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Abstract. The paper considers the H∞ control problem for stochastic systems with disturbance4
preview, which is very challenging since it involves the preview problem and multiplicative noise5
simultaneously. The H∞ control problem for deterministic systems with disturbance preview was6
once listed as one of the 53 open problems in mathematical and control and its methods can not7
be generalized to solve the corresponding stochastic problem because of the essential differences of8
the two classes of systems. Using the projection principle in indefinite space, we give a necessary9
condition of the solvable H∞ preview control problem by using a pair of variables. The necessary10
condition is very useful for solving the minimax problem. An inertia condition of matrices, as11
the necessary and sufficient condition under which the H∞ control for stochastic linear systems is12
solvable, is also proposed and testified. This condition generalizes the results for H∞ control for13
deterministic systems with disturbance preview. Our results are demonstrated via a quarter vehicle14
active suspension system.15
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1. Introduction. Disturbance attenuation has been one of the core control de-18

sign problems for applications [24, 8, 17, 15, 4]. With the rapid development of the19

sensor technology, more and more information becomes available in advance, leading20

to the great research interest on preview control. How to utilize the preview informa-21

tion on disturbances to effectively improve the disturbance attenuation performance22

is the problem of our concern. The H∞ control problem for disturbance attenuation23

with preview information has been known to be a challenging one for a long time and24

was stated as Open Problem 51 in 1998 [3]. For deterministic systems, the problem25

was finally solved in 2005 for the continuous-time case [26] and the discrete-time case26

[27].27

Other alternative solutions to the H∞ control with disturbance preview for deter-28

ministic systems can be found in the literature as well. For example, the H∞ control29

for deterministic systems with both input delay and disturbance preview was solved30

in [19, 20]. Under the assumption that the standard H∞ problem (which corresponds31

to the system without input delay and preview) is solvable, an analytic solution to the32

problem was provided by deriving the explicit expressions of some abstract operators33

in [19, 20]. But as pointed out in [26], this assumption leads to a sufficient condition34

only because the achievable H∞ performance level by using disturbance preview is35

typically lower (better) than that achievable by the standard H∞ solution. In [29],36

using the so-called reorganization technique, the H∞ preview problem was solved and37
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2 H. WANG, M. FU, AND H. ZHANG

a duality between the H∞ smoothing and the H∞ control with input-delay and dis-38

turbance preview was established. However, there has been no progress so far for39

stochastic systems.40

The purpose of this paper is to generalize the work in [26, 27] to the stochastic41

setting. Stochastic systems involve parameter uncertainties in the system model which42

are random in nature. Examples of random physical parameters include impedance43

variations in electrical circuits [7], stiffness, damping and inertia changes in mechanical44

systems [16], and and gravitational field fluctuations in satellite dynamics [25].45

Our motivation stems from the fact that technical tools used in [26, 27] are suit-46

able for deterministic systems only. More precisely, [26, 27] gives a very elegant47

solvability condition for H∞ control with disturbance preview and provides an an-48

alytic solution using two Riccati equations with the same dimension as the system49

without preview. This is made possible fundamentally due to the separation principle50

[1] for deterministic systems. Unfortunately, H∞ control for stochastic systems with51

disturbance preview is inherently different from the deterministic case because the52

separation principle no longer holds [18, 6].53

Several contributions are made in the paper. Firstly, the necessary condition of54

the H∞ control for stochastic systems with preview disturbance is presented by a55

pair of variables admitting a forward-backward stochastic system and two stationary56

equations. The condition is a counterpart for bi-objective problem of the maximum57

principle for stochastic systems. Secondly, the affine link between the states of the58

forward-backward system is established. More precisely, the link is between the full-59

information (state and the disturbance preview) and the state of the backward system.60

Thirdly, an inertia condition which is necessary and sufficient for the solvability of61

H∞ control problem for stochastic systems is provided. Fourthly, an analytic solution62

to the H∞ preview control for stochastic systems is given.63

Our results above are novel because the existing results [12, 13, 22, 21, 23] are64

for the H∞ tracking for stochastic systems with reference signal preview. They are65

extensions of the work [5] rather than [27]. When the preview is on reference signal66

instead of disturbance in [12, 13, 22, 21, 23], as [26] pointed out, the preview informa-67

tion is treated in the H2 setting rather than the H∞ setting. In our case, the problem68

of H∞ control with disturbance preview is much more involved than the H∞ tracking69

problem with reference signal preview [12, 13, 22, 21, 23] . Technically speaking, our70

problem leads to a totally different solvability condition.71

The rest of this paper is organized as follows. The problem to be solved is formu-72

lated in Section 2. A necessary condition for the solving H∞ control with disturbance73

preview is presented in Section 3. The necessary condition is proved to be sufficient in74

Section 4. Some further discussion concerning how to use the disturbance preview to75

improve the closed-loop system performance is given in Section 5. Section 6 provides76

a quarter vehicle active suspension system to illustrate the application of our control77

law. Some concluding remarks are given in Section 7.78

Notations: In the paper, wk is a white noise with zero mean and variance σ, and79

it is defined on a complete probability measurable space (Ω,F , P ); Fk represents a80

σ-algebra generated by {wi, i = 0, · · · , k} ; E[X] is the expectation of the random81

variable X; E[X|F ] is the conditional expectation of the random variable X given82

σ-algebra F ; l2 is a space of expectation-square-summable and adapted sequences,83

i.e. for any x ∈ l2,
∑∞
i=0E[x′ixi] < ∞ and xi is Fi−1-measurable. l2[a,b] means that84

every sequence here is defined over the interval [a, b] [2]; For any x, y ∈ l2[a,b], 〈x, y〉 =85 ∑b
i=aE[x′iyi] and (l2[a,b], 〈·, ·〉) is also a Hilbert space. If i > j, then

∑j
i ak = 0. For86
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any integer n and m = 1, · · · , d, nm = n+ d−m. For any matrix M , M > 0(M ≥ 0)87

means that M is positive definite (semi-definite).88

2. Problem statement. The system to be considered in this paper is89

xk+1 = Akxk +Bkuk + Ckvk−d(2.1)90

zk = Fkxk +Dkuk(2.2)91

where xk, uk, zk are state, control input, and the output to be regulated, and vk92

is energy-bounded previewed exogenous disturbance with preview length d > 0, a93

integer; Ak = A + wkĀ, Bk = B + wkB̄, Ck = C + wkC̄, Fk = F + wkF̄ ,Dk =94

D + wkD̄; wk is a scalar random white noise with zero mean and variance σ2 and95

A, Ā,B, B̄, C, C̄,D, D̄, F and F̄ are constant matrices with compatible dimensions.96

In fact, it is shown that a large class of linear systems have their matrices97

Ak, Bk, Ck, Dk, Fk depending linearly on physical parameters [4]. When a physical98

parameter deviates from its nominal value due to various stochastic disturbances99

(e.g., thermal noises, vibration, impedance variations, etc.), it can be modeled as the100

nominal value plus some random noise. This will result in the multiplicative noise101

model considered in this paper.102

Throughout the rest of this paper, we adopt the following assumption:103

F̄ = 0, D̄ = 0, D′[D F ] = [I 0](2.3)104

which means that E[z′kzk] = E[x′kF
′Fxk]+E[u′kuk]. This will considerately reduce the105

complexity of required algebraic manipulations in the derivation of our some results106

and our idea is actually applicable to the general case without this assumption.107

In the preview control setting, both the disturbance vk and the control uk are108

Fk−1-adapted. Because vk is available at time k but delayed, i.e., vk−d is applied109

to the system at time k, uk (being Fk−1-adapted) would have the full information110

of a window of the “future” disturbance values vk−d, vk−d+1, . . . , vk. This future in-111

formation makes the preview control particularly interesting in applications where112

adversaries (i.e. disturbances) have sluggish reactions which can be effectively mod-113

elled by time delays. However, how to utilize the future information to achieve the114

better control performance also makes the control problem technically challenging at115

the same time.116

Given a control law uk, the l2 induced norm of the closed-loop mapping Lvz :117

v → z of (2.1)-(2.2) subject to the zero initial condition, i.e., x0 = 0, vs = 0 for118

s = −d, · · · ,−1, is given by119

||Lvz|| = sup
v∈l2

||z||l2[0,N]

||v||l2[0,N−d]

