
Systems & Control Letters 116 (2018) 71–77

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Distributed Kalman filter in a network of linear systems
Damián Marelli a,b, Mohsen Zamani c,*, Minyue Fu c,a, Brett Ninness c

a Department of Control Science and Engineering and State Key Laboratory of Industrial Control Technology, Zhejiang University, 388 Yuhangtang Road
Hangzhou, Zhejiang ProateaLaTeXvince, 310058, PR China
b French-Argentinean International Center for Information and Systems Sciences, National Scientific and Technical Research Council, Ocampo Esmeralda,
Rosario 2000, Argentina
c School of Electrical Engineering and Computer Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia

a r t i c l e i n f o

Article history:
Received 13 September 2017
Received in revised form 29 March 2018
Accepted 7 April 2018
Available online 8 May 2018

Keywords:
Estimation
Kalman filter
Distributed systems

a b s t r a c t

This paper is concerned with the problem of distributed Kalman filtering in a network of interconnected
subsystems with distributed control protocols. We consider networks, which can be either homogeneous
or heterogeneous, of linear time-invariant subsystems, given in the state-space form. We propose a
distributed Kalman filtering scheme for this setup. The proposed method provides, at each node, an
estimation of the state parameter, only based on locally available measurements and those from the
neighbor nodes. The special feature of this method is that it exploits the particular structure of the
considered network to obtain an estimate using only one prediction/update step at each time step.
We show that the estimate produced by the proposed method asymptotically approaches that of the
centralized Kalman filter, i.e., the optimal one with global knowledge of all network parameters, and
we are able to bound the convergence rate. Moreover, if the initial states of all subsystems are mutually
uncorrelated, the estimates of these two schemes are identical at each time step.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There has been an increasing activity in the study of distributed
estimation in a network environment. This is due to its broad
applications in many areas, including formation control Subbotin
and Smith [1], Lin et al. [2], distributed sensor network Zhang
et al. [3] and cyber security Teixeira et al. [4], Zamani et al. [5].
This paper examines the problem of distributed estimation in a
network of subsystems represented by a finite dimensional state-
space model. Our focus is on the scenario where each subsystem
obtains some noisy measurements, and broadcasts them to its
nearby subsystems, called neighbors. The neighbors exploit the
received information, together with an estimate of their internal
states, to make a decision about their future states. This sort of
communication coupling arises in different applications. For ex-
ample, in control system security problems Teixeira et al. [4],
distributed state estimation is required to calculate certain esti-
mation error residues for attack detection. Similarly, for formation
control Lin et al. [6], Zheng et al. [7], Lin et al. [8], each subsystem
integrates measurements from its nearby subsystems, and states
of each subsystem need to be estimated for distributed control
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design purposes. The main objective of this paper is to collectively
estimate the states of all subsystems within such a network. We
will propose a novel distributed version of the celebrated Kalman
filter.

The current paper, in broad sense, belongs to the large body of
literature regarding distributed estimation. One can refer to Lopes
and Ali [9], Kar et al. [10], Conejo et al. [11], Gómez-Expósito et
al. [12], Marelli and Fu [13], Olfati-Saber [14], Ugrinovskii [15],
Ugrinovskii [16], Zamani and Ugrinovskii [17], Khan and Moura
[18], Olfati-Saber [19], He et al. [20] and the survey paper Ribeiro et
al. [21], as well as references listed therein, for different variations
of distributed estimation methods among a group of subsystems
within a network. A consensus based Kalman filter was proposed
in Olfati-Saber [14]. The author of Ugrinovskii [15] utilized a
linear matrix inequality to minimize a H∞ index associated with
a consensus based estimator, which can be implemented locally.
Some of the results there were then extended to the case of
switching topology in Ugrinovskii [16]. The same problem was
solved using the minimum energy filtering approach in Zamani
and Ugrinovskii [17]. The reference [20] proposed an event-based
distributed Kalman filter for estimating a common state in a sensor
network. A common drawback of the state estimation methods
described above is that, being based on consensus, they require,
in theory, an infinite number of consensus iterations at each time
step. This results in computational and communication overload.
To avoid this, in this paper we exploit the network structure to
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achieve a distributed Kalman filter method which requires only
one prediction/update step at each time step.

