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a b s t r a c t

This paper considers the collaborative localization problem for a team of mobile agents. The goal is
to estimate the relative coordinate of each agent with respect to a stationary landmark. Each agent is
supposed to be able to measure its own velocity and the distances to nearby agents as well as the change
rates of the distances. Due to limited sensing capability, movements of agents and possible interference of
severe environments, the topology describing the measurements and communication information flow
among the agents and the landmark is usually time-varying. Under such a scenario, this paper develops a
consensus-like fusion scheme togetherwith a continuous-time estimator for the collaborative localization
problem. It is proved that the fused estimate of each agent’s position globally asymptotically converges
to its true value if the movements of the agents satisfy a persistent excitation condition and each agent
is uniformly jointly reachable from the landmark in the time-varying topology. The effectiveness of the
proposed scheme is verified through simulations without and with measurement noises.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Recent advances in computing, communication, and sensing,
have made it feasible to envision large numbers of autonomous
vehicles working cooperatively to accomplish a task ranging
from defense, surveillance, environment monitoring to search
and rescue. Usually, the vehicles’ location information is vital for
location-aware applications. Although Global Positioning System
(GPS) is usually used for precise navigation as it provides absolute
position information, there are situations such as sky occlusion,
hardware failure and GPS jamming, which may inhibit the use
of GPS [1]. On the other hand, for low-cost mobile platforms, it
may be infeasible to equip with GPS. Moreover, in many situations
(e.g., formation control [2]), localizing mobile agents with respect
to a common landmark or a leader agent rather than in a global
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coordinate system is competent. These observationsmotivate us to
study the localization problem with respect to a single landmark.

Existing works study either localizing targets of common
interest or self-localization of agents. Localization algorithms can
be categorized into two classes depending onwhether the network
is static or mobile. The first class is concerned with static networks
such as sensor networks where sensor nodes keep stationary
once deployed. For the self-localization problem, the goal is to
determine the Euclidean positions of all nodes in the network
based on the knowledge of the positions of a few anchor nodes and
inter-agentmeasurements (e.g., distance, bearing, RSSI, etc.). In the
two dimensional space, generally two or three anchor nodes are
required for the group of static sensors to locate themselves [3–7].
For the problem of localizing a target of interest, a cluster of static
nodes works collaboratively to estimate the location of a target
(e.g., a jammer in sensor networks [8]). The second class focuses
on a network of mobile agents. For the self-localization problem,
mobile agents use one or several landmarks as references to locate
themselves. But for the problem of localizing a target of interest,
a cluster of mobile agents seeks to determine the coordinate
of the target either in a global coordinate system or in their
local coordinate systems. For both problems in a mobile setting,
the agents utilize relative measurements (distance, bearing, or
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distance plus bearing) from their exteroceptive sensors (e.g. lasers,
cameras, etc.) togetherwith theirmotion information (velocity and
turning rate) from interoceptive sensors such as wheel encoders,
accelerometers, gyroscopes, etc. [9–16].

This paper falls into the second class and aims to solve the col-
laborative localization problemof a groupofmobile agentswith re-
spect to a single landmark. Towards this goal, this paper develops
a cooperative estimation scheme for each mobile agent to locate
itself, i.e., estimating the relative coordinates of each agent with
respect to a stationary landmark. Different from static networks of
agents, a mobile agent is able to localize itself with only one land-
mark, e.g. [17–19]. As a dual problem, a single mobile agent is ca-
pable of localizing a target of interest as well [9,20,21]. However,
essentially speaking, [17] still utilizes two landmarks (one real and
one virtual) while [18] requires both distance and bearing mea-
surements. Moreover, different from most of the existing works
(e.g., [14,17–21]), which require to know the absolute positions
of landmarks or mobile agents, this paper requires no absolute in-
formation but only local measurements. Besides, collaborative lo-
calization using multiple mobile agents provides several potential
advantages over using single mobile agent, including increased lo-
calization accuracy and coverage areas, robustness, and flexibility
in case of limited sensing ranges and possible measurement fail-
ures due to severe environments. Compared with the probabilistic
approach for cooperative localization [15,22,23] and the discrete-
timeKalman filter approach to simultaneous localization of a group
of mobile robots [12,13], the focus of this paper is on the deter-
ministic and continuous-time aspect. Unlike our earlier work [10],
which focuses on how to use a team of mobile agents to localize
a target of interest under a fixed topology assumption, this pa-
per addresses the collaborative localization problem under a time-
varying topology, which is more challenging.