(2.4)120

System (2.1)-(2.2) is said to satisfy a given H∞ performance level γ > 0 if the121

following holds:122

||Lvz|| < γ(2.5)123

The H∞ preview control problem in this paper is to testify for a given γ > 0,124

whether there exists a full-information and adapted control law satisfying the H∞125

performance (2.5) and if exists, provides such a control law.126

Remark 2.1. Adaptedness is one of the most significant differences between the127

deterministic and stochastic systems. Every variable appearing in the controlled sto-128

chastic system is required to be adapted. It also leads to the essential difference129
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between backward stochastic systems and backward deterministic systems. Unlike130

the case of backward deterministic systems, it is very difficult to get an explicit and131

analytic solution for a delayed backward stochastic system.132

3. Necessary condition of H∞ control for stochastic systems with pre-133

view. In this section, we will see what happens when there is a full-information and134

adapted controller such that the H∞ performance (2.5) holds for the given γ, which135

in turn will be helpful for us to find a criteria to testify if there exists such a controller136

such that (2.5) holds for a given γ in the next section.137

Define138

J(0, N) = ||z||2l2[0,N]
− γ2||v||2l2[0,N−d]

(3.1)139

There is a relationship between the H∞ control performance (2.5) and dynamic140

game141

max
v

min
u
J(0, N)(3.2)142

because143

inf
u

sup
v∈l2

||z||l2[0,N]

||v||l2[0,N−d]

≤ sup
v∈l2

inf
u

||z||l2[0,N]

||v||l2[0,N−d]

(3.3)144

Obviously, the upper value (the left of (3.3)) is not less than the lower value (the145

right of (3.3)) [2]. Hence, for a given γ > 0, if infu supv∈l2
||z||l2[0,N]

||v||l2[0,N−d]

< γ, then146

supv∈l2 infu
||z||l2[0,N]

||v||l2[0,N−d]

< γ, and the latter can be converted into the solvable mini-147

max problem (3.2). Moreover, the optimal uk, vk admit the identical equations with148

the H∞ central controller (please refer to Chapter 9 of [14]) and the worst-case distur-149

bance. Based on this, we propose a necessary condition for the solvable H∞ preview150

control problem.151

Lemma 3.1. Consider the system (2.1)-(2.2). If there exists a adapted controller152

such that (2.5) holds, then for k ≥ 0, the H∞ central controller and the worst-case153

disturbance obey the following relations154

0 = E[B′kλk|Fk−1] + uk(3.4)155

0 = E[C ′k+dλk+d|Fk−1]− γ2vk(3.5)156

where157

λk−1 = E[A′kλk|Fk−1] + F ′Fxk(3.6)158

λN = 0(3.7)159

Lemma 3.1 will be proved with the aid of projection principle in Krein space [26].160

It is stated as follows.161

Lemma 3.2. Let X and Y be Hilbert spaces with bounded linear operators J : X →162

Y and S : X → Y. Suppose J = J ′ and S′JS > εI for some ε > 0. Then, given any163

y ∈ Y, there exists a unique solution to the optimization problem164

min
x∈X
||Sx− y||2J = min

x∈X
〈(Sx− y), J(Sx− y)〉(3.8)165

This solution is defined by y and a bounded linear operator, x∗ = (S′JS)−1S′Jy.166

Equivalently, x∗ is completely characterized by the equality S′J(Sx∗ − y) = 0, i.e.,167

∀x ∈ X , 〈Sx, J(Sx∗ − y)〉 = 0.168
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Now we are in the position to prove Lemma 3.1.169

Proof. As mentioned earlier, if the H∞ preview control for (2.1)-(2.2) is solvable,170

the game problem (3.2) is solvable.171

From (3.1),172

J(0, N) = E[

N∑
k=0

z′kzk − γ2
N−d∑
k=0

v′kvk]173

= E[

N∑
k=0

x′kF
′Fxk + u′kuk − γ2

N−d∑
k=0

v′kvk](3.9)174

Firstly, we consider the inner optimization minu ||z||2l2[0,N]
of (3.2). Denote the175

input-output operators from the inputs u, v and initial data (x0, v̂0) to the output as176

Tu, Tv and T0, respectively. According to Lemma 3.2, Tu, the identity operator and177

Tvv+T0(x0, v̂0) will play the roles of S, J and −y, respectively. The fact ||Tuu||2l2[0,N]
>178

0 for u 6= 0 means S′JS = S′S is uniformy positive. Hence, a unique optimal u,179

denoted by u∗ minimizing ||z||2l2[0,N]
obeys180

〈Tuu, Tuu∗ + Tvv + T0(x0, v̂0)〉 = 0(3.10)181

The above means that the optimal z is orthogonal to the output of any input u, which182

is also very useful for finding the optimal solution to the outer optimization. Denoting183

z∗ as the optimal z corresponding any given v and initial data (x0, v̂0), (3.10) can be184

rewritten as185

〈u, T ′uz∗〉 = 0(3.11)186

In order to obtain the relation (3.4), the adjoint operator T ′u of the operator Tu187

is characterized in the sequel.188

Straightforward calculation shows that the kth component of Tuu is as189

(Tuu)k = F

k−2∑
i=0

F (k − 2, i+ 1)Biui +Duk−1(3.12)190

Tuu =



Du0
F
∑0
i=0 F (0, i+ 1)Biui +Du1

...

F
∑k−1
i=0 F (k − 1, i+ 1)Biui +Duk

...

(3.13)191

where192

F (k, i) =

 AkAk−1 · · ·Ai, k ≥ i
I, k = i− 1
0, k < i− 1

(3.14)193

Similarly, we can give the kth components of Tvv and T0(x0, v̂0) as follows194

(Tvv)k = F

k−2∑
i=d

F (k − 2, i+ 1)Civi−d(3.15)195

(T0(x0, v̂0))k = FF (k − 2, 0)x0 + F

min{k−2,d−1}∑
i=0

F (k − 2, i+ 1)Civi−d(3.16)196
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Hence,197

Tu =


D 0 · · · 0

F (0, 1)B0 D · · · 0
...

...
. . .

...
F (N − 1, 1)B0 F (N − 1, 2)B1 · · · D

(3.17)198

Denote the optimal state and output generated by the optimal control law u∗k as x∗k199

and z∗k, respectively. The adaptedness of T ′uz∗ and (3.17) together with the equality200

〈Tuu, z∗〉 = 〈u, T ′uz∗〉(3.18)201

show the kth component of T ′uz∗202

(T ′uz∗)k = D′z∗k−1 + E[B′k−1

N∑
i=k

F (i− 1, k)′F ′z∗i |Fk−2](3.19)203

In virtue of the assumption (2.3), the above relation can be reduced to204

(T ′uz∗)k = u∗k−1 + E[B′k−1

N∑
i=k

F (i− 1, k)′F ′Fx∗i |Fk−2](3.20)205

Let206

λ∗k−1 = E[A′kλk|Fk−1] + F ′Fxk(3.21)207

λ∗N = 0.(3.22)208

Then (3.20) can be rewritten as209

(T ′uz∗)k = u∗k−1 + E[B′k−1λ
∗
k−1|Fk−2](3.23)210

which together with (3.11) shows that the optimal u∗k−1 admits211

0 = u∗k−1 + E[B′k−1λ
∗
k−1|Fk−2](3.24)212

Hence, (3.4) holds. Note, in particular, that uk is Fk−1 adapted.213

Next we consider the outer optimization problem in (3.2) over vk. Since the H∞214

control problem is solvable, the inequality (2.5) subject to a admissible and adapted215

control law u∗k holds for any disturbance vk and zero initial state, namely,216

sup
v∈l2

||z∗||2l2[0,N]

||v||2l2[0,N−d]

< γ2(3.25)217

Therefore,218

γ2||v||2l2[0,N−d]
− ||z∗||2l2[0,N−d]

> 0(3.26)219

Denoting J = diag{γ2I,−I} and Sv = (v, Tvv + Tuu∗), the inequality (3.26)220

implies S′JS is a positive operator.221

We now solve the outer optimization in (3.2) according to Lemma 3.2. Let222

(0, T0(x0, v̂0)) and v play the roles of −y and x in Lemma 3.2, then J∗(0, N) in223

