theorem is obtained.

Theorem 1. Consider an undirected graph G and assume it is connected. Suppose that agent dynamics

(1) is exponentially unstable and matrix A has no stable eigenvalue. If (A,B) is controllable, design

K = δBTP eAτ in (2) using δ = 1
2λ2

+ 1
2λN

, where P is the unique positive-definite solution of the

parametric ARE (4). Then, the allowable delay bound for the multi-agent systems (1) to reach consensus

under protocol (2) is

τ∗ = max
q>0

q
[

1− n× (λN+λ2)
2

4λNλ2
q2e2q

]

2tr(A)
.

Moreover, for 0 < τ1 < τ∗, there exists a set Ω = [γ∗, γ1] such that the consensus is reached if γ ∈ Ω.

Proof. According to Lemma 1 and the conditions in the theorem, we know that Eq. (4) has a unique

positive-definite solution P . Combining protocol (2) and system (1) leads to

ẋi(t) = Axi(t) + δBBTP eAτ

N
∑

j=1

aij [xj(t− τ) − xi(t− τ)].

Then, ẋ(t) = IN ⊗Ax(t)− δLG ⊗BBTP eAτx(t− τ) with x(t) , [xT
1 (t), x

T
2 (t), . . . , x

T
N (t)]T. Represent the

average state of all agents at time t by X(t) , 1
N

∑N
i=1 xi(t) =

1
N
[1T

N ⊗ In]x(t). Hence, it follows from

1T
NLG = 0T that Ẋ(t) = AX(t). Further, we denote the deviation of every agent from the average state

by ξi(t) , xi(t)−X(t) and stack ξi(t) to acquire a new vector ξ(t) = [ξT1 (t), ξ
T
2 (t), . . . , ξ

T
N (t)]T. Then

ξ̇(t) = IN ⊗Aξ(t)− δLG ⊗BBTP eAτξ(t− τ).

The undirected graph G is connected; therefore, it is easy to know that matrix LG has a simple eigenvalue

of 0. Thus, we can construct a unitary matrix Φ = [ 1N√
N
, φ2, . . . , φN ] to transform LG into a diagonal

form, i.e., ΦTLGΦ = diag{0, λ2, . . . , λN}. Defining ξ̃(t) , [Φ⊗ In]
Tξ(t) and partitioning ξ̃(t) ∈ RnN into

N parts ξ̃(t) = [ξ̃T1 (t), ξ̃
T
2 (t), . . . , ξ̃

T
N (t)]T, it follows that ξ̃1(t) =

1√
N

∑N
i=1 ξi(t) ≡ 0 and

˙̃
ξi(t) = Aξ̃i(t)− σiBBTP eAτ ξ̃i(t− τ) (6)

for i ∈ I[2, N ], where σi = δλi. Obviously, the consensus can be achieved if limt→∞ ξ̃i(t) = 0 holds

simultaneously for i ∈ I[2, N ].

According to (6) and the variation of constants formula, we have

ξ̃i(t) = eAτ ξ̃i(t− τ) − σi

∫ t

t−τ

eA(t−s)BBTP eAτ ξ̃i(s− τ)ds,

which, together with (6), implies

˙̃
ξi(t) = [A− σiBBTP ]ξ̃i(t)− σ2

iBBTP

∫ t

t−τ

eA(t−s)BBTP eAτ ξ̃i(s− τ)ds

, [A− σiBBTP ]ξ̃i(t)− σ2
iBBTPΠi(t). (7)

Consider the Lyapunov function V (ξ̃i(t)) = ξ̃Ti (t)P ξ̃i(t). Using (4), the derivative of V (ξ̃i(t)) along the

trajectories (7) satisfies

V̇ (ξ̃i(t)) =
˙̃
ξTi (t)P ξ̃i(t) + ξ̃Ti (t)P

˙̃
ξi(t)
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= ξ̃Ti (t)[A
TP + PA− 2σiPBBTP ]ξ̃i(t)− σ2

iΠ
T
i (t)PBBTP ξ̃i(t)

−σ2
i ξ̃

T
i (t)PBBTPΠi(t)

6 −γξ̃Ti (t)P ξ̃i(t) + [1− 2σi + σ2
i h]ξ̃

T
i (t)PBBTP ξ̃i(t) +

1

h
ΠT

i (t)PBBTPΠi(t),

where h > 0 is a constant that is given below. Applying Lemmas 2 and 3 yields

ΠT
i (t)PΠi(t) =

[
∫ t

t−τ

eA(t−s)BBTP eAτ ξ̃i(s− τ)ds

]T

P

[
∫ t

t−τ

eA(t−s)BBTP eAτ ξ̃i(s− τ)ds

]