Moreover, it is worthwhile noting that there is a major dif-
ference between the above-mentioned works and the problem
formulation in the current paper. More precisely, in the former, the
aim of each subsystem is to estimate the aggregated state which
is common to all subsystems. In contrast, in the problem studied
here, each subsystem is dedicated to the estimation of its own
internal state, which in general is different from those of other
subsystems. This allows the distributed estimation algorithm to be
scalable to networked systems with a large number of subsystems
where requiring each subsystem to estimate the aggregated state
is both computationally infeasible and practically unnecessary.

To show the effectiveness of the proposed algorithm, we com-
pare our method with the classical (centralized) Kalman filter,
which is known to be optimal (in the minimum error covariance
sense). The classical method requires the simultaneous knowledge
of parameters and measurements from all subsystems within the
network to carry out the estimation. In contrast, our proposed
distributed estimation algorithm runs a local Kalman filter at each
subsystem, which only requires the knowledge of local measure-
ments and parameters, as well as measurements from neighbor
subsystems. Hence, it can be implemented in a fully distributed
fashion. We show that the state estimate, and its associated es-
timation error covariance matrix, produced by the proposed dis-
tributedmethod asymptotically converge to those produced by the
centralized Kalman filter. We provide bounds for the convergence
of both the estimate and the estimation error covariance matrix. A
by-product of our result is that, if the initial states of all subsystems
are uncoupled (i.e., they are mutually uncorrelated), the estimates
produced by our method are identical to that of the centralized
Kalman filter.

The remainder of the paper is structured as follows. In Sec-
tion 2,wedescribe the network setup and its associated centralized
Kalman filter. In Section 4, we describe the proposed distributed
Kalman filter scheme. In Section 5, we demonstrate the asymp-
totic equivalence between the proposed distributed filter and the
centralized one, and provide bounds for the convergence of the
estimates and their associated estimation error covariances. Simu-
lation results that support our theoretical claims are presented in
Section 6. Finally, concluding remarks are given in Section 7.

2. System description

In this paper we study networks of N time-invariant subsys-
tems. Subsystem i is represented by the following state-space
model:

x(i)k+1 = A(i)x(i)k + z(i)k + w
(i)
k , (1)

y(i)k = C (i)x(i)k + v
(i)
k . (2)

The subsystems are interconnected as follows:

z(i)k =

∑
j∈Ni

L(i,j)y(j)k , (3)

where x(i)k ∈ Rni is the state, y(i)k ∈ Rpi the output, w(i)
k is an i.i.d

Gaussian disturbance process with w(i)
k ∼ N (0,Qi), and v

(i)
k is an

i.i.d. Gaussian measurement noise process with v(i)k ∼ N (0, Ri).
We further suppose that E

(
w

(i)
k w

(j)⊤
k

)
= 0 and E

(
v
(i)
k v

(j)⊤
k

)
= 0,

∀i ̸= j and E
(
x(i)k w

(j)⊤
k

)
= 0, E

(
x(i)k v

(j)⊤
k

)
= 0 ∀i, j. We also denote

the neighbor set of the subsystem i by Ni =
{
j : L(i,j) ̸= 0

}
.

Remark 1. Wenote in (1)–(2) that the coupling between neighbor-
ing subsystems is solely caused through the z(i)k term in‘(3). The

main motivation for considering such coupling comes from dis-
tributed control, where‘(1) represents themodel of an autonomous
subsystem (or agent) with z(i)k being the control input, and (3)
represents a distributed control protocol, which employs feedback
only from neighboring measurements. This type of distributed
control is not only common for control ofmulti-agent systems (see,
for example, Lin et al. [2], Lin et al. [6], Lin et al. [8], Zheng et
al. [7]), but also realistic for large networked systems, since only
neighboring information is both easily accessible and most useful
for each subsystem.

It is worthwhile noting that the dynamical descriptions (1)–(3)
can be regarded as a very general setting for the well-known
consensus algorithm [22], i.e., when it is run over a group of
interconnected multi-input-multi-output linear subsystems ex-
pressed in state space form. Additionally, this model can capture
interactions within linear dynamical networks. Interested readers
can refer to Zamani et al. [23], Sanandaji et al. [24], Sanandaji
et al. [25] and Dankers et al. [26], where the authors exploited
a similar model for conducting system identification analysis in
linear dynamical networks. Finally, this model turns out to be an
effective one for studying properties of networked subsystems [5].