(3.2) can be rewritten as224

J∗(0, N) = 〈Sv + (0, T0x0), J [Sv + (0, T0x0)]〉(3.27)225
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where J∗(0, N) means the J driven by u∗. The positive definiteness of S′JS implies226

that maxv J
∗(0, N) is solvable and the optimal v solving maxv J

∗(0, N), denoted as227

v#, satisfying the relation below228

S′J [Sv# + (0, T0x0)] = 0(3.28)229

i.e.230

S′J(v#, z#) = 0(3.29)231

where z# is the output driven by the optimal u∗, the optimal v# and the any given232

initial data (x0, v̂0). Different from the inner optimization in (3.2), it is not easy to233

derive the adjoint operator S′ from the equation (3.29) to characterize the optimal234

v#. We thus introduce a new operator S̃ as235

S̃v = (v, Tvv)(3.30)236

Here note that, as a candidate of z∗, z# is generated by the optimal control u∗, the237

optimal v∗ and any given initial data (x0, v̂0), which together with (3.10) shows z# is238

orthogonal to the output Tuu for any u, one of which is Tuu∗. Hence, 〈z#, Tuu∗〉 = 0.239

Based on it, (3.29) can read as240

0 = 〈Sv, J(v#, z#)〉(3.31)241

= 〈(v, Tvv + Tuu∗), J(v#, z#)〉242

= γ2〈v, v#〉 − 〈Tvv + Tuu∗, z#〉243

= γ2〈v, v#〉 − 〈Tvv, z#〉244

= 〈S̃v, J(v#, z#)〉245

i.e.,246

S̃′J(v#, z#) = 0(3.32)247

Since S̃′(v, z) = v + T ′vz,248

0 = S̃′J(v#, z#) = γ2v# − T ′vz#(3.33)249

which implies that the kth component of T ′vz# equals to250

(T ′vz#)k = E[C ′k−1

N∑
i=k

F (i− 1, k)′F ′z#i |Fk−2]′(3.34)251

= γ2v#k−1−d252

Let253

λ#k−1 = E[A′kλ
#
k |Fk−1] + F ′Fx#k(3.35)254

λ#N = 0.(3.36)255

the equation (3.34) can be reduced to256

E[C ′k−1λ
#
k−1|Fk−2−d]

′ = γ2v#k−1−d(3.37)257
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In the above, all the variables labeled by # have a similar meaning as z# and are258

optimal trajectories corresponding to the optimal v# and the optimal u∗. Here, u∗259

can be denoted as u# since uk can obtain the information of vk and u∗k actually260

depends on v# when vk equals to v# .261

At present, all the variables xk, uk, vk, zk, λk are unified and labeled by #. For262

notational simplicity, we omit the superscript # in (3.35)-(3.36), we get (3.6)-(3.7),263

which means that the optimal u and v can be characterized by the unified (3.6)-(3.7).264

The conclusion in this lemma is thus proved.265

Remark 3.3. Lemma 3.1 proposes a necessary condition of the solvable minimax266

problem (3.2) by the projection principle in indefinite space, which is very helpful for267

characterizing the optimal trajectories of (3.2) by a unified pair of variables and thus268

pursuing the optimal solution to the minimax problem (3.2).269

Remark 3.4. Lemma 3.1 is an analogue for the minimax problem of the maximum270

principle for the optimal problem [28].271

Lemma 3.1 implicitly describes a necessary condition, in the form of equations272

satisfied by the H∞ preview controller and the worst-case disturbance, of the solvable273

H∞ preview control problem, and what follows is an explicit expression.274

Lemma 3.5. Consider the system (2.1)-(2.2). If there exists a adapted controller275

such that (2.5) holds, then276

• Rk and Λ have the same inertias, i.e. the numbers of negative, positive and277

zero eigenvalues of Rk and Λ are equal, respectively;278

• The H∞ central controller uk and the worst-disturbance vk admit279 [
uk
vk

]
= −R−1k [Tkxk +

d−1∑
j=0

T jkvk+j−d](3.38)280

• There holds281

λk−1 = Pkxk +

d−1∑
j=0

P jkvk+j−d(3.39)282

283

λk+d−1 = Skxk +

d−1∑
j=0

Sjkvk+j−d(3.40)284

In the above,285

Λ = diag{I,−γ2I}(3.41)286
287

Rk = E

[
B′kPk+1Bk B′kP

d−1
k+1

C ′k+dSk+1Bk C ′k+dS
d−1
k+1

]
+ Λ(3.42)288

and Pk, P jk admit the following recursive relations289

Pk = E[A′kPk+1Ak] + F ′F −
[
E[B′kPk+1Ak]

(P d−1k+1 )′A

]′
R−1k Tk(3.43)290

P 0
k = E[A′kPk+1Ck]−

[
E[B′kPk+1Ak]

(P d−1k+1 )′A

]′
R−1k T 0

k(3.44)291

P jk = A′P j−1k+1 −
[
E[B′kPk+1Ak]

(P d−1k+1 )′A

]′
R−1k T jk(3.45)292
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with293

Tk =

[
E[B′kPk+1Ak]
E[C ′k+dSk+1]A

]
(3.46)294

T 0
k =

[
E[B′kPk+1Ck]
E[C ′k+dSk+1]C

]
(3.47)295

T jk =

[
B′P j−1k+1

E[C ′k+dS
j−1
k+1]

]
, j = 1, · · · , d− 1(3.48)296

Therein, P jN+1 = 0, Sk and Sjk, which are initialized by SN+1 = 0 and SjN+1 = 0,297

contain the noises wk, · · · , wk+d−1 will be explicitly given in the next lemma.298

Proof. The proof is stated in Appendix.299

Until now Sk+1 and Sjk+1, j = 0, · · · , d− 1 involved in Lemma 3.5 still remain to300

be given. To the end, it is necessary to define some notations.301

Φk+1
n = Φ1

n+kΦkn +

k−1∑
f=0

Φ1,f+d−k
n+k Πf

n(3.49)302

Φk+1,j
n = Φ1

n+kΦk,jn +

k−1∑
f=0

Φ1,f+d−k
n+k Πf,j

n + Φ1,j−k
n+k303

(3.50)304

Πk
n = Π0

n+kΦkn +

k−1∑
f=0

Π0,f+d−k
n+k Πf

n(3.51)305

Πk,j
n = Π0

n+kΦk,jn +

k−1∑
f=0

Π1,f+d−k
n+k Πf,j

n + Π0,j−k
n+k306

(3.52)307

with the initial values308

Φ0
n = I,Φ0,j

n = 0(3.53)309

Φ1
n = An − [Bn 0]R−1n Tn(3.54)310

Φ1,j
n = δjCn − [Bn 0]R−1n T jn(3.55)311

Π0
n = −[0 I]R−1n Tn,(3.56)312

Π0,j
n = −[0 I]R−1n T jn(3.57)313

where Rn, Tn and T jn, j = 0, · · · , d − 1 are as in (3.42), (3.46)-(3.48), respectively. It314

should be pointed that we also need the notations Φjn = 0, Φ1,j
n = 0 and Πj

n = 0 for315

j < 0.316

With those notations above, the expressions of Sn and Sjn, j = 0, · · · , d − 1 are317

provided below.318

Lemma 3.6. The coefficient matrices Sn and Sjn appearing in the relation (3.40)319
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with k = n are given as320

Sn = Pn+dΦ
d
n +

d−1∑
f=0

P fn+dΠ
f
n(3.58)321

Sjn = Pn+dΦ
d,j
n +

d−1∑
f=0

P fn+dΠ
f,j
n(3.59)322

Moreover, Sn and Sjn, j = 0, · · · , d− 1 only involve noises {wn+d−1, · · · , wn}.323

Proof. Let the inputs u and v be the optimal for maxv minu J(0, N). Then the324

following representations can be obtained325

xn+k+1 = Φk+1
n xn +

d−1∑
j=0

Φk+1,j
n vj+n−d(3.60)326

vn+k = Πk
nxn +

d−1∑
j=0

Πk,j
n vj+n−d(3.61)327

by inductive derivation over k = 0, · · · , d− 1. From these two expressions and (3.40),328

we can get the expressions (3.58) and (3.59).329

What follows is a brief proof for (3.60) and (3.61). According to Lemma 3.5, the330

optimal un, vn for maxv minu J(0, N) is331

un = −[I 0]R−1n (Tnxn +

d−1∑
j=0

T jnvn+j−d)(3.62)332

vn = −[0 I]R−1n (Tnxn +

d−1∑
j=0

T jnvn+j−d)(3.63)333

Observing (3.57), it is direct to find that the optimal vn as in (3.63) is exactly334