In this paper, every agent is equipped with onboard intero-
ceptive sensors for the measurement of its own absolute velocity
and exteroceptive sensors for the measurement of distances to its
nearby agents and the change rates of the distances. Every agent
has a local inertial frame attached to its body and the orientation
of every agent’s local frame is the same as that of the landmark.
Moreover, it is assumed that the nearby mobile agents can com-
municate with each other, but the landmark is silent. We abstract
a group of mobile agents together with the landmark as a set of
nodes, and then use a directed graph to indicate that an agent i has
a relative measurement to another agent j and can receive infor-
mation from it as well if there is a directed edge connecting from
node j to node i. Due to possible measurement failures or possible
movements of the agents outside of the sensing range about their
neighbors, the directed graph describing the information flow re-
lationship is time-varying. Here we assume the communication
between neighboring agents is with acknowledgment receipts go-
ing backwards. In this way, an agent knows when its neighboring
agents lose track of the information stream and when the infor-
mation stream is recovered. But it should be noted that the ac-
knowledgment going backward is used only to indicate the status
of a communication link, while themain stream of the valuable in-
formation goes the way as indicated in the directed graph. It can
have certain benefits (saving communication energy for example)
when compared with bidirectional communications. Therefore, in
this paper, we use the directed graph model to indicate the main
stream of information exchange excluding the acknowledgments.
To deal with the collaborative localization problem in such a sce-
nario, we first propose a continuous-time estimator for each agent
to estimate its relative positionwith respect to its neighbors by uti-
lizing the distance and change ratemeasurements, the velocities of
itself and its neighbors, and the displacements of neighbors during
the intervalswhen the distance and change ratemeasurements are
lost. Second, a consensus-like fusion scheme is developed for every
agent to localize itself with respect to the landmark by fusing the
estimate of its own positionwith respect to the landmark using the
range measurements about the landmark when available and the
estimates of its position with respect to its neighbors. By doing so,
the agents, which are not able to directly measure the distance to
the landmark, can also locate itself with the help of its neighbors.

We summarize the major contributions of this work as follows:
(1) Different from most existing works that require the knowl-
edge of the absolute positions of some landmarks or agents, this
paper develops a collaborative localization scheme to estimate
the relative coordinates of a group of mobile agents with respect
to a single landmark utilizing only local measurements and lim-
ited local information exchange between nearby agents. Thus, the
localization scheme is fully distributed. (2) This paper addresses
collaborative localization in a very general setting that the in-
formation flow graph among the neighboring agents is unidi-
rectional and time-varying to reflect the practical concerns of
neighbor changes and measurement failures over time. However,
asymptotic convergence of the proposed collaborative localization
scheme is still ensured if the information flow graph has the prop-
erty of being sufficiently connected over time. (3) It is proved that
with the collaborative localization scheme proposed in this paper,
each agent can have an uninterrupted estimation of its relative co-
ordinate with respect to the landmark even when it does not have
any relative measurements about the landmark or its neighbors.
(4) The collaborative localization scheme proposed in this paper
works not only in the two dimensional space but also in the three
dimensional space.

2. Preliminaries and problem formulation

In this section, we first introduce basic notions of graphs, which
will be used later. Then the collaborative localization problem is
formulated.

2.1. Preliminaries

Let Rn×n be the set of n × n real matrices. The superscript T
represents the transpose of a real matrix. Ip represents the identity
matrix of dimension p. Matrices with nonnegative off-diagonal
elements are referred to as Metzler matrices [24]. The matrix
inequality A > (≥) Bmeans that A − B is positive (semi-) definite.
A ⊗ B denotes the Kronecker product of matrices A and B. For a
vector x, ∥x∥ denotes its 2-norm. For a finite set S, |S| denotes the
cardinality of S.

A directed graph G = (V, E) consists of a non-empty finite
set V = {v1, . . . , vn} of elements called nodes and a finite set
E ⊆ V×V of ordered pairs of distinct nodes called edges. Awalk in
a graph G is an alternating sequence W : v1e1v2e2 · · · vk−1ek−1vk
of nodes vi and edges ei such that ei = (vi, vi+1) for every i =

1, 2, . . . , k − 1. We call W a walk from v1 to vk. Let R ⊂ V be a
subset of nodes in G = (V, E). A node v ∈ V − R is said to be
reachable from R if there exists a walk from a node in R to v.