We emphasize that the distributed state estimation problem
arises for the networked system (1)–(3) because of our allowance
formeasurement noises v(i)k in (2). This consideration is very impor-
tant for applications becausemeasurement noises are unavoidable
in practice. This also sharply distinguishes our distributed control
formulation frommost distributed control algorithms in the litera-
ture, where perfect statemeasurement is often implicitly assumed.

We define ξ⊤

k =

[(
ξ
(1)
k

)⊤

, . . . ,

(
ξ
(I)
k

)⊤
]
andΞk = {ξ1, . . . , ξk},

where (ξ,Ξ ) stands for either (x, X), (y, Y ), (z, Z), (w,W ) or (v, V );
moreover, we denote Υ = diag

{
Υ (1), . . . ,Υ (I)

}
, where Υ stands

for either A, B, C , Q or R, and L =
[
L(i,j) : i, j = 1, . . . ,N

]
.

Using the above notation, we let the initial state of all subsys-
tems have the joint distribution x0 ∼ N (µ, P). We can also write
the aggregated model of the whole network as

xk+1 = Axk + LCxk + wk + BLvk
= Ãxk + ek, (4)

yk = Cxk + vk, (5)

with

Ã = A + LC and ek = wk + Lvk. (6)

It then follows that

cov
([

ek
vk

] [
e⊤

k v⊤

k

])
=

[
Q̃ S̃
S̃⊤ R

]
, (7)

where Q̃ = Q + LRL⊤ and S̃ = LR.

3. Centralized Kalman filter

Consider the standard (centralized) Kalman filter. For all k, l ∈

N, let
x̂k|l ≜ E (xk|Yl) ,

Σk|l ≜ E
([

xk − x̂k|l
] [

xk − x̂k|l
]⊤)

.
(8)

Our aim in this subsection is to compute x̂k|k in a standard cen-
tralized way. Notice that Eq. (7) implies that, in the aggregated
system formed by (1)–(2), the process noise ek and the measure-
ment noise vk are mutually correlated. Taking this into account, it
follows from [27, S 5.5] that the prediction and update steps of the
(centralized) Kalman filter are initialized by x̂0|0 = µ andΣ0|0 = P ,
and proceed as follows:
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1. Prediction:

x̂k+1|k =

(
Ã − S̃R−1C

)
x̂k|k + S̃R−1yk

= Ax̂k|k + Lyk,
(9)

and

Σk+1|k =

(
M − S̃R−1C

)
Σk|k

(
M − S̃R−1C

)⊤

+ Q̃ − S̃R−1S̃

= AΣk|kA⊤
+ Q .

(10)

2. Update:

x̂k|k = x̂k|k−1 + Kk
(
yk − Cx̂k|k−1

)
, (11)

Σk|k = (I − KkC)Σk|k−1, (12)

with

Kk = Σk|k−1C⊤
(
CΣk|k−1C⊤

+ R
)−1
. (13)

4. Distributed Kalman filter

Consider the ith subsystem (1)–(2). Notice that, since the mea-
surements y(j)k , j ∈ Ni, are known by the ith subsystem, they
can be treated as external inputs. This observation leads us to
the following intuitive approach for a distributed Kalman filter
scheme.

Let, for all i = 1, . . . , I and k, l ∈ N,

x̂(i)k|l ≜ E
(
x(i)k |y(j)m ; j ∈ Ni ∪ {i},m = 1, . . . , l

)
,

Σ
(i)
k|l ≜ E

([
x(i)k − x̂(i)k|l

] [
x(i)k − x̂(i)k|l

]⊤
)
.

(14)

Then, the prediction and update steps for the proposed distributed
Kalman filter are initialized by x̂(i)0|0 = µ(i) and Σ (i)

0|0 = P (i,i), and
proceed as follows:

1. Prediction:

x̂(i)k+1|k = A(i)x̂(i)k|k +

∑
j∈Ni

L(i,j)i,j y(j)k , (15)

Σ
(i)
k+1|k = A(i)Σ

(i)
k|kA

(i)⊤
+ Q (i). (16)

2. Update:

x̂(i)k|k = x̂(i)k|k−1 + K (i)
k

(
y(i)k − C (i)x̂(i)k|k−1

)
, (17)

Σ
(i)
k|k =

(
I − K (i)

k C (i)
)
Σ

(i)
k|k−1, (18)

with

K (i)
k = Σ

(i)
k|k−1C

(i)⊤
(
C (i)Σ

(i)
k|k−1C

(i)⊤
+ R(i)