(3.61) with k = 0. Substituting (3.62) into (2.1), there holds335

xn+1 = Φ1
nxn +

d−1∑
j=0

Φ1,j
n vn+j−d(3.64)336

which is (3.60) with k = 0.337

Assuming (3.60) and (3.61) hold for k = 0, · · · , s− 1 and s < d− 1, we will verify338

that (3.60) and (3.61) also hold for k = s.339

Similar to (3.62) and (3.64), we have340

vn+s = −[0 I]R−1k+s(Tn+sxn+s +

d−1∑
j=0

T jn+svn+s+j−d)(3.65)341

xn+s+1 = Φ1
n+sxn+s +

d−1∑
j=0

Φ1,j
n+svn+s+j−d(3.66)342

It is easy to know that the subscript of vn+s+j−d, namely, n + s + j − d is less than343

n+ s in the second term in the right side of (3.65)-(3.66) because of j = 0, · · · , d− 1,344
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which means that vn+s+j−d with s + j − d > 0 can be re-expressed by the inductive345

assumption.346

Applying the inductive assumption (3.60) with k = s − 1 and (3.61) with k =347

0, · · · , s−1 into (3.65)-(3.66) and using the notations (3.49)-(3.52), (3.60)-(3.61) with348

k = s are obtained.349

Reminding of the relation (A.22), we have350

λn+d−1 = Pn+dxn+d +

d−1∑
j=0

P jn+dvn+j(3.67)351

From (3.60)-(3.61),352

xn+d = Φdnxn +

d−1∑
j=0

Φd,jn vn+j−d(3.68)353

vn+j = Πj
nxn +

d−1∑
i=0

Πj,i
n vn+i−d(3.69)354

Inserting both of them into (3.67), one will get (3.58)-(3.59). In terms of the recur-355

sive relations (3.49)-(3.52), we can see that Φdn,Φ
d,j
n and Πf

n,Π
f,j
n f = 0, · · · , d − 1356

only include the noises {wk+d−1, · · · , wn} and {wk+f , · · · , wn}, respectively. As a357

consequence, Sn and Sjn, j = 0, · · · , d− 1 only involve the noises {wn+d−1, · · · , wn}.358

Lemma 3.6 shows that there are links between Pk+1, P
j
k+1, j = 0, · · · , d − 1 and359

Sk+1, S
j
k+1, j = 0, · · · , d − 1. The links will help us to get explicit expressions of360

E[C ′k+dSk+1] and E[C ′k+dS
j
k+1], j = 0, · · · , d− 1 appearing in (3.42), (3.46)-(3.48) in361

Lemma 3.5.362

Lemma 3.7. The following relations hold for k = 0, · · · , N and j = 1, · · · , d:363

E[C ′k+dSk+1] = (P d−1k+1 )′(3.70)364

E[C ′k+dS
j−1
k+1] = mj

k + δd−j(C
′Pk1C + σC̄ ′Pk1C̄)(3.71)365

with366

mj
k = −

j∑
i=1

(T d−ik+i )
′R−1k+iT

j−i
k+i +

d−1∑
i=1

δi−j(P
d−i−1
k+1+i )

′C(3.72)367

k1 = k + d− 1(3.73)368

where δi is a Kronecker operator with the center in 0.369

Proof. The proof of Lemma 3.7 is based on Lemma 3.6 and inductive derivation370

over k = N, · · · , 0.371

As k = N , (3.70) and (3.71) are trivial since the initial matrices value SN+1 = 0372

and P jN+1 = 0, SjN+1 = 0 with j = 0, · · · , d− 1.373

Assume (3.70) and (3.71) hold for all k ≥ n. Then (3.42), (3.46)-(3.48) can be374
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rewritten as375

Rk =

[
E[B′kPk+1Bk] B′P d−1k+1

(P d−1k+1 )′B md−1
k + E[C ′kPk1Ck]

]
+ Λ(3.74)376

Tk =

[
E[B′kPk+1Ak]
E[C ′k+dSk+1]A

]
(3.75)377

T 0
k =

[
E[B′kPk+1Ck]
E[C ′k+dSk+1]C

]
(3.76)378

T jk =

[
B′P j−1k+1

E[C ′k+dS
j−1
k+1]

]
, j = 1, · · · , d− 1(3.77)379

Consequently, (3.43)-(3.45) can be reformulated as380

Pk = A′Pk+1A+ σĀ′Pk+1Ā− T ′kR−1k Tk + F ′F381

(3.78)382

P 0
k = A′Pk+1B + σĀ′Pk+1B̄ − T ′kR−1k T 0

k(3.79)383

P jk = A′P j−1k+1 − T
′
kR
−1
k T jk(3.80)384

What follows is to prove (3.70)-(3.71) also hold in the case of k = n− 1.385

These two equalities386

E[C ′n1
Sn] = (Pm−1nm

)E[Φd−mnm
] +

d−1−m∑
f=0

[C ′P fn+d(3.81)387

−
m∑
i=1

(T i−1ni
)′R−1ni

T f+ini
]E[Πf

n]388

E[C ′n1
Sjn] = (Pm−1nm

)E[Φd−m,jnm
] +

d−1−m∑
f=0

[C ′P fn+d(3.82)389

−
m∑
i=1

(T i−1ni
)′R−1ni

T f+ini
]E[Πf,j

n ]390

−
j∑

i=d−m

(T d−i−1n+i )′R−1n+iT
j−i
n+i +

d−2∑
i=d−m

δj−i(P
d−i−2
n+i+1 )′C391

+δd−1−jE[C ′nPn+dCn]392

are very useful for our proof. They can be proved by inductive derivation over m =393

1 · · · , d and straightforward expectation calculation based on Lemma 3.6 and matrices394

(3.49)-(3.57), so we omit it here.395

Let m = d in (3.81) and (3.82), we will see (3.70) and (3.71) hold for k = n− 1.396

Now the proof is completed.397

According to Lemma 3.7, some matrices appearing in Lemma 3.5 are simplified398

further in the following remark.399

Remark 3.8. Those notations related to E[C ′k+dSk+1] as well as E[C ′k+dS
j
k+1],400
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appearing in Lemma 3.5 can be rewritten as401

Tk =

[
E[B′kPk+1Ak]

(P d−1k+1 )′A

]
(3.83)402

T 0
k =

[
E[B′kPk+1Ck]

(P d−1k+1 )′C

]
(3.84)403

T jk =

[
B′P j−1k+1

(P d−j−1k+j+1 )′C −
∑j
f=1(T d−fk+f )′R−1k+fT

j−f
k+f

]
404

(3.85)405

Rk =

[
E[B′kPk+1Bk] (P d−1k+1 )′B

B′P d−1k+1 E[C ′k+dP
′
k+d+1Ck+d]

]
406

+diag{I,−γ2I −
d∑

f=1

(T d−fk+f )′R−1k+fT
d−f
k+f }(3.86)407

Further, (3.43)-(3.45) are expressed as408

Pk = A′Pk+1A+ σĀ′Pk+1Ā− T ′kR−1k Tk + F ′F(3.87)409

P 0
k = A′Pk+1C + σĀ′Pk+1C̄ − T ′kR−1k T 0

k(3.88)410

P jk = A′P j−1k+1 − T
′
kR
−1
k T jk(3.89)411

Remark 3.8 provides a more direct but equivalent result than that in Lemma 3.5,412

which is very useful in the next section.413

4. Sufficient condition of H∞ control for stochastic systems with pre-414

view. In the section, we will verify that the necessary condition in Lemma 3.5 is also415

sufficient for the solvability of the H∞ control problem with disturbance preview.416

Although the same notations as the last section are introduced at the beginning417

of this section, please note that their meanings are actually different because Rk and418

T jk , j = 1, · · · , d− 1 appearing in (4.1)-(4.3) and (3.87)-(3.89) are different.419

Before our proof begins, we need to define some notations.420

Pk = A′Pk+1A+ σĀ′Pk+1Ā− T ′kR−1k Tk + F ′F(4.1)421

P 0
k = A′Pk+1C + σĀ′Pk+1C̄ − T ′kR−1k T 0

k(4.2)422

P jk = A′P j−1k+1 − T
′
kR
−1
k T jk(4.3)423

(4.4)424

Rk =

[
E[B′kPk+1Bk] (P d−1k+1 )′B

B′P d−1k+1 βk+1(d− 1, d− 1)

]
+ Λ(4.5)425

Tk =

[
E[B′kPk+1Ak]

(P d−1k+1 )′A

]
(4.6)426

T 0
k =

[
E[B′kPk+1Ck]

(P d−1k+1 )′C

]
(4.7)427

T jk =

[
B′P j−1k+1

βk+1(d− 1, j − 1)

