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H,, CONTROL FOR STOCHASTIC SYSTEMS WITH
DISTURBANCE PREVIEW *

HONGXIA WANGT, MINYUE FU%, AND HUANSHUI ZHANG?#

Abstract. The paper considers the Hoo control problem for stochastic systems with disturbance
preview, which is very challenging since it involves the preview problem and multiplicative noise
simultaneously. The H, control problem for deterministic systems with disturbance preview was
once listed as one of the 53 open problems in mathematical and control and its methods can not
be generalized to solve the corresponding stochastic problem because of the essential differences of
the two classes of systems. Using the projection principle in indefinite space, we give a necessary
condition of the solvable Ho preview control problem by using a pair of variables. The necessary
condition is very useful for solving the minimax problem. An inertia condition of matrices, as
the necessary and sufficient condition under which the Hoo control for stochastic linear systems is
solvable, is also proposed and testified. This condition generalizes the results for Hoo control for
deterministic systems with disturbance preview. Our results are demonstrated via a quarter vehicle
active suspension system.

Key words. stochastic system, disturbance attenuation, minimax problem, Hs, preview control
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1. Introduction. Disturbance attenuation has been one of the core control de-
sign problems for applications [24, 8, 17, 15, 4]. With the rapid development of the
sensor technology, more and more information becomes available in advance, leading
to the great research interest on preview control. How to utilize the preview informa-
tion on disturbances to effectively improve the disturbance attenuation performance
is the problem of our concern. The H., control problem for disturbance attenuation
with preview information has been known to be a challenging one for a long time and
was stated as Open Problem 51 in 1998 [3]. For deterministic systems, the problem
was finally solved in 2005 for the continuous-time case [26] and the discrete-time case
[27].

Other alternative solutions to the H., control with disturbance preview for deter-
ministic systems can be found in the literature as well. For example, the H., control
for deterministic systems with both input delay and disturbance preview was solved
in [19, 20]. Under the assumption that the standard H, problem (which corresponds
to the system without input delay and preview) is solvable, an analytic solution to the
problem was provided by deriving the explicit expressions of some abstract operators
in [19, 20]. But as pointed out in [26], this assumption leads to a sufficient condition
only because the achievable H., performance level by using disturbance preview is
typically lower (better) than that achievable by the standard H, solution. In [29],
using the so-called reorganization technique, the H, preview problem was solved and
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2 H. WANG, M. FU, AND H. ZHANG

a duality between the H., smoothing and the H, control with input-delay and dis-
turbance preview was established. However, there has been no progress so far for
stochastic systems.

The purpose of this paper is to generalize the work in [26, 27] to the stochastic
setting. Stochastic systems involve parameter uncertainties in the system model which
are random in nature. Examples of random physical parameters include impedance
variations in electrical circuits [7], stiffness, damping and inertia changes in mechanical
systems [16], and and gravitational field fluctuations in satellite dynamics [25].

Our motivation stems from the fact that technical tools used in [26, 27] are suit-
able for deterministic systems only. More precisely, [26, 27] gives a very elegant
solvability condition for H,, control with disturbance preview and provides an an-
alytic solution using two Riccati equations with the same dimension as the system
without preview. This is made possible fundamentally due to the separation principle
[1] for deterministic systems. Unfortunately, Hy, control for stochastic systems with
disturbance preview is inherently different from the deterministic case because the
separation principle no longer holds [18, 6].

Several contributions are made in the paper. Firstly, the necessary condition of
the H., control for stochastic systems with preview disturbance is presented by a
pair of variables admitting a forward-backward stochastic system and two stationary
equations. The condition is a counterpart for bi-objective problem of the maximum
principle for stochastic systems. Secondly, the affine link between the states of the
forward-backward system is established. More precisely, the link is between the full-
information (state and the disturbance preview) and the state of the backward system.
Thirdly, an inertia condition which is necessary and sufficient for the solvability of
H ., control problem for stochastic systems is provided. Fourthly, an analytic solution
to the H, preview control for stochastic systems is given.