The set of neighbors of node i is denoted by Ni = {vj ∈ V :

(vj, vi) ∈ E, j ≠ i}. The Laplacian matrix LG = [lij] ∈ Rn×n of G is
defined as lii = |Ni|, lij = −1 if j ∈ Ni and lij = 0 otherwise.

When the edge set in a directed graph changes over time,we call
it a time-varying graph, denoted as G(t) = (V, E(t)). For a time-
varying graph G(t) = (V, E(t)), a node v is said to be uniformly
jointly reachable from R ⊂ V if there exists T > 0 such that for
all t , v is reachable from R in the union graph G([t, t + T ]), whose
edge set is the union of the edge set of G(t) over the time interval
[t, t + T ]. An example is given in Fig. 1, for which v3 is uniformly
jointly reachable from v1, sincewe can take T = 2 and then for any
t the union graph G([t, t + T ]) = G1 ∪ G2.
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Fig. 1. Graph G(t) that periodically switches between G1 and G2 .

Fig. 2. Local frames and relative states.

2.2. Problem formulation

Weaddress the collaborative localization problem in this paper.
Consider a team of N mobile agents (labeled consecutively from 1
to N) working collaboratively to localize themselves in a plane or
in three dimensional space. Suppose there is a stationary landmark
labeled 0. The goal for each agent is to estimate its coordinates in
the landmark’s local frame Σ0.

Suppose each agent i is able to access its own velocity vi in its
own inertial frame Σ I

i . The orientations of reference frames Σ I
i ,

i = 1, . . . ,N , are the same as that of Σ0. We note that this can
be satisfied if the agents carry compasses. Moreover, we assume
that each agent i is equipped with an onboard sensor such that it
can have the range measurement dij(t) and the change rate ḋij(t)
of its neighbor agent j and/or the range measurement di0(t) and
the change rate ḋi0(t) of the landmark. An illustration is depicted
in Fig. 2 and it follows that

dij(t) = dji(t) = ∥xij(t)∥

and

ẋij(t) = vij(t), (1)

where xij(t) and vij(t) = vi(t) − vj(t), j = 0, 1, . . . ,N , are the
relative coordinates and relative velocity of agent i in agent j’s or
the landmark’s local frame respectively.

The objective is to develop an estimator such that each agent
can estimate its relative coordinates xi0(t) in the landmark’s frame
Σ0 and locate itself.

If each agent as well as the landmark is regarded as a node, then
we can use a directed graph G to describe the coupling topology of
N agents and the landmark. If agent i (i = 1, . . . ,N) can measure
dij(t) and ḋij(t), and it can receive local information from agent
j (j = 1, . . . ,N, j ≠ i), there is an edge fromnode j to node i inG(t).
The information includes agent j’s velocity vj(t), agent j’s estimated
coordinates and agent j’s displacement during the interval when
themeasurements and communication are lost. Moreover, if agent
i can measure di0(t) and ḋi0(t), then there is an edge from node 0
to node i. We note that the landmark is silent, that is, it does not
take any measurement or communicate with any agent. Note that
Gmay change over time as themeasurements and communication
may be unreliable, so we denote G by G(t) to indicate that it is
time-varying. For each agent i, we denote the set of its neighbors by
Ni(t). Since G(t) shows how information flows among the agents
and the landmark, we call G(t) the information flow graph. Denote
the corresponding Laplacian matrix of G(t) by LG(t).

Remark 1. In practice, the change rate ḋij(t) may be obtained
approximately by applying appropriate differentiation or low-pass
filters, e.g., the linear time-varying differentiator [25] and the
extended state observer (ESO) [26].

Remark 2. In this paper, though the main stream goes the way
as indicated by a directed graph, we assume that the acknowl-
edgment signal can go backward, which is only used to indicate
whether a link is on or off. That is, by allowing this, agent i knows
when its out-neighbor j loses track of the information stream and
when the communication is resumed. However, we do not need
agent j to send its measurement and estimate information to agent
i for the reason of energy saving.

Throughout this paper, we suppose the following assumptions.

Assumption 1. The velocity vi(t) of each agent i, i = 1, . . . ,N , is
continuously differentiable and bounded.

Assumption 2. For any i and j ∈ Ni, dij(t) : R>0 → R is
continuously differentiable and bounded.