)−1
. (19)

5. Optimality analysis

Since the distributed Kalman filter approach given in Section 4
is motivated by intuition, the question naturally arises as to which
extent it is optimal. In this section we address this question. To
this end, we define

(
x̂⋆k|l,Σ

⋆
k|l

)
, where x̂⋆⊤k|l =

[
x̂(i)⊤k|l : i = 1, . . . ,N

]
and Σ⋆

k|l = diag
(
Σ

(i)
k|l : i = 1, . . . ,N

)
, to be the outcomes of

distributed filter and
(
x̂k|l,Σk|l

)
to be those of centralized one. In

Section 5.1, we show that the estimation error covariance of the
distributed filterΣ⋆

k|k converges to that of the centralized oneΣk|k,
and provide a bound for this convergence. In Section 5.2, we do the
same for the convergence of x̂⋆k|k to x̂k|k.

5.1. Convergence ofΣ⋆
k|k toΣk|k

In this section, we show that the covariance matrices Σk|k and
Σ⋆

k|k exponentially converge to each other, and introduce a bound
on
Σk|k −Σ⋆

k|k

 . To this end, we require the following definition
from [28, Def 1.4].

Definition 2. For n×nmatrices P,Q > 0, the Riemannian distance
is defined by

δ (P,Q ) =

√ n∑
k=1

log2σk
(
PQ−1

)
,

where σ1 (X) ≥ · · · ≥ σn (X) denote the singular values of
matrix X .

Several properties of the above definition, which we use to
derive our results, are given in the following proposition.

Proposition 3 ([29, Proposition 5]). For n×nmatrices P,Q > 0, the
following holds true:

1. δ(P, P) = 0.
2. δ

(
P−1,Q−1

)
= δ (Q , P) = δ (P,Q ) .

3. For any m × mmatrix W > 0 and m × n matrix B, we have

δ(W + BPB⊤,W + BQB⊤) ≤
α

α + β
δ(P,Q ),

where α = max{∥BPB⊤
∥, ∥BQB⊤

∥} and β = σmin (W ).
4. If P > Q , then ∥P − Q∥ ≤

(
eδ(P,Q ) − 1

)
∥Q∥ .

The main result of this section is given in Theorem 5. Its proof
requires the following technical result.

Lemma 4. Let Γk|l = Σ−1
k|l and Γ ⋆

k|l = Σ⋆−1

k|l . ThenΣk|k
 , Σ⋆

k|k

 ≤ σ ,Γk|k
 , Γ ⋆

k|k

 ≤ ω,

and

δ
(
Σk|k,Σ

⋆
k|k

)
≤ υkδ

(
P, P⋆

)
, (20)

δ
(
Γk|k,Γ

⋆
k|k

)
≤ υkδ

(
P, P⋆

)
, (21)

where

σ = max
{
∥P∥ ,

P⋆ , Σ̄} , (22)

ω = max
{P−1

 , P⋆−1
 , Σ̄−1

} , (23)

with P⋆ denoting the diagonal matrix formed by the block diagonal
entries of the matrix P,

υ = υ1υ2, υ1 =
σ ∥A∥

2

σ ∥A∥
2
+
Q−1

−1 , (24)

υ2 =
ω

ω +
U−1

−1 , U = C⊤R−1C,

and Σ̄ = limk→∞Σk|k.

Proof. Let Σ̄⋆
= limk→∞Σ

⋆
k|k and

σ̃ = max
{
∥P∥ ,

P⋆ , Σ̄ , Σ̄⋆
} , (25)

ω̃ = max
{P−1

 , P⋆−1
 , Σ̄−1

 , Σ̄⋆−1
} . (26)
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We can then appeal to the fact that the Riccati equation is mono-
tonic Bitmead et al. [30], to conclude that, for all k ∈ N,Σk|k

 ≤ max
{
∥P∥ ,

Σ̄} ≤ σ̃ , (27)Σ⋆
k|k

 ≤ max
{P⋆ , Σ̄⋆

} ≤ σ̃ , (28)Γk|k
 ≤ max

{P−1
 , Σ̄−1

} ≤ ω̃, (29)Γ ⋆
k|k

 ≤ max
{P⋆−1

 , Σ̄⋆−1
} ≤ ω̃. (30)

Recall that

Σk+1|k = AΣk|kA⊤
+ Q .