Our results above are novel because the existing results [12, 13, 22, 21, 23] are
for the H., tracking for stochastic systems with reference signal preview. They are
extensions of the work [5] rather than [27]. When the preview is on reference signal
instead of disturbance in [12, 13, 22, 21, 23], as [26] pointed out, the preview informa-
tion is treated in the Hy setting rather than the H, setting. In our case, the problem
of Hy, control with disturbance preview is much more involved than the H, tracking
problem with reference signal preview [12; 13, 22, 21, 23] . Technically speaking, our
problem leads to a totally different solvability condition.

The rest of this paper is organized as follows. The problem to be solved is formu-
lated in Section 2. A necessary condition for the solving H,, control with disturbance
preview is presented in Section 3. The necessary condition is proved to be sufficient in
Section 4. Some further discussion concerning how to use the disturbance preview to
improve the closed-loop system performance is given in Section 5. Section 6 provides
a quarter vehicle active suspension system to illustrate the application of our control
law. Some concluding remarks are given in Section 7.

Notations: In the paper, wy is a white noise with zero mean and variance o, and
it is defined on a complete probability measurable space (Q, F, P); Fj represents a
o-algebra generated by {w;,i = 0,--- ,k} ; E[X] is the expectation of the random
variable X; E[X|F] is the conditional expectation of the random variable X given
o-algebra F; ls is a space of expectation-square-summable and adapted sequences,
ie. for any z € Iy, > o E[zix;] < co and x; is F;_1-measurable. l3[q,5) means that
every sequence here is defined over the interval [a, b] [2]; For any =,y € lapq4), (2, ) =

Z?:a Elz}y;] and (Iafq,p), (-, ) is also a Hilbert space. If i > j, then > ax = 0. For
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Ho, CONTROL FOR STOCHASTIC SYSTEMS WITH DISTURBANCE PREVIEW 3

any integer n and m =1,--- ,d, n,, = n+d—m. For any matrix M, M > 0(M > 0)
means that M is positive definite (semi-definite).

2. Problem statement. The system to be considered in this paper is

(2.1) Tra1 = Axxr + Brug + Crvg—g
zr = Frap + Diug

where xy,ug, 2z are state, control input, and the output to be regulated, and vy
is energy-bounded previewed exogenous disturbance with preview length d > 0, a
integer; A = A+ ka,Bk = B+ ka,Ck =C+ wkC',Fk = F+ U}kF,Dk =
D + wiD; wy, is a scalar random white noise with zero mean and variance o2 and
A A, B,B,C,C,D,D,F and F are constant matrices with compatible dimensions.

In fact, it is shown that a large class of linear systems have their matrices
Ay, By, Ck, Dy, F), depending linearly on physical parameters [4]. When a physical
parameter deviates from its nominal value due to various stochastic disturbances
(e.g., thermal noises, vibration, impedance variations, etc.), it can be modeled as the
nominal value plus some random noise. This will result in the multiplicative noise
model considered in this paper.

Throughout the rest of this paper, we adopt the following assumption:

(2.3) F=0,D=0,D'[D F] = I 0]

which means that E[z 2| = E[z) F' Fxi)+E[uj,ui]. This will considerately reduce the
complexity of required algebraic manipulations in the derivation of our some results
and our idea is actually applicable to the general case without this assumption.

In the preview control setting, both the disturbance vy and the control uj are
Fi—1-adapted. Because vy is available at time k£ but delayed, i.e., vg_q is applied
to the system at time k, ui (being Fji_i-adapted) would have the full information
of a window of the “future” disturbance values vy_g, Vg—g+1,-..,Vk. This future in-
formation makes the preview control particularly interesting in applications where
adversaries (i.e. disturbances) have sluggish reactions which can be effectively mod-
elled by time delays. However, how to utilize the future information to achieve the
better control performance also makes the control problem technically challenging at
the same time.