Assumption 1 ensures that the motions of the agents are
driven by finite forces. The continuous differentiability of dij(t) in
Assumption 2 can be inferred from Assumption 1.

3. Consensus-based collaborative localization algorithm

In this section, we develop a distributed algorithm for the
collaborative localization problem of multi-agent systems based
on a single landmark. Firstly, we address the problem of how to
estimate the relative coordinates of an agent in its neighbor’s local
frame. By this method, if the landmark is a neighbor of an agent,
i.e., the agent can have the relative measurements with respect to
the landmark, the agent can then estimate its own coordinates in
the landmark’s frame directly. We term this as a direct estimate.
Instead, if the landmark is not a neighbor of an agent, then the
agent is not able to estimate its own coordinateswith respect to the
landmark using the relative measurements between the landmark
and itself. In this case, if the agent can localize themselves in its
neighbors’ local frames and if the coordinates of its neighbors with
respect to the landmark are known, then the agent is still capable
of determining its own coordinates in the landmark’s frame. We
term this as an indirect estimate. However, theremay existmultiple
neighbors that can help the agent localize itself with respect to the
landmark in thisway. Suchmultiple estimates should be combined
in order not to rely on a sole neighbor. Moreover, even in the case
that the direct estimate is available, the indirect estimates can also
be combined to improve the estimation accuracy and convergence
rate. Therefore, in the second part of this section, we design a
consensus-based cooperative fusion scheme for each agent to fuse
the direct estimate and all available indirect estimates.

3.1. Localization subject to measurements and communication loss

As we know, agents may lose its measurements and commu-
nication due to severe environments or sensor failures. In this
subsection, we assume that agent i (i = 1, 2, . . . ,N) is able to
communicate with agent j and access to the range measurement
dij(t) and the change rate ḋij(t) during some time intervals. We
seek to design a direct estimator to estimate the relative coordi-
nates xij(t) of agent i in agent j’s local frame.
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Fig. 3. An illustration of the indicator function σij(t).

Since the local relativemeasurements and communicationmay
be unreliable, without loss of generality, we assume that agent i is
able to obtain the local relative measurement dij(t) and ḋij(t) at
time t ∈ [t0, t1) ∪ [t2, t3) ∪ . . . and lose the measurements at
time t ∈ [t1, t2) ∪ [t3, t4) ∪ . . . . To be more specific, we define
an indicator function σij(t) to indicate the status, i.e., σij(t) = 1
if dij(t) and ḋij(t) are available to agent i at time t and σij(t) = 0
otherwise. Then, as illustrated in Fig. 3, it follows that

σij(t) =


1, t ∈ [t2k, t2k+1),
0, t ∈ [t2k+1, t2k+2),

k = 0, 1, . . .

Taking the derivative of both sides of d2ij(t) = ∥xij(t)∥2 with respect
to time and considering (1), one obtains

d
dt


d2ij(t)


= 2vT

ij(t)xij(t),

i.e.,

dij(t)ḋij(t) = vT
ij(t)xij(t).

Denote by x̂ij(t) the estimate of xij(t). When j ∈ Ni(t), agent
i seeks to estimate its coordinate by using the local relative mea-
surements dij(t), ḋij(t), and the motion information of itself and its
neighbors. When j ∉ Ni(t), i.e., agent i loses its measurements and
the communicationwith agent j, agent imaintains its previous esti-
mate. Once the measurements and communication are recovered,
agent i uses its own inertial navigation information and the iner-
tial navigation information received from its neighbors to elimi-
nate the estimation error accumulated during the period when the
measurements and communication are lost. Following this idea,
we develop the following estimator

˙̂xij(t) = vij(t) + vij(t)

dij(t)ḋij(t) − vT

ij(t)x̂ij(t)

,

t ∈ [t2k, t2k+1)
˙̂xij(t) = 0, t ∈ [t2k+1, t2k+2)
x̂ij(t2k+2) = x̂ij(t2k+1) + si − sj,

where si =
 t2k+2
t2k+1

vi(τ )dτ and sj =
 t2k+2
t2k+1

vj(τ )dτ are the displace-
ments of agent i and agent j during the time interval [t2k+1, t2k+2],
respectively. According to Remark 2, we note that here si and sj are
calculated by agent i and agent j respectively since only respective
velocities are required. Once the measurements and communica-
tion are recovered at time t = t2k+2, agent j sends its displacement
sj to agent i.