Also, from [27, p. 139], we have

Γk|k = Γk|k−1 + U .

Clearly, similar relations hold forΣ⋆
k|l andΓ

⋆
k|l. Then, it follows from

Proposition 3-3 that,

δ
(
Σk+1|k,Σ

⋆
k+1|k

)
= δ

(
AΣk|kA⊤

+ Q , AΣ⋆
k|kA

⊤
+ Q

)
≤ υ̃1δ

(
Σk|k,Σ

⋆
k|k

)
, (31)

δ
(
Γk|k,Γ

⋆
k|k

)
= δ

(
Γk|k−1 + U,Γ ⋆

k|k−1 + U
)

≤ υ̃2δ
(
Γk|k−1,Γ

⋆
k|k−1

)
, (32)

with

υ̃1 =
σ̃ ∥A∥

2

σ̃ ∥A∥
2
+
Q−1

−1 and υ̃2 =
ω̃

ω̃ +
U−1

−1 .

It then follows from (31)–(32) and Proposition 3-2, that

δ
(
Σk|k,Σ

⋆
k|k

)
≤ υ̃kδ

(
P, P⋆

)
,

δ
(
Γk|k,Γ

⋆
k|k

)
≤ υ̃kδ

(
P, P⋆

)
.

with υ̃ = υ̃1υ̃2. Finally, the above implies that Σ̄⋆
= Σ̄ . Hence, the

parameters σ̃ and ω̃ given in (25)–(26) are equivalent to σ and ω
in (22)–(23), respectively, and the result follows. □

We now introduce the main result of the section, stating a
bound on

Σk|k −Σ⋆
k|k

.
Theorem 5. Let Σ̃k|l = Σk|l −Σ⋆

k|l and Γ̃k|l = Γk|l − Γ ⋆
k|l. ThenΣ̃k|k

 ≤ κσυk and
Γ̃k|k

 ≤ κωυk,

where

κ = eδ(P,P
⋆) − 1.

Proof. Using (22)–(23), together with (20)–(21), Proposition 3-4
and Lemma 11, we obtainΣ̃k|k

 ≤

(
eυ

kδ(P,P⋆) − 1
) Σk|k

 ≤ κυk
Σk|k


≤ κσυk,Γ̃k|k

 ≤ κυk
Γk|k

 ≤ κωυk. □

5.2. Convergence of x̂⋆k|k to x̂k|k

In this subsection, we study the convergence of state estimate
x̂⋆k|k, obtained through the distributed method, and that of the
centralized one x̂k|k. Moreover, we derive a bound on the error
x̂k|k-x̂⋆k|k. We start by introducing a number of lemmas which are
instrumental for establishing our main results.

Lemma 6. Let x̃k|l = x̂k|l − x̂⋆k|l. Then

x̃k+1|k = Hkx̃k|k−1 + ξk. (33)

where

Hk = A
(
I −Σk|kU

)
,

ξk = ak + bk,
ak = AΣk|kΓ̃k|kx̂⋆k|k−1,

bk = AΣ̃k|kΓ
⋆
k|kx̂

⋆
k|k.

Proof. Let γk|l = Γk|lx̂k|l, γ ⋆k|l = Γ ⋆
k|lx̂

⋆
k|l and γ̃k|l = γk|l − γ ⋆k|l. We can

easily obtain

x̃k+1|k = Ax̃k|k.

Also, from [27, p. 140], we obtain

γ̃k|k = γ̃k|k−1.

Then it is easy to check that

x̃k|k = x̂k|k − x̂⋆k|k = Σk|kγk|k −Σ⋆
k|kγ

⋆
k|k = Σk|kγ̃k|k + Σ̃k|kγ

⋆
k|k,

and

γ̃k|k−1 = γk|k−1 − γ ⋆k|k−1

= Γk|k−1x̂k|k−1 − Γ ⋆
k|k−1x̂

⋆
k|k−1 = Γk|k−1x̃k|k−1 + Γ̃k|k−1x̂⋆k|k−1.