Given a control law wug, the I induced norm of the closed-loop mapping L, :
v — z of (2.1)-(2.2) subject to the zero initial condition, i.e., 29 = 0,v; = 0 for
s =—d,---,—1, is given by

z
24) ol = sup
v€Els HUle[O,N—d]
System (2.1)-(2.2) is said to satisfy a given H., performance level v > 0 if the
following holds:
(2.5) [ Lozl| <

The H,, preview control problem in this paper is to testify for a given v > 0,
whether there exists a full-information and adapted control law satisfying the H.
performance (2.5) and if exists, provides such a control law.

Remark 2.1. Adaptedness is one of the most significant differences between the
deterministic and stochastic systems. Every variable appearing in the controlled sto-
chastic system is required to be adapted. It also leads to the essential difference
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4 H. WANG, M. FU, AND H. ZHANG

between backward stochastic systems and backward deterministic systems. Unlike
the case of backward deterministic systems, it is very difficult to get an explicit and
analytic solution for a delayed backward stochastic system.

3. Necessary condition of H.,, control for stochastic systems with pre-
view. In this section, we will see what happens when there is a full-information and
adapted controller such that the H, performance (2.5) holds for the given , which
in turn will be helpful for us to find a criteria to testify if there exists such a controller
such that (2.5) holds for a given v in the next section.

Define

(3.1) J(0,N) = Il v = V0l

There is a relationship between the H, control performance (2.5) and dynamic
game

(3-2) max min J(0, N)
v U
because
ARl 2|
(3.3) inf sup M < sup inf M
Y vel Hv||l2[0,1\’7d] vely ¥ ||U|‘lz[0,1\r7d]

Obviously, the upper value (the left of (3.3)) is not less than the lower value (the
right of (3.3)) [2]. Hence, for a given v > 0, if inf, sup,¢;, HHZHZQ[O’N]

UHL2[0,N—d]

< 7, then

12l 130, 1

Sup,¢;, infy, < 7, and the latter can be converted into the solvable mini-

[lvlliy 0,N—d
max problem (3[2) Moreover, the optimal ug, vy admit the identical equations with
the Ho, central controller (please refer to Chapter 9 of [14]) and the worst-case distur-
bance. Based on this, we propose a necessary condition for the solvable H., preview
control problem.

LEMMA 3.1. Consider the system (2.1)-(2.2). If there exists a adapted controller
such that (2.5) holds, then for k > 0, the Hy, central controller and the worst-case
disturbance obey the following relations

(3.4) 0 = E[Bj \e| Fr1] + ug

(3.5) 0= E[Chy g eta| Fr—1] — 72
where

(3.6) M1 = E[A M| Fr_1] + F'Fay,
(3.7) Ay =0

Lemma 3.1 will be proved with the aid of projection principle in Krein space [26].
It is stated as follows.

LEMMA 3.2. Let X and Y be Hilbert spaces with bounded linear operators J : X —
Yand S: X — Y. Suppose J = J" and S'JS > el for some € > 0. Then, given any
y € Y, there exists a unique solution to the optimization problem

. . 2 _ . . .
(3.8) min||Sz — y|[; = min((Sz —y), J(Sz —y))
This solution is defined by y and a bounded linear operator, x* = (S'JS)~1S"Jy.

Equivalently, x* is completely characterized by the equality S’'J(Sz* —y) = 0, i.e.,
Vo € X,(Sz, J(Sz* —y)) =0.

This manuscript is for review purposes only.
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Ho, CONTROL FOR STOCHASTIC SYSTEMS WITH DISTURBANCE PREVIEW 5

Now we are in the position to prove Lemma 3.1.

Proof. As mentioned earlier, if the H,, preview control for (2.1)-(2.2) is solvable,
the game problem (3.2) is solvable.