We denote the estimation error by x̃ij(t) = x̂ij(t) − xij(t) and
obtain the error dynamics as follows

˙̃xij(t) = −vij(t)vT
ij(t)x̃ij(t), t ∈ [t2k, t2k+1)

˙̃xij(t) = −vij(t), t ∈ [t2k+1, t2k+2)
x̃ij(t2k+2) = x̃ij(t2k+1).

(2)

Before discussing the convergence property of the error system (2),
we first introduce the notion of persistent excitation.

Lemma 1 ([27]). Let V (·) : R+ → Rn×r be regulated (i.e., one-sided
limits exist for all t ∈ R+). Then

ẋ = −VV Tx
is exponentially asymptotically stable if and only if for some positive
δ, α1 and α2, and for all s ∈ R+

α1I ≤

 s+δ

s
V (t)V T(t)dt ≤ α2I. (3)

Remark 3 ([27]). In the context of this lemma, we require that
although ∥x(t)∥ decays exponentially fast, it decays no faster than
exponentially. This means that there exist positive γ1, γ2, γ3, γ4
such that γ1e−γ2(t−s)

≤ ∥Φ(t, s)∥ ≤ γ3e−γ4(t−s) for all t ≥ s ≥ 0,
where Φ(·, ·) is the transition matrix associated with −V (·)V (·)T.

We note that (3) is well known as the persistent exciting
(p.e.) condition. To focus our attention on the motions of the
agents during the periodwhen the local relativemeasurements are
available, we define

v̄ij(t) = σij(t)vij(t).

Thenwe provide the following result regarding the convergence of
the error system (2).

Theorem 1. There exist λ > 0 and c > 0 such that ∥σij(t)x̃ij(t)∥ ≤

ce−λt for all t ≥ 0 if there exist λ1 > 0, λ2 > 0 and T > 0 such that
for all t ≥ 0,

λ1I ≤

 t+T

t
v̄ij(τ )v̄T

ij(τ )dτ ≤ λ2I. (4)

Proof. We first consider a system related to (2):

ε̇(t) = −v̄ij(t)v̄T
ij(t)ε(t). (5)

It can be observed from (2) and (5) that if x̃ij(t2k) = ε(t2k), then
x̃ij(t) = ε(t) for all t ∈ [t2k, t2k+1). Also ε(t) remains unchanged
for t ∈ [t2k+1, t2k+2) while x̃ij(t) changes with time. However, for
t = t2k+2, x̃ij(t2k+2) = x̃ij(t2k+1) according to (2). Therefore, it can
be concluded that x̃ij(t) = ε(t) for all t ∈ [t2k, t2k+1) as long as
x̃ij(0) = ε(0).

Moreover, according to the definition of σij(t), it follows that
given any k, σij(t)x̃ij(t) = x̃ij(t) for t ∈ [t2k, t2k+1) and σij(t)x̃ij(t) =

0 for t ∈ [t2k+1, t2k+2). To understand the relationship, schematic
evolution curves of ∥x̃ij(t)∥, ∥ε(t)∥, and ∥σij(t)x̃ij(t)∥ are depicted
in Fig. 4.

For the system (5), we know by Lemma 1 that the zero solution
of (5) is exponentially asymptotically stable if and only if there
exist λ1 > 0, λ2 > 2 and T > 0 such that (4) is satisfied for
all t ≥ 0. Therefore, according to the relationship of ∥ε(t)∥ and
∥σij(t)x̃ij(t)∥, the conclusion follows. �

Next we come to understand the p.e. condition (4). The upper
bound of (4) holds obviously because of Assumption 1. We will
focus on the lower bound of (4). Firstwe recall the notion of linearly
independent functions.

Definition 1 ([28]). The n functions f1(t), f2(t), . . . , fn(t) are
linearly dependent if, for some c1, c2, . . . , cn ∈ R not all zero,
n

i=1

cifi(t) = 0

for all t in some interval I. Otherwise, they are said to be linearly
independent.

Consider in two dimensions and let v̄ij(t) = [v̄ijx(t), v̄ijy(t)]
T.

Then

v̄ij(t)v̄T
ij(t) =


v̄2
ijx(t) v̄ijx(t)vijy(t)

v̄ijx(t)vijy(t) v̄2
ijy(t)


.
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Fig. 4. Schematic evolution of ∥x̃ij(t)∥, ∥ε(t)∥, and ∥σij(t)x̃ij(t)∥.