]
(4.8)428
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with429

βk(i, j) = βk+1(i− 1, j − 1)− (T ik)′R−1k T jk(4.9)430

βk(j, i) = βk(i, j)′(4.10)431

βk(0, j) = C ′P j−1k+1 − (T 0
k )′R−1k T jk(4.11)432

βk(0, 0) = E[C ′kPk+1Ck]− (T 0
k )′R−1k T 0

k(4.12)433

For i = 0, · · · , d− 1 and j = 0, · · · , d− 1, the initial matrices value of P jk and βk(i, j)434

are given as P jN+1 = 0 and βN+1(i, j) = 0.435

Remark 4.1. In fact, the relationships (4.2)-(4.3) together with their initial values436

means that P jk = 0 if k+j−d > N−d. Similarly, βk(i, j) = 0 if k+max{i, j}−d > N−d437

follows from the relation (4.9) and the initial value of βk(i, j).438

Now a condition is provided to guarantee the solvability of the H∞ preview control439

problem for a given γ.440

Lemma 4.2. For a given γ > 0. If (4.1)-(4.3) admit solutions such that Rk and Λ441

have the same inertias, then the H∞ control problem (2.5) subject to (2.1) is solvable.442

Moreover, the H∞ central controller uk and the worst-disturbance vk admit443 [
uk
vk

]
= −R−1k [Tkxk +

d−1∑
j=0

T jkvk+j−d](4.13)444

Proof. Define a value function by445

V (k, x̄k) = E[x′kPkxk + 2

d−1∑
j=0

x′kP
j
kvk+j−d +

d−1∑
i=0

d−1∑
j=0

v′k+j−dβk(i, j)vk+i−d](4.14)446

where x̄k = col{xk, vk−1, · · · , vk−d}.447

Then we have448

V (k + 1, x̄k+1) = E[x′k+1Pk+1xk+1(4.15)449

+2

d−1∑
j=0

x′k+1P
j
k+1vk+1+j−d +

d−1∑
i=0

d−1∑
j=0

v′k+1+i−dβk+1(i, j)vk+1+j−d]450

Plugging (2.1) into (4.15) and Completing square over col{uk, vk} will yield451

V (k + 1, x̄k+1)(4.16)452

= E[x′k(A′kPk+1Ak − T ′kR−1k Tk)xk +

[
uk + ū∗k
vk + v̄∗k

]′
Rk

[
uk + ū∗k
vk + v̄∗k

]
453

−u′kuk + γ2v′kvk454

+2x′k(A′kPk+1Ck − T ′kR−1k T 0
k )vk−d + 2x′k

d−1∑
j=1

(A′kP
j−1
k+1 − T

′
kR
−1
k T jk )vk+j−d455

+v′k−dC
′
kPk+1Ckvk−d −

d−1∑
i=0

d−1∑
j=0

v′k+i−d(T
i
k)′R−1k T jkvk+j−d456

+2

d−1∑
j=1

v′k−dC
′
kP

j−1
k+1vk+j−d +

d−1∑
i=1

d−1∑
j=1

v′k+i−dβk+1(i− 1, j − 1)vk+j−d]457
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where458 [
ū∗k
v̄∗k

]
= R−1k (Tkxk +

d−1∑
j=0

T jkvk+j−d)(4.17)459

Applying (4.1)-(4.3), (4.9) and (4.11)-(4.12) in (4.16) yields460

V (k + 1, x̄k+1)461

= E[x′k(Pk − F ′F )xk +

[
uk + ū∗k
vk + v̄∗k

]′
Rk

[
uk + ū∗k
vk + v̄∗k

]
)462

−u′kuk + γ2v′kvk463

+2x′k

d−1∑
j=0

P jkvk+j−d +

d−1∑
i=0

d−1∑
j=0

v′k+i−dβk(i, j)vk+j−d]464

Now it is straightforward to obtain465

V (k, x̄k)− V (k + 1, x̄k+1)(4.18)466

= E(x′kF
′Fxk + u′kuk − γ2v′kvk −

N∑
k=0

[
uk + ū∗k
vk + v̄∗k

]′
Rk

[
uk + ū∗k
vk + v̄∗k

]
)467

= E(z′kzk − γ2v′kvk −
N∑
k=0

[
uk + ū∗k
vk + v̄∗k

]′
Rk

[
uk + ū∗k
vk + v̄∗k

]
)468

Adding (4.18) from k = 0 to k = N , we have469

V (0, x̄0)− V (N + 1, x̄N+1)(4.19)470

=

N∑
k=0

E[z′kzk − γ2v′kvk] +

N∑
k=0

[
uk + ū∗k
vk + v̄∗k

]′
Rk

[
uk + ū∗k
vk + v̄∗k

]
471

As k = N+1, V (N+1, x̄N+1) = xN+1PN+1xN+1 from (4.14) and Remark 4.1; On the472

other hand, as k > N−d, Rk = diag{E[B′kPk+1Bk+I],−γ2I} from (4.5) and Remark473

4.1; v∗k = 0 because the blocks in Tk and T jk , j = 0, · · · , d− 1 corresponding to vk are474

null, which originates from Remark 4.1, as k > N − d, P d−1k = 0 and βk(d− 1, j) = 0.475

Now it is easy to get from (4.19)476

J = V (0, x̄0) +

N∑
k=0

[
uk + ū∗k
vk + v̄∗k

]′
Rk

[
uk + ū∗k
vk + v̄∗k

]
+ γ2

N∑
k=N−d+1

v′kvk(4.20)477

Given that Rk and Λ have the same inertia, (4.20) shows that J < 0 holds when478

the initial data x̄0 = 0 and uk = ū∗k.479

At the moment, we associate the sufficient condition in Lemma 4.2 with the nec-480

essary condition in Lemma 3 and give the following necessary and sufficient condition481

for the solvability of the H∞ preview control.482

Theorem 4.3. For a given γ > 0, the H∞ preview control problem (2.5) subject483

to (2.1) is solvable if and only if (3.87)-(3.89) with 3.83-3.86 admit solutions such484
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that diag{Ωk,∆k} and Λ have the same inertias. Moreover, the H∞ preview control485

law is given as486

uk = −Ω−1k (E[B′kPk+1Ak]xk + E[B′kPk+1Ck]vk−d(4.21)487

+

d∑
j=1

B′P j−1k+1vk+j−d)488

In the above,489

Ωk = I +B′Pk+1B + σB̄′Pk+1B̄(4.22)490

∆k = −γ2I + C ′Pk+d+1C + σC̄ ′Pk+d+1C̄(4.23)491

−
d∑

f=1

(T d−fk+f )′R−1k+fT
d−f
k+f − (P d−1k+1 )′BΩ−1k B′P d−1k+1492

Proof. The straightforward calculation shows the explicit expressions of βk(i, j)493

in the aforementioned as follows. In the case of i < j, from (4.9) and (4.11),494

βk(i, j) = C ′P j−i−1k+i+1 −
i∑

f=0

(T i−fk+f )′R−1k+fT
j−f
k+f(4.24)495

In the case of i = j, from (4.9) and (4.12),496

βk(i, j) = E[C ′k+iPk+i+1Ck+i]−
i∑

f=0

(T i−fk+f )′R−1k+fT
i−f
k+f(4.25)497

As for the case of i > j, the explicit expression will be given by (4.10).498

With the explicit expression of βk(i, j), Rk and T jk , j = 1, · · · , d− 1 can be read499

as500

T jk =

[
B′P j−1k+1

(P d−j−1k+j+1 )′C −
∑j
f=1(T d−fk+f )′R−1k+fT

j−f
k+f

]
(4.26)501

Rk =

[
E[B′kPk+1Bk] (P d−1k+1 )′B

B′P d−1k+1 E[C ′k+dP
′
k+d+1Ck+d]

]
(4.27)502

+diag{I,−γ2I −
d∑

f=1

(T d−fk+f )′R−1k+fT
d−f
k+f }503

Now it is clear that (4.1)-(4.3) can be reformulated as (3.87)-(3.89), which together504

with Lemma 3.5 and Lemma (4.2) shows H∞ control problem is solvable if and only505

if (3.87)-(3.89) have solutions such that Rk and Λ have the same inertia. In order to506

obtain a preview control law, after making a LDU decomposition for Rk, (4.20) can507

be rewritten as508

J(0, N) = V (0, x̄0) +

N∑
k=0

(uk + ǔ∗k)′Ωk(uk + ǔ∗k)(4.28)509

+

N−h∑
k=0

(vk + v̂∗k)′∆k(vk + v̂∗k)′510
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with511