From (3.1),
N N—d
J(O,N) = E[Z 22k — > Z V), U]
k=0 k=0
N N—d
(3.9) = E[Z o) F' Fay, + ufup — +° U}, VE)
k=0 k=0

Firstly, we consider the inner optimization min,, ||2H522[0 ) of (3.2). Denote the
input-output operators from the inputs u, v and initial data 7(3:07 0p) to the output as
Tu, To and T, respectively. According to Lemma 3.2, 7, the identity operator and
Tov+To (0, Do) will play the roles of S, J and —y, respectively. The fact HEUHZQZ[UM >
0 for u # 0 means S’JS = S§'S is uniformy positive. Hence, a unique optimal wu,
denoted by «* minimizing ||Z||122[0,N] obeys

(3.10) (T, Tuu™ + Tov + To(wo, 00)) = 0

The above means that the optimal z is orthogonal to the output of any input u, which
is also very useful for finding the optimal solution to the outer optimization. Denoting
z* as the optimal z corresponding any given v and initial data (xo, 99), (3.10) can be
rewritten as

(3.11) (u, T 2*) =0

In order to obtain the relation (3.4), the adjoint operator 7, of the operator T,
is characterized in the sequel.
Straightforward calculation shows that the k' component of T, u is as

k—2
(3.12) (Tuw)e = F Y F(k —2,i+ 1)Biu; + Duy_,
i=0
DUQ
FYY_ F(0,i+ 1)Byu; + Duy
(3.13) Tou = :
FY ' F(k—1,i + 1) Byu; + Duy,
where
ApAg—1--Aj k>
(3.14) Fki)={ ILk=i—1
0,k<i—1
Similarly, we can give the k' components of T,v and Ty (zo, 09) as follows
k—2
(3.15) (Too)k =F Y F(k—2,i+1)Civi_q
i=d

min{k—2,d—1}
(3.16) (To(zo,00))k = FF(k—2,0)z0+F > F(k—2,i+1)Civi_g
=0

This manuscript is for review purposes only.
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6 H. WANG, M. FU, AND H. ZHANG

Hence,
D 0 e 0
F(0,1)Bg D e 0
(3.17) To = . . .
F(N-1,1)By F(N-1,2)B; --- D

Denote the optimal state and output generated by the optimal control law uj} as xj;
and z;, respectively. The adaptedness of 7, z* and (3.17) together with the equality

(3.18) (Tou, 2") = (u, Tyz")

show the k*" component of Tz*
N

(3.19) (Tuz")k = D'zi_y + E[Bi_y Y Fli = 1, k) F'z} | Fi—]
i=k

In virtue of the assumption (2.3), the above relation can be reduced to

(3.20) (Tu2")k = k1 + E[By ZN: F(i = 1,k) F'Fa}|Fio]
i=k

Let

(3.21) i1 = E[A | Fr—1] + F'Fay,

(3.22) N =0.

Then (3.20) can be rewritten as

(3.23) (Toz" ) = wpmr + BBy N1 | Fi—2]

which together with (3.11) shows that the optimal u}_, admits
(324) 0= uz,l + E[B;C,I)\Z,I‘]:k,ﬂ

Hence, (3.4) holds. Note, in particular, that uy is Fr—; adapted.

Next we consider the outer optimization problem in (3.2) over vy. Since the Ho,
control problem is solvable, the inequality (2.5) subject to a admissible and adapted
control law uj holds for any disturbance v;, and zero initial state, namely,

[ |
(3.25) Sup ————— <Y
b o
Therefore,
(3.26) Vel e =l o >0

Denoting J = diag{y?I,—I} and Sv = (v, Tyv + T,u*), the inequality (3.26)
implies S’JS is a positive operator.

We now solve the outer optimization in (3.2) according to Lemma 3.2. Let
(0, To(z0,00)) and v play the roles of —y and z in Lemma 3.2, then J*(0,N) in
(3.2) can be rewritten as

(3.27) J*(0,N) = (Sv+ (0, Toxo), J[Sv + (0, Tozo)])

This manuscript is for review purposes only.
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Ho, CONTROL FOR STOCHASTIC SYSTEMS WITH DISTURBANCE PREVIEW 7

where J*(0, N) means the J driven by u*. The positive definiteness of S’.JS implies
that max, J*(0, N) is solvable and the optimal v solving max, J*(0, N), denoted as
v#, satisfying the relation below