6 τ

∫ t

t−τ

[ξ̃Ti (s− τ)eA
TτPBBT(eA

T(t−s)P eA(t−s))BBTP eAτ ξ̃i(s− τ)]ds

6 τ

∫ t

t−τ

ewγ(t−s)[ξ̃Ti (s− τ)eA
Tτ (PBBTPBBTP )eAτ ξ̃(s− τ)]ds

6 4tr
(

A+
γ

2
I
)2

τ

∫ t

t−τ

ewγ(t−s+τ)ξ̃Ti (s− τ)P ξ̃i(s− τ)ds,

where w = 2tr(A)
γ

+ n, and PBBTPBBTP 6 PBtr(BTPB)BTP 6 4tr(A + γ
2 I)

2P is utilized in the

second inequality.

Let V (ξ̃i(t+ θ)) < φV (ξ̃i(t)) for ∀θ ∈ [−τ, 0], where φ > 1 is to be specified. Then,

ΠT
i (t)PΠi(t) 6 4φtr

(

A+
γ

2
I
)2

τ

∫ t

t−τ

ewγ(t−s+τ)dsV (ξ̃i(t))

=
4

wγ
φtr

(

A+
γ

2
I
)2

τewγτ [ewγτ − 1]V (ξ̃i(t)).

It is easy to obtain ΠT
i (t)PΠi(t) 6 4φtr(A+ γ

2 I)
2τ2e2wγτV (ξ̃i(t)) from the fact that ewγτ −1 6 wγτewγτ ,

which yields

V̇ (ξ̃i(t)) 6 −γV (ξ̃i(t)) + [1− 2σi + σ2
i h]ξ̃

T
i (t)PBBTP ξ̃i(t)

+
8φtr(A+ γ

2 I)
3τ2

h
e2wγτV (ξ̃i(t)). (8)

To recede the influence of the latter two parts of (8) on the asymptotic stability of ξ̃i(t), we take h =
4λNλ2

[λN+λ2]2
. It is known from Lemma 4 that h = 4λNλ2

[λN+λ2]2
is the maximum value satisfying 1−2σi+σ2

i h 6 0

for i ∈ I[2, N ]. As a result, Eq. (8) simplifies to

V̇ (ξ̃i(t)) 6 −
(

γ − 8φ× [λN + λ2]
2

4λNλ2
tr
(

A+
γ

2
I
)3

τ2e2wγτ

)

V (ξ̃i(t)).

To derive consensus, we need to find proper values for τ > 0, γ > 0, and φ > 1 to ensure that

γ − 8φ× [λN + λ2]
2

4λNλ2
tr
(

A+
γ

2
I
)3

τ2e2wγτ > 0. (9)

LetR(λ2, λN ) , [λN+λ2]
2

4λNλ2
and q , wγτ = 2tr(A+ γ

2 I)τ . Recalling that matrix A has no stable eigenvalues,

it is easy to see that q > 0 for any τ > 0. Then, employing γ =
2tr(A+ γ

2 I)

n
− 2tr(A)

n
, inequality (9) is

converted into 2tr(A)τ < q[1 − φnR(λ2, λN )q2e2q]. Denote function F (q) , q[1 − nR(λ2, λN )q2e2q]. If

2tr(A)τ < F (q), take constant φ = nR(λ2,λN )q3e2q+q−2tr(A)τ
2R(λ2,λN )q3e2q > 1. By calculation, we know that

2tr(A)τ < tr(A)τ +
1

2
q[1− nR(λ2, λN )q2e2q] = q[1− φnR(λ2, λN )q2e2q].

Therefore, based on the Razumikhin Stability Theorem in [21], consensus is reached if 2tr(A)τ < F (q),

i.e., τ <
F (wγτ)
2tr(A) .
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We now give the maximum value of function F (q) on q > 0. Obviously, F (0) = 0 holds, and F (q) < 0

for any q > 1. Furthermore, it is easy to obtain F ′(q) = 1 − nR(λ2, λN )q2e2q[3 + 2q] and F ′′(q) =

−2nR(λ2, λN )qe2q[2q2 + 6q + 3]. It follows F ′′(q) < 0 for any q > 0, thus F ′(q) decreases monotonically

on q > 0. F ′(0) = 1 > 0 and F ′(q) < 0 for q > 1; therefore, there exists 0 < q∗ < 1 such that F ′(q∗) = 0.