ǔ∗k = Ω−1k (E[B′kPk+1Ak]xk + E[B′kPk+1Ck]vk−d(4.29)512

+

d∑
j=1

B′P j−1k+1vk+j−d)513

and v̂∗k = v̄∗k as in (4.17). Consequently, the H∞ preview control law can be chosen514

as −ǔ∗k, i.e. , (4.21).515

To compare the performances of the H∞ preview control and the standard H∞516

full-information control, we present the following theorem.517

Theorem 4.4. For a given γ > 0, the H∞ full-information control problem (2.5)518

subject to (2.1) with d = 0 is solvable if and only if519

Pk = A′Pk+1A+ σĀ′Pk+1Ā− T ′kR−1k Tk + F ′F(4.30)520

admit solutions such that diag{Ωk,∆k} and diag{I,−γ2I} have the same inertia.521

Moreover, the H∞ full-information control law is given as522

uk = −Ω−1k (E[B′kPk+1Ak]xk + E[B′kPk+1Ck]vk)(4.31)523

In the above,524

Rk =

[
E[B′kPk+1Bk] + I E[B′kPk+1Ck]
E[C ′kPk+1Bk] −γ2I + E[C ′kPk+1Ck]

]
(4.32)525

Tk =

[
B′

C ′

]
Pk+1A+

[
B̄′

C̄ ′

]
Pk+1Ā(4.33)526

Ωk = I +B′Pk+1B + σB̄′Pk+1B̄(4.34)527

∆k = −γ2I + E[C ′kPk+1Ck](4.35)528

−E[BkPk+1Ck]′Ω−1k E[BkPk+1Ck]529

Proof. The necessity and sufficiency can be proved by applying the similar lines530

to Lemma 3.1 and Lemma 4.2, respectively, we thus omit them.531

Remark 4.5. The result generalizes the deterministic H∞ control theory in state532

space [14] and the idea is different from that of the existing literature [4] and [10].533

Specifically, [4] and [10] solved the H∞ control problem for stochastic systems by534

obtaining the stochastic version of bounded real lemma. Moreover, [4] and [10] assume535

that the controller is linear state-feedback, and the results are given by linear matrices536

inequality.537

5. Further discussions. In the section, we provide some explanations concern-538

ing the relationship between the achievable performance γ and the preview length d.539

The derivation of the necessary and sufficient condition in the last two sections offers540

some evidences supporting our explanations.541

From Theorem 4.3, we know γ is determined by the constraint ∆k < 0. It542

together with (4.23) means that γ nonlinearly depends on all of coefficient matrices543

in the system and the weighted matrices in performance index.544
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According to (4.23), there holds545

∆k = −γ2I + E[C ′k+dPk+d+1Ck+d](5.1)546

−E[Bk+dPk+d+1Ck+d]
′Ω−1k+dE[Bk+dPk+d+1Ck+d]547

−C ′P d−1k+d+1∆−1k+d(P
d−1
k+d+1)′C548

−
d−1∑
f=1

(T d−fk+f )′R−1k+fT
d−f
k+f − (P d−1k+1 )′BΩ−1k B′P d−1k+1549

Since maxv minu J(k,N) ≥ minu J(k,N) for any vi, i = k, · · · , N and a candidate of550

min Ju(k,N) ≥ 0 with vi = 0, i = k, · · · , N , maxv minu J(k,N) ≥ 0. It shows Pk ≥ 0551

and βk(i, i) ≥ 0. Associated with (4.25), there hold552

E[C ′k+i+1Pk+i+2Ck+i+1] ≥ 0553

E[C ′k+i+1Pk+i+2Ck+i+1] ≥
i∑

f=0

(T i−fk+1+f )′R−1k+1+fT
i−f
k+1+f554

At the moment, it is direct that in order to guarantee that there exists γ > 0 such555

that ∆k < 0 and556

βk+1(d− 1, d− 1) > (P d−1k+1 )′BΩ−1k B′P d−1k+1 .(5.2)557

Observing ∆k in Theorem 4.4 and ∆k in Theorem 4.3, we find that there is558

possibility to find a smaller γ for the H∞ preview control problem than γ for the H∞559

control for delay-free stochastic systems since the last three terms appear in ∆k in560

(5.1).561

An intuitive analysis is given from the game theory in the sequel. As the two play-562

ers, the control u and the disturbance v try to minimize and maximize the performance563

J(0, N), respectively. The term v′k(T d−fk+f )′R−1k+fT
d−f
k+f vk can be regarded as the contri-564

bution of these two players’ decision using the information vk at instant k + f to the565

game value. This contribution will be very small in that they play the game. Yet the566

player u contributes an additional value v′k(P d−1k+1 )′BΩ−1k B′P d−1k+1 vk to the game value567

at k instant, which may surpass the player v’s contribution v′kC
′P d−1k+d+1∆−1k+d(P

d−1
k+d+1)′568

Cvk at k + d instant because vk is the historical information at k + d and plays a569

increasingly weaker role as d increases. Based on this and (5.1), there are two conclu-570

sions. One is that H∞ preview control can suppress the external disturbance better571

than the standard H∞ full-information control, i.e. the former has a smaller distur-572

bance suppression level γ. The other one is the dependence of achievable performance573

on the preview length. Specifically, the larger the preview length d is, the smaller574

γ is. Yet we should also notice that the performance γ may saturate for a certain575

finite preview length, which may result from that the early historical information may576

not be useful. Our two conclusions and the saturation phenomenon are supported by577

Figure 1.578

6. Example. In this section, we provide an example to illustrate the H∞ control579

for stochastic systems with disturbance preview.580

Figure 1 [11] is a schematic of the quarter vehicle active suspension configuration.581

It is broadly representative of the fundamental suspension problem of isolating the582

vibration from the road. In this figure, ms is the sprung mass, which represents583

the vehicle chassis; mu is the unsprung mass, which represents mass of the wheel584
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Fig. 1. the quarter vehicle active suspension

assembly; Fd and Fs are damping force and elastic force from the suspension system,585

respectively, and cs and ks are corresponding damping and stiffness, respectively; Fb586

and Ft are damping force and elastic force from the tire, respectively, and ku and587

cu stand for compressibility and damping of the pneumatic tyre, respectively; zs and588

zu are the displacements of the sprung and unsprung masses, respectively; u is the589

active input of the suspension system; zr is the roadway elevation at vehicle, and it590

can be measured by the sensor mounting the suspension in advance and is thereby591

the same as that at the sensor position but delayed by a time (equal to the distance592

of the sensor in front of the vehicle divided by the vehicle velocity).593

The dynamic equations of the sprung and unsprung masses are given by594

msz̈s + cs(żs − żu) + ks(zs − zu) = u(6.1)595

msz̈s + cs(żs − żu) + ks(zs − zu) + cu(żu − żr) + ku(zu − zr) = −u(6.2)596

Define the following state variables:597

x1 = zs − zu(6.3)598

x2 = zu − zr(6.4)599

x3 = żs(6.5)600

x4 = żu(6.6)601

where x1 denotes the suspension deflection, x2 is the tire deflection, x3 is the sprung602

mass speed, and x4 denotes the unsprung mass speed. We define disturbance input603

v = żr, which describes the roughness of the road. Then, by defining x = [zs −604

zu, (żs − żu), żs, żu]′, the dynamic equations in (6.1)-(6.2) can be rewritten in the605

following state-space form606

ẋ = Acx+Bcu+ Ccv(6.7)607

where608

Ac =


0 0 1 −1
0 0 0 1

− ks
ms

0 − cs
ms

cs
ms

ks
mu

− kt
mu

cs
mu

− cs+ctmu

(6.8)609

Bc =
[

0 0 1
ms

− 1
mu

]′
(6.9)610

Cc =
[

0 −1 0 − ct
mu

]′
(6.10)611
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In designing the control law for a suspension system, we need to consider ride com-612

fort. It is widely accepted that ride comfort is closely related to the body acceleration.613

Therefore, when we design the controller, one of our main objectives is to reduce the614

body acceleration, that is, ẋ3. In addition, in order to make sure the vehicle safety,615

we should ensure the firm uninterrupted contact of wheels to road, and the dynamic616

tire load ktx2 should be small so that |ktx2| < (ms + mu)g. Because of mechanical617

structure, the suspension stroke x1 should not exceed certain allowable maximum and618

it should be small either. Therefore, when we design the control law, our main ob-619

jective is to guarantee that the regulated signal z =
[
ρ1ẋ3 ρ2

ktx2

(ms+mu)g
ρ3x1

]′
,620

a weighted column vector reflecting suspension body acceleration, the safety index621

(proportional to the tire deflection) and the body displacement (suspension stroke),622

is less than the weighted roughness of the road in the sense ||z|| < γ||v||, where623