(3.28) S"J[Sv# + (0, Toxo)] = 0
i.e.
(3.29) S'J(w#, 2#) =0

where z# is the output driven by the optimal u*, the optimal v# and the any given
initial data (zo,?09). Different from the inner optimization in (3.2), it is not easy to
derive the adjoint operator S’ from the equation (3.29) to characterize the optimal
v#. We thus introduce a new operator S as

(3.30) Sv = (v, Tyv)

Here note that, as a candidate of z*, z# is generated by the optimal control u*, the
optimal v* and any given initial data (g, 799), which together with (3.10) shows 2z is
orthogonal to the output 7, u for any u, one of which is T,u*. Hence, (27, T,u*) = 0.
Based on it, (3.29) can read as

(3.31) 0 = (Sv, J(v¥, 27))
= ((v, Tov + Tou®), J(v¥, 27))
= 72 (v, v*) — (Tyv + Tu*, 2%)
= 72 (v,v#) — (Tyv, 27)
= ~f07 J(”U#, Z#)>

ie.,

(3.32) S’ (¥, %) =0

Since S’(v,2) = v+ T/,

(3.33) 0=8"J(@w#, 2#) = y2u# — T/2#

which implies that the k' component of Tz# equals to

N
(3.34) (Toz# ) = B[C}_y > _F(i— 1k Fzf | Fesl
i=k
= ’72“1?71%
Let
(3.35) A = BIJAN | Fo) + F'Faf
(3.36) A =0.

the equation (3.34) can be reduced to

(3.37) E[C,_ N | Freadl =720l 14

This manuscript is for review purposes only.
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In the above, all the variables labeled by # have a similar meaning as z# and are
optimal trajectories corresponding to the optimal v# and the optimal u*. Here, u*
can be denoted as u# since u; can obtain the information of v, and uy, actually
depends on v# when vy, equals to v# .

At present, all the variables xy,, uy, vk, 2x, A\, are unified and labeled by #. For
notational simplicity, we omit the superscript # in (3.35)-(3.36), we get (3.6)-(3.7),
which means that the optimal u and v can be characterized by the unified (3.6)-(3.7).
The conclusion in this lemma is thus proved. ]

Remark 3.3. Lemma 3.1 proposes a necessary condition of the solvable minimax
problem (3.2) by the projection principle in indefinite space, which is very helpful for
characterizing the optimal trajectories of (3.2) by a unified pair of variables and thus
pursuing the optimal solution to the minimax problem (3.2).

Remark 3.4. Lemma 3.1 is an analogue for the minimax problem of the maximum
principle for the optimal problem [28].

Lemma 3.1 implicitly describes a necessary condition, in the form of equations
satisfied by the H., preview controller and the worst-case disturbance, of the solvable
H, preview control problem, and what follows is an explicit expression.

LEMMA 3.5. Consider the system (2.1)-(2.2). If there exists a adapted controller
such that (2.5) holds, then
e R; and A have the same inertias, i.e. the numbers of negative, positive and
zero eigenvalues of Ry and A are equal, respectively;
o The Ho, central controller u;, and the worst-disturbance v, admit

d—1
(3.35) ) =R i+ T T
j=0
e There holds
-1
(3.39) Meo1 = Prxy + Y Ploryja
j=0
d-1
(3.40) Aetd—1 = Skx + Z Sikarjfd
j=0
In the above,
(3.41) A = diag{I, —~*I}
B.P..1Br,  B. P!
3.42 Ry=FE i Rokel | +A
( ) g { Cl/c+d5k+1Bk C;/CerSngi
and Py, P,z admit the following recursive relations
E[B} P14 1’
(3.43) Py = E[A} Py Ay + F'F — [ ky ket g R'Ty,
(Pein)'A
E[B.PerAx] 1"
(3.44) P) = E[A},Py1Cy] — { (P%If;’fl R'TY
, - EB,Pe1 Al 1 o 1
J _ A pi—1 _ k4 k+14k 1
(3.45) P =AP [ (PI?J:ll)IA R, T}