Define

P(t) =

 t+T

t
v̄ij(τ )v̄T

ij(τ )dτ

=


 t+T

t
v̄2
ijx(τ )dτ

 t+T

t
v̄ijx(τ )v̄ijy(τ )dτ t+T

t
v̄ijx(τ )v̄ijy(τ )dτ

 t+T

t
v̄2
ijy(τ )dτ

 .

By the Cauchy–Bunyakovsky inequality [29], it follows that t+T

t
v̄2
ijx(τ )dτ

 t+T

t
v̄2
ijy(τ )dτ ≥

 t+T

t
v̄ijx(τ )v̄ijy(τ )dτ

2

holds for any given T ≥ 0. The Cauchy–Bunyakovsky inequality
becomes an equality if and only if v̄ijx(t) and v̄ijy(t) are linearly
dependent in the time interval [t, t+T ]. Hence, to satisfy the lower
bound of (3), P(t) must be positive definite, which requires that
there exists T > 0 such that for all t ≥ 0, the two components
v̄ijx(t) and v̄ijy(t) of the relative velocity to be linearly independent
in the time interval [t, t + T ].

Remark 4. Similarly, in three dimensions, denote

v̄ij(t) = [v̄ijx(t), v̄ijy(t), v̄ijz (t)]
T

and it would require that there exists T > 0 such that for all t ≥ 0,
v̄ijx(t), v̄ijy(t) and v̄ijz (t) to be pairwisely linearly independent in
the time interval [t, t + T ].

3.2. Collaborative multi-agent localization

In the preceding subsection, we assume that the local relative
measurements (dij(t) and ḋij(t)) are unreliable and are only
available to agent i from time to time. Then an estimator is
designed for the agent to locate itself. If the landmark is a neighbor
of agent i, then agent i can have a direct estimate x̂i0(t) of its
coordinates in the landmark’s frame. However, agents may lose
its local relative measurements due to severe environments or
temporary sensor failure, or evenworse, some agentsmaynot have
relative measurements with respect to the landmark all the time
because the landmark is out of its sensing range. In such cases,
collaboration from neighbor agents is necessary to help the agents
Fig. 5. Indirect estimation of the relative coordinates of agent i.

locate themselves. In this subsection, we develop a collaborative
estimator for each agent i to estimate its relative coordinate
with respect to the landmark though it may not have a direct
measurement about the landmark or may have measurement
failures over times.

Denote by zi(t) the fused estimate of each agent i’s relative
coordinates with respect to the landmark by combining all the
availablemeasurements and information from its neighbors. Then,
as illustrated in Fig. 5, if agent i is able to estimate its relative
coordinates xij(t) in its neighbor agent j’s local frame and agent j
is able to communicate its own fused estimate zj(t) to agent i, then
agent i can obtain an indirect estimate x̂ji0(t) of its coordinates with
respect to the landmark by

x̂ji0(t) = x̂ij(t) + zj(t). (6)

Furthermore, since the landmark is silent, agents can imagine the
landmark as a dummy agent broadcasting zero position estimate
z0(t) ≡ 0. Let

x̂0i0(t) = x̂i0(t) + z0(t). (7)

We develop a consensus-like estimation fusion scheme for agent i
to update its fused estimate, i.e.,

żi(t) = vi(t) +


j∈Ni(t)


x̂ji0(t) − zi(t)


. (8)

That is to say, each agent i updates its fused estimate with
(8) no matter whether the agent can directly have the relative
measurements about the landmark or not.

Remark 5. Regarding (8), the physical meaning is that when agent
i does not have any neighbors, it just locates itself using the
inertial navigation information, andwhen agent i recovers the local
relative measurements to its neighbors and receives information
from its neighbors, it makes use of this information to reduce the
error accumulated with only inertial navigation.

In summary, the estimator executed on each agent i is as
follows:

˙̂xij = vij + vij(dijḋij − vT
ij x̂ij), t ∈ [t2k, t2k+1), j ∈ Ni(t)

˙̂xij = 0, t ∈ [t2k+1, t2k+2), j ∉ Ni(t)
x̂ij(t2k+2) = x̂ij(t2k+1) + si − sj, j ∈ Ni(t)
żi(t) = vi(t) +


j∈Ni(t)


x̂ji0(t) − zi(t)


,

(9)

where x̂ji0(t) is defined in (6) and (7). Regarding the convergence of
(9), we have the following result.