ρi ≥ 0, i = 1, 2, 3, are weights and are used for adjusting design preference. Now624

according to (6.7), z admits625

z = Fcx+Dcu(6.11)626

where627

Fc =

 −ρ1 ksms
0 −ρ1 csms

ρ1
cs
ms

0 ρ2
kt

(ms+mu)g
0 0

ρ3 0 0 0

(6.12)628

Dc =
[
ρ1

1
ms

0 0
]′

(6.13)629

It is clear that system (6.7) has its matrices (Ac, Bc, Cc) depending on the physical630

parameters ks, ku, cs, ct,ms. When they randomly deviates from their nominal val-631

ues as a result of oscillatory motion and the change with the operation conditions,632

ks, ku, cs, ct,ms can be modeled as ks+wks(t), ku+wku(t), cs+wcs(t), ct+wct(t),ms+633

wms(t), here, wks(t), wku(t), wcs(t), wct(t), wms(t) are independent white processes634

with varinces σks, σku, σcs, σct, σms, respectively. The simple derivation shows that635
σ
σks

wks(t),
σ
σku

wku(t), σ
σcs
wcs(t),

σ
σct
wct(t),

σ
σms

wms(t) are white processes with vari-636

ance σ. In particular, the approximation 1
ms+wms(t)

=̇ 1
ms

(1− wms(t)
ms

) is used. This is637

the reason that we study the model with the multiplicative noise in this paper.638

We borrow the quarter-vehicle suspension model parameters from [9] and list it in639

Table 1. Via the discretization of the vehicle suspension (6.7) and consideration of the

Table 1
vehicle suspension parameters

ms mu ks cs kt ct
973kg 114kg 42720N/m 101115N/m 1095Ns/m 14.6Ns/m

640
parameter random uncertainty mentioned above, we obtain a discrete time stochastic641
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system in the form of (2.1)-(2.2) with642

A =


0.9251 0.1582 0.0176 −0.0164
0.0669 0.8403 0.0022 0.0167
−0.7711 −0.2260 0.9722 0.0263
6.1633 −14.8141 0.2248 0.6133

(6.14)643

Ā =


0 0 0 0
0 0 0 0

0.0002 0 0.0004 0.0002
0.0002 0.0002 0.0004 0.0004

(6.15)644

645

B = 10−3 ×


0.0018
−0.0016
0.0180
−0.1443

 , B̄ =


0
0

0.0001
0

(6.16)646

C =


−0.0011
−0.0189
0.0015
0.1618

 , C̄ =


0
0
0

0.003

(6.17)647

F =

 −4.3905 0 −0.1125 0.1125
0 0.9492 0 0

0.8 0 0 0

 , D =

 0.001
0
0

(6.18)648

where the sample period T = 0.02, and ρ1 = 0.1, ρ2 = 0.1, ρ3 = 0.8.649

In the following, applying the more general version of Theorem 4.3 to the system650

(2.1)-(2.2) with (6.14)-(6.18), we will illustrate the performance of the closed-loop651

discrete-time suspension system with disturbance preview and random parameter un-652

certainty. Evaluation of the vehicle suspension performance is based on the examina-653

tion of the sprung mass acceleration ẋ3 (body acceleration), the safety index z2 (tire654

deflection x2 ), the sprung mass displacement x1 (body displacement) and the H∞655

level γ. A controller is to be designed such that the regulated signal z is bounded656

by the weighted disturbance. In order to evaluate the suspension characteristics with657

respect to ride comfort and safety, the variability of the road profiles is taken into658

account. In the context of the vehicle suspension performance, road disturbances can659

be generally assumed as shock. Shocks are events of relatively short duration and660

high intensity, caused by, for example, a pronounced bump or pothole on an other-661

wise smooth road. In the following, a kind of road profile is used to validate the662

performance of the presented control approach. Now consider the case of an isolated663

bump in an otherwise smooth road surface given by664

zr =
A

2
(1− cos(2π L

V
t))(6.19)665

where A and L are the height and the length of the bump. Assume A = 80mm,L =666

15m and the vehicle forward velocity V = 45(km/h).667

As Figure 2 shown, the random uncertainty deteriorates the suspension perfor-668

mance, in other word, the body acceleration z1, body displacement x1, safety index669

z2 and the H∞ performance γ increase as the random uncertainty of the suspension670

increases (i.e. σ becomes larger). On the other hand, the more the disturbance pre-671

view (larger d), the better the suspension performance, which means that the body672
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(a) d = 0, σ = 0
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(b) d = 0, σ = 0.05
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(c) d = 20, σ = 0
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(d) d = 20, σ = 0.05

Fig. 2. Bump response of the vehicle active suspension

acceleration z1, body displacement x1, safety index z2 and the H∞ cost γ are smaller673

when more disturbance preview is utilized by the controller.674

We also depict the curve of the optimal γ versus the preview length d for N =675

300 and several different σ in Figure 3. From Figure 3, the curve for σ = 0 is in676

agreement with the one provided by the method in [27]. Besides, we also observe two677

phenomenona from Figure 3. One is the same conclusion as in Figure 2. The other is678

that using too much disturbance preview will not improve the suspension performance679

γ abidingly and the H∞ performance will saturate after a certain length d.680

7. Conclusions. In the paper, we obtain an analytic solution to the H∞ preview681

control problem, which is an outstanding problem. It is shown that the problem is682

solvable if and only if a group of equations have solutions and an inertia condition683

holds. The proof depends heavily on how to characterize the necessary condition684
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Fig. 3. Optimal H∞ performance versus the length of preview in our example

better as the problem is solvable. We characterize it by a pair of stochastic difference685

equations with the aid of the projection principle in indefinite space which is helpful686

to get an explicit link between the two variables in the pair. The idea can also be687

used to solve the standard H∞ control for stochastic systems completely and provide688

a solvability condition very similar to that for the deterministic counterpart. In fact,689

the idea can be applied to solve the game problems for stochastic systems with input690

delays too.691

Appendix A. Proof of Lemma 3.5. We will present the proof of Lemma 3.5692

here by using dynamic programming, which provides an effective means of obtaining693

the optimal solution to the minimax problem by solving a sequence of static games694

in reverse time.695

For using dynamic programming, we define a similar notation as in the proof of696

Lemma 3.1. Let697

J(i,N) = ||z||2ll2[i,N]
− γ2||v||2ll2[i,N−d]

(A.1)698

Then699

J(i,N) = E[

N∑
k=i

z′kzk − γ2
N−d∑
k=i

v′kvk](A.2)700

= E[

N∑
k=i

(x′kF
′Fxk + u′kuk)− γ2

N−d∑
k=i

v′kvk]701
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In fact, in the case of i > N − d,702

J(i,N) = ||z||2l2[i,N]
(A.3)703

= E

N∑
k=i

z′kzk704

= E

N∑
k=i

[x′kF
′Fxk + u′kuk]705

since
∑N−d
k=i v

′
kvk = 0.706

With the same reason, if there is an adapted controller such that (2.5) holds for707

some γ > 0, (3.2) is solvable. According to Lemma 3.1, the optimal uk and vk can be708

characterized by (3.4) and (3.5). It should be stressed that the delay in disturbance709

input vk leads to a special characterization (3.5) of the optimal vk, where there is a710

time-lag between adapted processes vk and λk+d. It will be very difficult to obtain711

the solvability and the optimal inputs.712

In order to re-express the optimal game value, we derive a relation as follows713

E[x′kλk−1 − x′k+1λk](A.4)714

= E[x′k(E[A′kλk|Fk−1] + F ′Fxk)715

−(Akxk +Bkuk + Ckvk−d)
′λk]716

= E[x′kF
′Fxk − (Bkuk + Ckvk−d)

′λk]717

Applying (3.4) in the relation (A.4) leads to718

E[x′kλk−1 − x′k+1λk](A.5)719

= E[x′kF
′Fxk − C ′kv′k−dλk + u′kuk]720

Adding from k = n+ 1 to k = N on the two sides of the equation (A.4), we have721

E[x′n+1λn − x′N+1λN ](A.6)722

=

N∑
k=n+1

E[x′kF
′Fxk − C ′kv′k−dλk + u′kuk]723

Denote the optimal game value maxv minu J(n+1, N) as J∗(n+1, N) and apply (3.5)724

for k ≥ n+ 1, then725

J∗(n+ 1, N) = E[x′n+1λn] +

min{n+d,N}∑
k=n+1

E[v′k−dC
′
kλk](A.7)726

Let727

J̄(n,N) = J∗(n+ 1, N) + z′nzn − γ2v′nvn(A.8)728

According to the dynamic programming principle, global optimization is the same729

as local one, i.e. if max min ||z||2l2[0,N]
− ||v||2l2[0,N−d]

is solvable, max min ||z||2l2[i,N]
−730

||v||2l2[i,N−d]
is inevitably solvable, here 0 ≤ i ≤ N . Moreover, the optimal solution of731

the later is in accordance with the former’s in the overlapped interval [i,N ]. Hence,732

J̄(n,N) is solvable over un, vn.733

This manuscript is for review purposes only.