This manuscript is for review purposes only.
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with
[ E[Bj Pyy1AL]
3.46 Ty, = koRE
(346) © = | BICL Sk
[ E[B},Pr1C] }
3.47 79 —
( ) 4§ [Ok+dSk+1 C
. B/PJ 1
(3.48) T! = 1 ] j= —1
r E[C 4 4Si51]
Therein, P]{,+1 =0, S; and Si, which are initialized by Syy+1 = 0 and SfVH =0,

contain the noises wg, - -+ , Wk+q4—1 will be explicitly given in the next lemma.
Proof. The proof is stated in Appendix. 0
Until now Sj41 and Siﬂ,j =0,---,d— 1 involved in Lemma 3.5 still remain to
be given. To the end, it is necessary to define some notations.

-1
(3.49) B =), B+ Z @,
1,f+d—k i 1,j—k
(karl,J ¢1 ©k’j + Z ¢n-f-;€‘r Hid + (I)nj-k
f=0
(3.50)
(3.51) k=10, , ok + an_{;d jivs
I3 = 10 4 SO gy 4
f=0
(3.52)
with the initial values
(3.53) PO =1,9% =
(3.54) @) = A, —[B, O|R,'T,
(3.55) LI =65;C, — [B, O|R,'TI
(3.56) I = —[0 I|R,, ' T,
(3.57) % = —[0 IR, ' T

where R,,, T, and TJ,j = 0,--- ,d — 1 are as in (3.42), (3.46)-(3.48), respectively. It
should be pointed that we also need the notations ®J, = 0, ®17 = 0 and I/, = 0 for
Jj <0.

With those notations above, the expressions of S,, and SJ,j = 0,--- ,d — 1 are
provided below.

LEMMA 3.6. The coefficient matrices S, and SJ appearing in the relation (3.40)

This manuscript is for review purposes only.
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320  with k =n are given as

d—1
321 (3.58) Sn = Pnya®) + Z P7{+dH£
f=0
d—1
322 (3.59) 8§ = Poq®%7 +Y " P!t
f=0
323 Moreover, S, and S%,5 =0,--- ,d— 1 only involve noises {wp1a_1, -+ ,Wn}.
324 Proof. Let the inputs uw and v be the optimal for max, min, J(0, N). Then the
325 following representations can be obtained
d—1
326 (3.60) Tpipsr = OF e, + Z I g
j=0
d—1
327 (361) Untk = Hﬁl‘n + Z HfLJ’l}jJrn,d
j=0
328 by inductive derivation over k = 0,--- ,d — 1. From these two expressions and (3.40),
329  we can get the expressions (3.58) and (3.59).
330 What follows is a brief proof for (3.60) and (3.61). According to Lemma 3.5, the
331 optimal u,, v, for max, min, J(0, N) is
d—1
332 (3.62) tn = —[T O|R, (Tnan + > TIvntj—d)
7=0
d—1
333 (3.63) Un = —[0 IR (Thn + > Tivnyja)
j=0
334 Observing (3.57), it is direct to find that the optimal v, as in (3.63) is exactly
335 (3.61) with k = 0. Substituting (3.62) into (2.1), there holds
d—1
336 (3.64) Tnp1 = pan + Z D, vnyj—a
j=0
337 which is (3.60) with k& = 0.
338 Assuming (3.60) and (3.61) hold for k =0,--- ,s—1 and s < d — 1, we will verify
339 that (3.60) and (3.61) also hold for k = s.
340 Similar to (3.62) and (3.64), we have
d-1
311 (3.65) Unps = —[0 TR (Tugstnis + Ty Vnistj—a)
§=0
d-1
342 (366) Tp+s+1 = (I>711+an+s + Z (I):zisanrSJrj*d
§=0

343 It is easy to know that the subscript of vy,4s4j—q, namely, n + s+ j — d is less than
344 n+ s in the second term in the right side of (3.65)-(3.66) because of j =0,--- ,d — 1,
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which means that v,444;-q with s +j —d > 0 can be re-expressed by the inductive
assumption.