That is, F (q) increases monotonically in interval [0, q∗] and decreases monotonically in interval [q∗,+∞).

Thus, maxq>0 F (q) = F (q∗).

For the following equation, let τ∗ satisfy F (q∗) = 2tr(A)τ∗. The allowable delay for consensus is shown

to be τ1 ∈ (0, τ∗). First, we demonstrate that there exists γ∗ such that q∗ = 2tr(A + γ∗

2 )τ∗. In fact, if

q∗ < 2tr(A+ γ
2 )τ

∗ for all γ > 0, it is easy to conclude q∗ 6 2tr(A)τ∗. Accordingly,

q∗ 6 2tr(A)τ∗ = F (q∗) = q∗[1− nR(λ2, λN )(q∗)2e2q
∗

] < q∗,

which is a contradiction. Thus, there exists γ∗ such that q∗ = 2tr(A+ γ∗

2 )τ∗.

Next, for 0 < τ1 < τ∗, we demonstrate that there exists a γ1 > γ∗ such that the consensus is guaranteed

for γ ∈ Ω , [γ∗, γ1]. In fact, we select a γ1 that satisfies w1γ1τ1 = 2tr(A + γ1

2 I)τ1 = q∗. τ1 < τ∗ and

q∗ = 2tr(A+ γ∗

2 I)τ∗ = w∗γ∗τ∗; therefore it is easy to see that γ∗ < γ1 and F (w∗γ∗τ1) < F (q∗). Because

2tr(A)τ∗ = F (q∗) = (w∗γ∗τ∗)[1− nR(λ2, λN )(w∗γ∗τ∗)2e2w
∗γ∗τ∗

],

we obtain 2tr(A) = (w∗γ∗)[1 − nR(λ2, λN )(w∗γ∗τ∗)2e2w
∗γ∗τ∗

], and

2tr(A)τ1 = (w∗γ∗τ1)[1− nR(λ2, λN )(w∗γ∗τ∗)2e2w
∗γ∗τ∗

]

< (w∗γ∗τ1)[1− nR(λ2, λN )(w∗γ∗τ1)
2e2w

∗γ∗τ1 ]

= F (w∗γ∗τ1).

In addition, due to F (w∗γ∗τ1) 6 F (wγτ1) for γ ∈ [γ∗, γ1], it follows that 2tr(A)τ1 < F (wγτ1), which

implies that consensus is guaranteed. Therefore, the proof is complete.

Remark 2. The allowable delay bound in Theorem 1 is related to the eigenratio λ2

λN
of G. In particular,

when the network topology G is complete, i.e., λ2 = λN , the delay bound takes the maximum value.

For the special case, when all the eigenvalues of the system matrix are on the imaginary axis, the

consensus result corresponds with the case proposed in [15].

Corollary 1. Assume that all the eigenvalues of matrix A are on the imaginary axis and (A,B) is

controllable. Then, for any connected undirected graph G, the multi-agent systems (1) under protocol

(2) achieve consensus for any large yet bounded communication delay.

Proof. The assumption that all the eigenvalues of A are on the imaginary axis and the fact that

A ∈ Rn×n lead to tr(A) = 0. From Theorem 1, we know that consensus is achieved if 2tr(A)τ <

F (q) = q[1 − nR(λ2, λN )q2e2q]. For any large yet bounded delay τ > 0, considering tr(A) = 0 and

q = 2tr(A + γ
2 I)τ = nγτ > 0, the condition becomes nR(λ2, λN )(nγτ)2e2nγτ < 1. Thus, taking

0 < γ < min{ 1
nτ

, 1

nτe
√

nR(λ2,λN )
}, it yields nR(λ2, λN )(nγτ)2e2nγτ < nR(λ2, λN )(nγτ)2e2 < 1. Then,

the proof is complete.

In the following, we study the consensus of the multi-agent systems (1) under protocol (3). If the

synchronizability of the network topology satisfies (λN−λ2

λN+λ2
)2 < 1

n
, we design gains K1 = h1B

TP eAτ and

K2 = −h2B
TP , where h1, h2 are constants to be determined. Then, the following theorem can be given.

Theorem 2. Under the assumptions in Theorem 1, the control gains in protocol (3) are designed as

K1 = h1B
TP eAτ , K2 = −h2B

TP with h1 = 2
λN+λ2

and h2 = 1. Then, the allowable delay bound for the

multi-agent systems (1) under protocol (3) to achieve consensus is

τ∗ = max
q>0

q

[

1− n×
(

λN−λ2

λN+λ2

)2

eq
]

2tr(A)
.