Theorem 2. Suppose the p.e. condition (4) holds for every pair (i, j)
that occurs infinite times in G(t). If every agent i is uniformly jointly
reachable from the landmark (node 0) in G(t), then every agent’s
fused estimate zi(t) in (9) asymptotically converges to the true relative
coordinates xi0(t) of agent i.
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The proof of Theorem 2 uses the input-to-state stability
theory [30].

Proof of Theorem 2. For i = 1, . . . ,N , we let yi(t) = zi(t)−xi0(t).
Then (8) can be transformed to

ẏi(t) =


j∈Ni(t)


yj(t) − yi(t)


+


j∈Ni(t)

x̃ij(t)

=


j∈Ni(t)


yj(t) − yi(t)


+ ui(t), (10)

where y0(t) ≡ 0 and ui(t) =


j∈Ni(t)
x̃ij(t). This is a typical

consensus system, in which yi(t)’s (i = 1, . . . ,N) are the
individual states of N agents, y0 can be treated as the state of a
leader agent, and ui can be thought as an external input signal.

Since y0(t) ≡ 0, we add an augmented equation ẏ0(t) = 0with
y0(0) = 0. Denote y(t) = [yT0(t) yT1(t) · · · yTN(t)]T, u0(t) = 0,
u = [uT

0(t) uT
1(t) · · · uT

N(t)]T. Then (10) can be written in a matrix
form by

ẏ(t) = −

LG(t) ⊗ Ip


y(t) + u(t), (11)

where p = 2 or 3 depending on the dimension of the ambient
space and LG(t) is the Laplacian matrix of G(t). We first consider
the unforced system

ẏ(t) = −

LG(t) ⊗ Ip


y(t). (12)

It can be verified that −LG(t) is Metzler with zero row sums. Since
any agent i is uniformly jointly reachable from node 0, then there
exist an interval length T > 0 and a threshold δ such that for all
t ∈ R the δ-digraph (see [31]) associated to

−

 t+T

t
LG(s)ds

has the property that all nodes are reachable from node 0. Thus,
according to Theorem 1 in [31], all components of any solution
of (12) uniformly exponentially converge to a common value as
t → ∞. As y0(t) ≡ 0, we conclude that all yi(t) → 0 as t →

∞, i = 1, . . . ,N , which means that the unforced system (12) is
exponentially stable.

Now let us look at the system (11). Sinceui(t) =


j∈Ni(t)
x̃ij(t) =N

j=0 σij(t)x̃ij(t) and σij(t)x̃ij(t) tends to zero followed from The-
orem 1, we come to the conclusion that limt→∞ u(t) = 0. De-
note f (t, y, u) = −


LG(t) ⊗ Ip


y + u. Then it can be checked that

f (t, y, u) is globally Lipschitz in (y, u), uniformly in t . So it follows
that (11) is input-to-state stable, i.e., for all t ≥ t0,

∥y(t)∥ ≤ β(∥y(t0)∥, t − t0) + γ ( sup
t0≤τ≤t

∥u(τ )∥).

For any given ε > 0, choose µ > 0 such that γ (µ) ≤ ε/2. Since
limt→∞ u(t) = 0, it follows that there exists t1 > 0 such that
∥u(t)∥ ≤ µ when t ≥ t1. Now, since y(t) is bounded, suppose
the bound of y(t) is ρ. Then, it follows that

∥y(t)∥ ≤ β(∥y(t1)∥, t − t1) + γ (µ)

≤ β(ρ, t − t1) + ε/2 (13)

for t ≥ t1. Since β(ρ, t − t1) → 0 as t → ∞, there exists t2 > 0
such that β(ρ, t) ≤ ε/2, t ≥ t2. Thus, it follows from (13) that
∥y(t)∥ < ε, t > T , where T = max(t1, t2), which implies that

lim
t→∞

∥y(t)∥ = 0,

i.e., y(t) converges to 0 as t → ∞. �
Fig. 6. The periodic switching graph G(t) that switches between two different
topologies G1 and G2 for the first simulation.

Fig. 7. The three graphs G1 , G2 and G3 , among which G(t) randomly switches, and
the union of the three graphs used in the second simulation.

Remark 6. It can be inferred from Theorem 2 that once the
estimator (9) converges, agent i can have an uninterrupted
precise estimation of its coordinate even when it does not
have any measurements about its neighbor agents or about the
landmark.