Applying the inductive assumption (3.60) with £k = s — 1 and (3.61) with k =
0,---,s—1into (3.65)-(3.66) and using the notations (3.49)-(3.52), (3.60)-(3.61) with
k = s are obtained.

Reminding of the relation (A.22), we have

d—1
(367) )\n+d 1= Pn-l—dxn-ﬁ-d + Z dvn+]
7=0
From (3.60)-(3.61),
d—1 .
(3.68) Tntd = (I)Z:En + Z q)dnﬂvn-‘rj—d
7=0
(3.69) Ungj = Way + > T vn i g
=0

Inserting both of them into (3.67), one will get (3.58)-(3.59). In terms of the recur-
sive relations (3.49)-(3.52), we can see that ®¢ ®%J and IS TSI f = 0,--- ,d — 1

only include the noises {wgtq—1,--- ,wy} and {wgiy, - ,w,}, respectively. As a
consequence, S, and S?,j =0,--- ,d — 1 only involve the noises {wy+4—1, - ,wy,}.0
Lemma 3.6 shows that there are links between Py, 1, Pg_H,j =0,---,d—1 and

Sk+1, Siﬂ,j = 0,---,d — 1. The links will help us to get explicit expressions of
E[C} 4Sk+1] and E[C} 4S7.1],5 =0,--- ,d — 1 appearing in (3.42), (3.46)-(3.48) in
Lemma 3.5.

LEMMA 3.7. The following relations hold for k=0,--- N and j=1,--- d:

(3.70) E[Cl14Sk+1] = (Plg—i-ll)
(3.71) B[C}4Si 1] = mi, + 64— (C"Py,,C + 0C' Py, C)
with
‘ J
(372) m?c = Z(Tliwz k+leg+Z + Z 62 J Plgl+lz+zl C
=1
(3.73) ki=k+d-1

where 9; is a Kronecker operator with the center in 0.

Proof. The proof of Lemma 3.7 is based on Lemma 3.6 and inductive derivation
over k=N,---,0.

As k= N, (3.70) and (3.71) are trivial since the initial matrices value Sy41 =0
and Py, =0,5y,, =0 with j =0,--- ,d - 1.

Assume (3.70) and (3.71) hold for all & > n. Then (3.42), (3.46)-(3.48) can be
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12 H. WANG, M. FU, AND H. ZHANG
rewritten as

[ E[B, Pyy1By] B'PY}
(PEDYB - mit + BICL P, Ci]
[ E[BjPri1 Ak ]
| E[C) 4Sk+1]A
[ E[B},Pey1Cy]
L E[Cllc+dsk+1}c
B/Pj*1

k+1 =1 1
E ) — 7] 7 e ) d -
L [Cllc—i-dslz:—&-h ]

(3.74) Ry = +A

(3.75) Ty, =

(3.76) ?

(3.77) Tj

Consequently, (3.43)-(3.45) can be reformulated as

P, = AP 1A+ 0A' P A~ TR 'T), + F'F
(3.78)
(3.79) P) = A'Py1B+0A' Py B-T\R,'T
(3.80) Pl = APl —T\R;'T]
What follows is to prove (3.70)-(3.71) also hold in the case of k =n — 1.

These two equalities

d—1—m
(3.81)  E[C), S, = (P hE@E ™+ Y [C'Pl,
f=0
= (T YR, T B
=1
) ) d—1—-m
(3.82)  E[C), S = (Pr—hE@I™+ Y [C'PL,
f=0

(T YR, T EMTL)

I

@
Il
—

J d—2
d—i— - | —1 d—i—
- Z (Tn+: 1)/Rn-&1-zT'Z,+z + Z 5‘7‘*7;(Pn+1?+12)lc
i=d—m i=d—m

+q—1—; E[C,’LPnerCn]

are very useful for our proof. They can be proved by inductive derivation over m =
1---,d and straightforward expectation calculation based on Lemma 3.6 and matrices
(3.49)-(3.57), so we omit it here.