We then have

x̃k+1|k = AΣk|kγ̃k|k−1 + AΣ̃k|kγ
⋆
k|k = AΣk|kΓk|k−1x̃k|k−1 + ξk

= AΣk|k
(
Γk|k − U

)
x̃k|k−1 + ξk = Hkx̃k|k−1 + ξk. □

Lemma 7. Let

∆k = E
(
x̃k|k−1x̃⊤

k|k−1

)
. (34)

Then

∆k ≤ Hk∆k−1H⊤

k + λυkI, (35)

where I is the identity matrix, υ is defined in (24), and

λ ≜ sup
k∈N

(
ζ + 2

√
ζ ∥Hk∥

2
∥∆k−1∥

)
< ∞, (36)

with

ζ = (α + β)+ 2
√
αβ,

α = κ2ω2σ 2
∥A∥

2 (σ ∥A∥
2
+ ∥Q∥

)
, (37)

β = κ2ω2σ 3
∥A∥

2 .

Proof. We split the argument in steps:
Step (1) From Lemmas 6 and 12E (ξkξ⊤

k

) ≤
E (aka⊤

k

)+
E (bkb⊤

k

)
+ 2

√E (aka⊤

k

) E (bkb⊤

k

).
Now, using Lemma 4,E (aka⊤

k

) ≤ ∥A∥
2
Σk|k

2 Γ̃k|k
2 E (x̂⋆k|k−1x̂

⋆⊤

k|k−1

)
≤ κ2ω2σ 2

∥A∥
2
Σ⋆

k|k−1

 υ2k
≤ αυ2k,

andE (bkb⊤

k

) ≤ ∥A∥
2
Γ ⋆

k|k

2 Σ̃k|k
2 E (x̂⋆k|kx̂⋆⊤k|k)

≤ κ2ω2σ 2
∥A∥

2
Σ⋆

k|k

 υ2k
≤ βυ2k.

ThenE (ξkξ⊤

k

) ≤ ζυ2k.

Step (2) From (33) and Lemma 12, we have

∆k ≤ Hk∆k−1Hk
⊤

+ E
(
ξkξ

⊤

k

)
+2
√

∥Hk∆k−1Hk∥
E (ξ⊤

k ξk
)I ≤ Fk(∆k−1),



D. Marelli et al. / Systems & Control Letters 116 (2018) 71–77 75

with

Fk(X) = HkXHk
⊤

+

(
ζυk

+ 2
√
ζ ∥Hk∥

2
∥X∥

)
Iυk.

Clearly, if A > B then Fk(A) > Fk(B). Also, there clearly exists k̄ and
∆̄ such that Fk(∆̄) < ∆̄, for all k ≥ k̄. Hence, limk→∞∆(k) < ∞,
and the result follows. □

The following result states a family of upper bounds on the
norm of the covariance matrix of x̃k|l.

Theorem 8. Consider ∆k as defined in (34). Let Hk = VkJkVk
−1 and

H̄ = V̄ J̄ V̄−1 be the Jordan decompositions of Hk and H̄, respectively.
Then for every ϵ > 1, there exists kϵ ∈ N such that

∥∆k∥ ≤ Aϵψk
ϵ + Bϵυk,

where

Aϵ =
λψϵφϵ

ψϵ − υ
, Bϵ =

λυφϵ

υ − ψϵ
.

and

ψϵ = ϵρ
(
H̄
)
, H̄ = lim

k→∞

Hk, (38)

φϵ = ϵ
V̄2 V̄−1

2 ( mϵ

ϵρ
(
H̄
))2(kϵ−1)

,

mϵ = max
{
1, ∥H1∥ , . . .,

Hkϵ−1
} .

Proof. We split the argument in steps:
Step (1) Let

Dk = HkDk−1Hk
⊤

+ λIυk.

with D1 = 0, From (35), and since∆1 = D1 = 0, it follows that

∆k ≤ Dk. (39)

Step (2) Let

Πl,k = Hk−1Hk−2 · · ·Hl

= Vk−1Jk−1Vk−1
−1

· · · VlJlVl
−1.

From (38), there exists kϵ ∈ N such that, for all k ≥ kϵ ,

∥Vk∥ ≤
√
ϵ
V̄ ,V−1

k

 ≤
√
ϵ
V̄−1

 ,Vk+1
−1Vk

 ≤
√
ϵ,

∥Jk∥ ≤
√
ϵρ
(
H̄
)
.