Furthermore, for 0 < τ1 < τ∗, there exists a set Ω = [γ∗, γ1] such that the consensus is reached for

γ ∈ Ω. In particular, if the undirected graph G is complete, any large yet bounded communication delay

is allowed for consensus.
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Proof. Employing the variation of constants formula, it follows from (1) that xi(t) = eAτxi(t − τ) +
∫ τ

o
eAsBui(t− s)ds. On the basis of this equation and protocol (3), the agent dynamics (1) becomes

ẋi(t) = [A+BK2]xi(t) +BK1

N
∑

j=1

aij [xj(t− τ)− xi(t− τ)] −BK2e
Aτxi(t− τ).

Then, similar to the discussion in Theorem 1, the consensus problem is equivalent to the simultaneous

stabilization of error systems

˙̃
ξi(t) = [A+BK2]ξ̃i(t)− [λiBK1 +BK2e

Aτ ]ξ̃i(t− τ) (10)

for i ∈ I[2, N ]. Substituting gains K1 = h1B
TP eAτ and K2 = −h2B

TP into (10) gives

˙̃
ξi(t) = [A− h2BBTP ]ξ̃i(t)− [h1λi − h2]BBTP eAτ ξ̃i(t− τ).

Take V (ξ̃i(t)) = ξ̃Ti (t)P ξ̃i(t). Then, applying (4) and Lemma 5, we obtain

V̇ (ξ̃i(t)) =
˙̃
ξTi (t)P ξ̃i(t) + ξ̃Ti (t)P

˙̃
ξi(t)

= ξ̃Ti (t)[A
T − h2PBBT]P ξ̃i(t)− [h1λi − h2]ξ̃

T
i (t− τ)eA

TτPBBTP ξ̃i(t)

+ξ̃Ti (t)P [A− h2BBTP ]ξ̃i(t)− [h1λi − h2]ξ̃
T
i (t)PBBTP eAτ ξ̃i(t− τ)

6 −γξ̃Ti (t)P ξ̃i(t) + [1− 2h2 + l]ξ̃Ti (t)PBBTP ξ̃i(t)

+
1

l
|h1λi − h2|2ξ̃Ti (t− τ)eA

TτPBBTP eAτ ξ̃i(t− τ), (11)

where l > 0 is a constant to be determined.

To weaken the effect of the latter two parts on the asymptotic stability of ξ̃i(t), take 0 < l = 2h2 −
1, h1 = 2h2

λN+λ2
and h2 = 1 in (11). From Lemma 6, we know (λN−λ2

λN+λ2
)2 is the minimum value of

max{ 1
l
|h1λi − h2|2, i ∈ I[2, N ]} under the condition that 1− 2h2 + l 6 0. Based on above analysis, Eq.

(11) becomes

V̇ (ξ̃i(t)) 6 −γξ̃Ti (t)P ξ̃i(t) +

(

λN − λ2

λN + λ2

)2

ξ̃Ti (t− τ)eA
TτPBBTP eAτ ξ̃i(t− τ).

From Lemma 2, we conclude

eA
TτPBBTP eAτ 6 2tr

(

A+
γ

2
I
)

eA
TτP eAτ 6 2tr

(

A+
γ

2
I
)

ewγτP,

and thus,

V̇ (ξ̃i(t)) 6 −γV (ξ̃i(t)) + 2

(

λN − λ2

λN + λ2

)2

tr
(

A+
γ

2
I
)

ewγτV (ξ̃i(t− τ)).

If the undirected graph G is completely connected, it follows λ2 = λN and V̇ (ξ̃i(t)) 6 −γV (ξ̃i(t)).

Thus, for any parameter γ > 0, there holds limt→∞ ξ̃i(t) = 0 for i ∈ I[2, N ], which means that the

consensus is guaranteed for any large yet bounded communication delay.

Next, we consider the general case of λ2 6= λN . Assume V (ξ̃i(t − τ)) < ηV (ξ̃i(t)), where η > 1 is a

constant to be determined. Let q , wγτ = 2tr(A + γ
2 I)τ . Then, making use of γ =

2tr(A+ γ
2 I)

n
− 2tr(A)

n
,

the consensus problem is transformed into one for finding proper τ > 0, γ > 0 and η > 1 such that

2tr(A)τ < q

[

1− ηn×
(

λN − λ2

λN + λ2

)2

eq

]

.