4. Simulation

In this section, we carry out simulations of five mobile agents
achieving collaborative localization in the two dimensional space.
Just for demonstration of our proposed estimation scheme, we set
the landmark at the origin and let the five agents be governed by
the following dynamics:

ẋ1(t) =


−2 sin t
2 cos t


, ẋ2(t) =

cos
t
5

− cos t sin
t
5

sin
t
5

+ cos t cos
t
5

 ,

ẋ3(t) =

− sin
t
3

cos
t
3

 , ẋ4(t) =

1
3
0


, ẋ5(t) =

−
10
8

sin
t
8

5
8
cos

t
8

 .

Moreover, the five agents are initially positioned at (2, 0),
(10, −5), (5, 2), (−12, 8), (10, 0).

In the first simulation, as depicted in Fig. 6, we let the
information flow graph G(t) of the five agents together with the
landmark be periodically switching between two graphs G1 and
G2. That is, agent 1 and 3 have direct measurements about the
landmark periodically while agent 2, 4 and 5 do not and they
can only have indirect estimates through their neighbors. In the
second simulation, we consider a more general situation. Rather
than a periodically switching topology, we let the information
flow graph randomly switch among three graphs G1, G2 and G3,
as shown in Fig. 7 and also the duration for which each graph
holds is random. For the first simulation, it can be checked that for
the time-varying information flow graph every node is uniformly
jointly reachable from the landmark. Moreover, it can be verified
that the p.e. condition (4) is satisfied. For the second simulation,
generally speaking, the condition that every node is uniformly
jointly reachable from the landmark and the p.e. condition (4) is
satisfied though it is difficult to confirm it rigorously. We adopt
the estimator described in (9) to estimate the coordinates of
every agent. By Theorem 2, every agent has its estimate zi(t)
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(a) ∥zi(t) − xi0(t)∥. (b) The estimates zi(t).

Fig. 8. The first simulation.
(a) ∥zi(t) − xi0(t)∥. (b) The estimates zi(t).

Fig. 9. The second simulation.
(a) ∥zi(t) − xi0(t)∥. (b) The estimates zi(t).

Fig. 10. The third simulation.
converging to the true coordinates xi0(t) in the landmark’s frame.
The evolution curves of the estimation errors ∥zi(t) − xi0(t)∥ (i =

1, . . . , 5) for the first and second simulation are shown in Figs. 8(a)
and 9(a) respectively, which also validate our theoretic results. To
see the estimates more visually, we plot the trajectories of the
estimates in the plane, namely, z1(t), . . . , z5(t) (see Figs. 8(b) and
9(b)).

As we know, usually there are inevitable measurement noises.
Therefore, we conduct another simulation to inspect the influence
of the measurement noises on the estimation result. The setup of
the third simulation is the same as that of the second one except
that dij, ḋij and vi used in (9) are assumed to be contaminated with
white Gaussian noises. The mean and variance of the noises for
dij and ḋij are 0 and 4 respectively. All the means of noises for
vi (i = 1, 2, . . . , 5) are 0. The covariance matrices for noises in
vi (i = 1, 2, 3, 5) are all


0.0025 0

0 0.0025


. The covariance matrix for

noise in v4 is

0.0001 0

0 0.0001


. That is, the standard deviation of the

noises in velocities is about 5% of the moving speed. The evolution
curves of the estimation errors and the trajectories of the estimates
are depicted in Figs. 10(a) and 10(b) respectively, from which we
can see that (9) still works fine and the estimates of the agents’
coordinates stay close to the true values.

5. Conclusion

This paper studies the collaborative localization problem for
a group of mobile agents based on local relative measurements
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and local information exchange in two or three dimensional space.
First, a continuous-time estimator is developed for an agent to esti-
mate the relative coordinates of itself with respect to its neighbor.
Second, a consensus-like fusion scheme is proposed for collabora-
tive localization by fusing the direct estimate by itself (if there is
one) and the indirect estimates from the neighboring agents. The
proposed estimation scheme is fully distributed and only requires
the exchange of agents’ velocities, displacements during the inter-
val when agents lose the measurements and also their estimates.
Yet the estimate of every agent is globally asymptotically conver-
gent as long as every agent is uniformly jointly reachable from the
landmark in the time-varying information flow graph. There are a
few interesting research problems remaining such as robustness to
measurement noises, communication delays, etc.
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