Then, for all k ≥ l,Πl,k
 ≤ mkϵ−l

ϵ ∥Vk−1∥ ∥Jk−1∥
Vk

−1Vk−1
×

· · · ×
Vkϵ+1

−1Vkϵ

 Jkϵ Vkϵ


≤

√
ϵ
V̄ V̄−1

mkϵ−l
ϵ

(
ϵρ
(
H̄
))k−kϵ

=
√
ϵ
V̄ V̄−1

( mϵ

ϵρ
(
H̄
))kϵ−l(

ϵρ
(
H̄
))k−l

≤
√
φϵψ

k−l
2

ϵ .

Step (3) We have

Dk+1 = λ

k∑
l=1

υ lΠl,kΠ
⊤

l,k.

Let dk = ∥Dk∥. Then

dk ≤ λ

k∑
l=1

υ l
Πl,kΠ

⊤

l,k

 ≤ λφϵ

k∑
l=1

υ lψk−l
ϵ = (hk ∗ uk) ,

with

hk = φϵψ
k
ϵ and uk = λυk.

Taking z-transform we get

d(z) = h(z)u(z) =
λφϵ(

1 − ψϵz−1
) (

1 − υz−1
)

=
Aϵ

1 − ψϵz−1 +
Bϵ

1 − υz−1 .

Hence,

dk = Aϵψk
ϵ + Bϵυk,

and the result follows from the definition of dk and (39). □

Theorem 8 states that the covariance of the difference between
x̂⋆k|k−1 and x̂k|k−1 is bounded by two exponential terms. The term
Bϵυk is due to the convergence of the Kalman gain K ⋆k to Kk, while
the term Aϵψk

ϵ is due to the convergence of the states given by the
systemdynamics. In order to use this result to show the asymptotic
convergence of x̂⋆k|k−1 to x̂k|k−1, we need that υ < 1 andψϵ < 1, for
some ϵ > 0. While it is clear from (24) that the former is true,
guaranteeing the latter is not that straightforward. The following
proposition addresses this issue.

Proposition 9. If the pair [A, C] is completely detectable and the pair[
A,Q 1/2

]
is completely stabilizable, then ρ

(
H̄
)
< 1, where ρ(H̄)

denotes the spectral radius of matrix H̄.

Proof. Let K ⋆k = diag
(
K (i)
k : i = 1, . . . ,N

)
. From Theorem 5,

lim
k→∞

Kk = lim
k→∞

K ⋆k ≜ K̄ .

Now,

x̂k+1|k = A (I − KkC) x̂k|k−1 + (AKk + L) yk,
x̂⋆k+1|k = A

(
I − K ⋆k C

)
x̂⋆k|k−1 +

(
AK ⋆k + L

)
yk.

Hence, if we had that Kk = K ⋆k = K̄ , for all k ∈ N, then

x̃k+1|k = A
(
I − K̄C

)
x̃k|k−1.

However, under the same assumption, according to Lemma 6,
x̃k+1|k = H̄x̃k|k−1. Hence,

H̄ = A
(
I − K̄C

)
.

i.e., H̄ equals the matrix that determines the asymptotic dynamics
of the centralized Kalman filter’s estimation error. Then, in view of
the model (4)–(5), the result follows from [27, S 4.4]. □

5.3. The case when the initial covariance is block diagonal

It turns out that, when the initial covariance matrix has a
block diagonal structure both estimation methods are completely
identical. This is summarized in the following corollary.

Corollary 10. Consider the network of subsystems (1)–(2). If
the matrix P is block diagonal, then the distributed Kalman filter
scheme (15)–(19) produces, for each i, the same estimate as the
centralized Kalman filter (9)–(13).

Proof. Recall that matrices A, Q , C and R are all block diagonal. It
then follows from (10) that, if Σk|k is block diagonal, so is Σk+1|k.
One can easily check from (12) and (13) that the same holds for
Kk and Σk|k if Σk|k−1 is block diagonal. Since Σ1|0 = P is block
diagonal, it follows that the matricesΣk|k−1 andΣk|k remain block
diagonal for all k. Now, it is straightforward to verify that (9)–(13)
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Fig. 1. Settling time vs. different choices of topologies.

become equivalent to (15)–(19), when Σk|k and Σk|k−1 are block
diagonal. Hence, the distributed and centralized Kalman filters
produce the same estimate and the result follows. □