H∞ CONTROL FOR STOCHASTIC SYSTEMS WITH DISTURBANCE PREVIEW 25

With the above preparations, we now prove the three conclusions in the lemma734

using the inductive method on k.735

First consider the case of k = N . Applying (2.1), we have736

J(N,N) = E[z′NzN + x′N+1PN+1xN+1](A.9)737

= E[x′N (F ′F +A′NPN+1AN )xN738

+u′N (I +B′NPN+1BN )uN739

+v′N−dC
′
NPN+1CNvN−d740

+2x′NA
′
NPN+1(BNuN + CNvN−d)741

+2u′NB
′
NPN+1CNvN−d]742

Because (3.2) is solvable, so is maxv minu J(N,N). Given that J(N,N) only contains743

a variable uN to be determined, maxv minu J(N,N) actually becomes minu J(N,N).744

Hence, E[I + B′NPN+1BN ] > 0 and RN = diag{E[I + B′NPN+1BN ],−γ2I} has the745

same inertias with Λ.746

According to (3.4), the optimal uN can be given as747

uN = −E[I +B′NPN+1BN ]−1(E[B′NPN+1AN ]xN(A.10)748

+E[B′NPN+1CN ]vN−d)749

which associates with vN = 0 shows (3.38) holds because of the facts SN+1 =750

0, P jN+1 = 0, SjN+1 = 0, j = 0, · · · , d− 1.751

Inserting (A.10) and (2.1) into (3.6),752

λN−1 = E[A′NλN |FN−1] + F ′FxN(A.11)753

= E[A′NPN+1(ANxN +BNuN754

+CNvN−d)|FN−1] + F ′FxN755

= E[A′NPN+1(ANxN + CNvN−d756

−BNE[I +B′NPN+1BN ]−1(E[B′NPN+1AN ]xN757

+E[B′NPN+1CN ]vN−d)] + F ′FxN758

= (E[A′NPN+1AN ] + F ′F − E[A′NPN+1BN ]759

×E[I +B′NPN+1BN ]−1E[B′NPN+1AN ])xN760

+(E[A′NPN+1CN ]− E[A′NPN+1BN ]761

×E[I +B′NPN+1BN ]−1E[B′NPN+1CN ]vN−d)762

The direct algebra calculation from (3.43)-(3.45), (3.46)-(3.48) and the initial matrices763

values SN+1 = 0, SjN+1 = 0, P jN+1 = 0, j = 0, · · · , d− 1 gives PN = E[A′NPN+1AN ] +764

F ′F−E[A′NPN+1BN ]E[I+B′NPN+1BN ]−1E[B′NPN+1AN ], P 0
N = (E[A′NPN+1CN ]−765

E[A′NPN+1BN ]E[I + B′NPN+1BN ]−1E[B′NPN+1CN ], and P jN = 0, j = 1, · · · , d − 1.766

Comparing them with (A.11), we can see that (3.39) holds as k = N .767

What follows is to prove (3.40) holds for k = N . If the delay d = 1, then768

λN+h−1 = λN = PN+1xN+1.(A.12)769

Plugging (2.1) and (A.10) into (A.12) yields770

λN+d−1 = PN+1(AN −BNE[I +B′NPN+1BN ]−1E[B′NPN+1AN ])xN(A.13)771

+PN+1(CNBNE[I +B′NPN+1BN ]−1E[B′NPN+1AN ])vN−d772
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which indicates that λN+d−1 is in the form as (3.40) and the related coefficients only773

involves wN . If the delay d > 1, then774

λN+d−1 = 0,(A.14)775

so it is trivial and (3.40) holds for k = N .776

Inductively, assume those three conclusions in the lemma holds for all k ≥ n+ 1777

, we will verify that those three conditions hold for k = n.778

Since the case for n ≥ N − d is simpler and it can be handled with the similar779

lines with the case for n ≤ N − d , we assume n ≤ N − d. Plugging (A.7), (3.6) with780

k = n and (2.1) in J̄(n,N) yields781

J̄(n,N) = J∗(n+ 1, N) + z′nzn − γ2v′nvn(A.15)782

= E[x′n+1λn] +

min{N,n+d}∑
k=n+1

E[v′k−dC
′
kλk]]783

+z′nzn − γ2v′nvn784

= E[(Anxn +Bnun + Cnvn−d)
′

785

×(Pn+1xn+1 +

d−1∑
i=0

P in+1vn+1+i−d)]786

+

min{N,n+d}∑
k=n+1

E[v′k−dC
′
kλk]787

+x′nF
′Fxn + u′nun − γ2v′nvn788

As we focus on the quadratic term over the vector col{un, vn} in J̄(n,N), there holds789

J̄(n,N) = E[(Bnun)′(Pn+1Bnun + P d−1n+1vn)](A.16)790

+u′nun + E[v′nC
′
n+dλn+d]− γ2v′nvn + · · ·791

= E[(Bnun)′(Pn+1Bnun + P d−1n+1vn)792

+u′nun − γ2v′nvn]793

+E[v′nC
′
n+d(Sn+1Bnun + Sd−1n+1vn)]794

+ · · ·795

= E

[
un
vn

]′
Rn

[
un
vn

]
+ · · ·796

Observing the above expression, if the inertias of Rn is not equal to that of the matrix797

diag{I,−γ2I}, one can come to a conclusion that maxv minu J̄(n,N) is not solvable,798

which conflicts with our previous result about it. Therefore, the inertia of Rn equals799

to that of diag{I,−γ2I} as maxv minu J(n,N) is solvable.800

In light of (3.4)-(3.5) and the relation (3.39)-(3.40), there holds801

−un = E[Bn(Pn+1xn+1 +

d−1∑
j=0

P jn+1vn+1+j−d)|Fn−1](A.17)802

γ2vn = E[Cn+d(Sn+1xn+1 +

d−1∑
j=0

Sjn+1vn+1+j−d)|Fn−1](A.18)803
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Plugging (2.1) into them generates804

0 = Rn

[
un
vn

]
+

[
E[B′nPn+1An]
E[C ′n+dSn+1An]

]
xn(A.19)805

+

d−1∑
j=1

[
E[BnP

j−1
n+1]

E[C ′n+dS
j−1
n+1]

]
vn+j−d +

[
E[B′nPn+1Cn]
E[C ′n+dSn+1Cn]

]
vn−d806

where we use the fact that Sn+1 and Sjn+1, j = 0, · · · , d − 1 only involve the noises807

ωn+d, ωn+d−1, · · · , ωn+1. Now applying the notations (3.46)-(3.48), the optimal uk, vk808

admits (3.38).809

In the sequel, we will verify the relationships (3.39)-(3.40) hold for k = n. By810

virtue of (3.6),811

λn−1 = E[A′nλn|Fn] + F ′Fxn(A.20)812

λn+d−1 = E[A′n+dλn+d|Fn+d] + F ′Fxn+d(A.21)813

From the inductive assumption, (3.39)-(3.40) hold for k = n+ 1, consequently,814

λn−1 = E[A′n(Pn+1xn+1 +

d−1∑
j=0

P jn+1vn+1+j−d)|Fn] + F ′Fxn(A.22)815

λn+d−1 = E[A′n+d(Pn+d+1xn+1 +

d−1∑
j=0

P jn+d+1vn+1+j−d)|Fn+d] + F ′Fxn+d(A.23)816

Substituting the system (2.1) with k = n and the expression (3.38) of the optimal817

uk, vk with k = n into the equality (A.22) and applying the recursive relations (3.43)-818

(3.45), one can derive that (3.39) holds for k = n. Apply (2.1) with k = n, · · · , n+d−1819

and (3.38) with k = n, · · · , n+d−1 in (A.23) until there only contain those terms over820

xn, vn−1, · · · , vn−d and then rearrange them, a relation like (3.40) can be obtained,821

and therein all of coefficient matrices indeed involve the noises {wn, · · · , wn+d−1}. At822

this moment, the case for k = n has been clarified. The inductive proof is completed.823
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