Toward this objective, denote function G(q) , q[1 − nS(λ2, λN )eq] with S(λ2, λN ) =
(

λN−λ2

λN+λ2

)2

. If

2tr(A)τ < G(q), we design constant η = q−2tr(A)τ+qnS(λ2,λN )eq

2qnS(λ2,λN )eq > 1. Then, 2tr(A)τ < q[1−ηnS(λ2, λN )eq]

holds. Thus, the consensus is guaranteed if 2tr(A)τ < G(q) according to the Razumikhin Stability The-

orem in [21]. The remaining part is similar to the proof in Theorem 1 and hence omitted. Therefore, the

proof is complete.
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Remark 3. The method in Theorem 2 is also available if matrix A has stable eigenvalues. In fact,

assume A and B have the following forms by applying appropriate transformations

A =

[

A− 0

0 A+

]

and B =

[

B−

B+

]

,

where Re(λ(A−)) < 0 and Re(λ(A+)) > 0. Let ξ̃i(t) =
[

ξ̃
−

i
(t)

ξ̃
+
i

(t)

]

and K1 = [0,K+
1 ],K2 = [0,K+

2 ]. Then,

system (10) in Theorem 2 can be rewritten as

˙̃
ξ−i (t) = A−ξ̃

−
i (t) +B−K

+
2 ξ̃+i (t)− [λiB−K

+
1 +B−K

+
2 eA+τ ]ξ̃+i (t− τ),

˙̃
ξ+i (t) = [A+ +B+K

+
2 ]ξ̃+i (t)− [λiB+K

+
1 +B+K

+
2 eA+τ ]ξ̃+i (t− τ).

If limt→∞ ξ̃+i (t) = 0, it follows from Re(λ(A−)) < 0 that limt→∞ ξ̃i(t) = 0, which means that consensus

cannot be affected by the stable eigenvalues of A. Thus, the technique in Theorem 2 also works when

matrix A has stable eigenvalues.

Remark 4. The allowable delay bounds in Theorem 1 and 2 can be easily calculated if the network

topology and agent dynamics are provided. The two delay bounds can be enlarged if we improve the

synchronizability (i.e., increase λ2

λN
) of the network. However, comparing Theorem 2 with Theorem 1

shows that the allowable delay bound under protocol (3) is larger than that under protocol (2) if the

network topology has better synchronizability. An example to demonstrate this conclusion is provided in

the next section.

5 Simulation

In this section, simulations are shown to demonstrate the effectiveness of the previous results. Assume

that there are four agents in the network and the dynamics of the i-th agent is

[

ẋi1(t)

ẋi2(t)

]

=

[

1
2 1

0 0

][

xi1(t)

xi2(t)

]

+

[

0

1

]

ui(t), i = 1, 2, 3, 4.

It is obvious that the system given above is controllable and has an exponentially unstable eigenvalue

λ = 1
2 . The initial values are arbitrarily selected as x1(0) = [2;−3], x2(0) = [−6; 18], x3(0) = [16; 9] and

x4(0) = [10; 4]. In addition, let xi(s) = [0; 0], ui(s) = 0 for any s < 0. From Lemma 1, the solution of (4)

is computed as P (γ) =
[ (γ+1)(2γ+1)2

4
(γ+1)(2γ+1)

2
(γ+1)(2γ+1)

2
2γ + 1

]

.

Assume the topology of the four agents is described by an undirected graph G = (V , E ,A) with the

adjacency and Laplacian matrices as

A =













0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0













and LG =













2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2













.

Clearly, the topology is connected and the non-zero eigenvalues of LG are λ2 = 2, λ3 = λ4 = 4.

Given the above assumptions and Theorem 1, the allowable delay bound under protocol (2) for con-

sensus is τ∗ = 0.194. In contrast, using Theorem 2 and protocol (3), the delay bound is τ∗ = 0.486. In

this example, take τ = 0.40, and select gains h1 = 1
3 , h2 = 1 from Theorem 2. Furthermore, the tolerance

set for parameter γ is computed as Ω = [0.572, 0.594]. Selecting γ = 0.58, Figures 1 and 2 show that the

error states converge to zero asymptotically.
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Figure 1 (Color online) Error states 1. Figure 2 (Color online) Error states 2.

6 Conclusion

This study researches the consensus problem for general high-order multi-agent systems in the presence of

communication delay. By employing an ARE, allowable delay bounds depending on the network topology

and agent dynamics are derived for two designed protocols. It is observed in particular that when the

network topology is complete and a part of agent’s own historical input information is introduced in the

protocol, any large yet bounded communication delay is tolerant for consensus. Future research on this

subject includes extending the results in this study to the unknown and time-varying delay cases.
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