6. Simulations

In this section, we present four numerical experiments to study
the convergence of the proposed distributed Kalman filter to its
centralized counterpart. In the first experiment, we compare the
convergence on networks with different topologies. To this end,
we consider a directed communication topology involving ten
subsystemswith first-order dynamics. The subsystems’ initial con-
ditions are drawn from the normal distributionN (0, P). The initial
covariance matrix P is chosen by randomly generating a positive-
definite matrix using P = LL⊤

+ ϵ0I10, with ϵ0 = 0.1, and the
entries of L ∈ R10×10 are drawn from the uniform distribution
U(0, 1). Also, vk ∼ N (0, 0.1I10) and wk ∼ N (0, 0.1I10). The poles
of these ten subsystems are randomly chosen from the uniform
distribution U(0.4, 0.8). We consider two different topologies. The
first one is a path topology, whose weights, i.e., the scalars L(i,j), are
randomly selected from the distribution U(0, 1). The second one
is a random topology, whose weights are randomly drawn while
guaranteeing the stability of the overall system. We refer to these
two topologies as Case A and Case B, respectively. We examine the
convergence rate of the proposed filtering algorithm for these two
cases. To measure this rate, we use the settling time, which we
define as

τ = min
τ̃

{
max

k:τ̃≤k≤T
∥x̃xk|k−1∥2 < 0.1∥x̃0|−1∥2

}
, (40)

where T is the running time. For each one of these two topologies,
we plot the average value of τ obtained over 200 realizations of the
process noisew(i)

k , measurement noise v(i)k , initial condition and the
random selection of the topologyweights. The results are shown in
Fig. 1. We see that in Case B the convergence is faster. The reason
for this is that the random topology generated in Case B has amuch
larger number of edges compared to the path topology in Case A.
Indeed, the matrix L associated with Case B is a very dense one,
i.e., it contains very few zero entries.

In the second experiment we study the effect of number of
connections per node on the convergence rate. To this end, we
consider a network of five nodes with first-order dynamics, poles
at 0.15 and topology weights L(i,j) = 0.1. We perform 200 Monte
Carlo simulations for two classes of topologies, namely, with two

Fig. 2. Settling time vs. number of connections per node.

Fig. 3. Settling time vs. mean value of subsystems’ poles, in a network with random
topology.

and four connections per node. One can observe that the former
results in a cycle graph and the latter delivers a complete graph.
The simulation results are depicted in Fig. 2. Again, we see how
the settling time decreases with the number of connections.

In the third experiment we study the effect of subsystems’
dynamics on the settling time of the distributed Kalman filter.
We consider a network with ten nodes with first-order dynamics,
interconnected with a random topology. We consider three cases,
in which the subsystems’ poles are drawn from the uniform distri-
butions U(0.1, 0.3), U(0.2, 0.6) and U(0.6, 0.8), respectively. Fig. 3
shows thedependence of τ , obtainedby averaging 200Monte Carlo
runs, on the mean value of the subsystems’ poles. We see how the
settling time increases with this value.

In our final experiment, we compare the convergence rate for
networks with different sizes. We consider networks ranging from
80 to 600 nodes. For each case, we consider identical nodes with
first-order dynamics, having poles at 0.3, and connected using
a loop topology whose nonzero values are L(i,j) = 0.1. Fig. 4
depicts the dependence of the convergence rate τ , again obtained
by averaging 200 Monte Carlo runs, on the number of nodes. We
see how this rate slightly decreases with the network size, and
remains nearly constant for large networks.
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Fig. 4. Settling time vs. number of nodes, in a network with path topology.

7. Conclusion

We studied the distributed Kalman filter problem in a network
of linear time-invariant subsystems. We proposed a distributed
Kalman filter scheme, which uses only local measurements, and
we studied the extent to which this scheme approximates the
centralized (i.e., optimal) Kalman filter. It turned out that the co-
variance matrix associated with the initial value of the state vector
plays an important role. We showed that if this matrix is block
diagonal, the proposed distributed scheme is optimal. Moreover,
if that condition is dropped, the estimation error covariances, and
the associated estimates, obtained through these two approaches
approximate each other exponentially fast. We also established
proper bounds on error between estimates and its covariance
matrix.

Appendix. Some lemmas

Lemma 11 ([29, Lemma 25]). For every x ∈ R and 0 ≤ y ≤ 1,
exy − 1 ≤ (ex − 1) y.

Lemma 12 ([29, Lemma 26]). If
[
A B⊤

B C

]
≥ 0, then ∥B∥ ≤

√
∥A∥ ∥C∥.
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