Let m = d in (3.81) and (3.82), we will see (3.70) and (3.71) hold for k = n — 1.
Now the proof is completed. 0

According to Lemma 3.7, some matrices appearing in Lemma 3.5 are simplified
further in the following remark.

Remark 3.8. Those notations related to E[C} ;Sk11] as well as E[C’,’HdSiH],
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appearing in Lemma 3.5 can be rewritten as

(3.83)

(3.84)

(3.85)

(3.86)

7 - | E1By Pret1 Ax] }
(Pk+1 ) A
70 = [ E[Bi;dffklﬂck] ]
| (Pen)'C
Tj _ L B/PIg-le B B o
ET LRI = Sy R T
R — [ E[BLPkdtllBk] (PH)'B ]
B/Pk+1 E[Cllc+dplé+d+1ck+d]

d
. d— _ d—
tdiag{l, —*1 = Y (T [V R j  Tif)
f=1

Further, (3.43)-(3.45) are expressed as

(3.87)
(3.88)
(3.89)

P, = APo1A+0A' Py A— TR, 'T, + F'F
P) = A'Py1C+ 0 A' Py C — TUR'TY

Pl = APl | - T|R'T]

13

Remark 3.8 provides a more direct but equivalent result than that in Lemma 3.5,
which is very useful in the next section.

4. Sufficient condition of H,, control for stochastic systems with pre-
view. In the section, we will verify that the necessary condition in Lemma 3.5 is also

sufficient for the solvability of the H,, control problem with disturbance preview.

Although the same notations as the last section are introduced at the beginning
of this section, please note that their meanings are actually different because Ry and
T),j=1,---,d—1 appearing in (4.1)-(4.3) and (3.87)-(3.89) are different.

Before our proof begins, we need to define some notations.

—~ o~ o~~~
L
[ O
=2 =20

,.4;
t
=

Py = APy A+ oA P A= TR, 'T), + F'F
P) = A'Pyy1C+ A Py O — TR 'TY
P = A'PL} - TUR T

[ E[BjPyy1By] (P1)'B
Ry = . B'Pi Bkﬂ(di 1,d—1) ] t4
T, - [ E[Bllcdlikl+1Ak] ]

(i)' A

70 = [ E[B} P11 Cy] }

| (Pe)'C
m_|  BPL }

Pl Bresa(d—1,5-1)
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14 H. WANG, M. FU, AND H. ZHANG

with

(4.9) Bi(ird) = Bryr (i — 1,5 — 1) = (T R T}
(4.10) Br(4, i) = Br(i, )

(4.11) Bi(0,§) = C"PlTy — (T))' R, T}

(4.12) Br(0,0) = E[C}Prs1 Ci] — (T0) R T

Fori=0,---,d—1and =0, ---,d— 1, the initial matrices value of P,g and Sk (1, 7)
are given as Py, = 0 and By11(i,7) = 0.

Remark 4.1. In fact, the relationships (4.2)-(4.3) together with their initial values
means that P} = 0if k+j—d > N—d. Similarly, B (¢, j) = 0 if k+max{i,j}—d > N—d
follows from the relation (4.9) and the initial value of Sy (3, ).

Now a condition is provided to guarantee the solvability of the H, preview control
problem for a given ~.

LEMMA 4.2. For a given~y > 0. If (4.1)-(4.3) admit solutions such that Ry and A
have the same inertias, then the Hoo control problem (2.5) subject to (2.1) is solvable.
Moreover, the Hy, central controller uy and the worst-disturbance vy, admit

d—1
) ) |
(113) ) = R i+ T T
i=0

Proof. Define a value function by

d—1 d—1d—1

(414)V (k, 21,) = EljPrre +2) 24 Plokj—a+ DY Visj—aBi(is j)okti-d)
j=0 i=0 j=0

where T = col{xg, vg_1," - ,Vp—d}-

Then we have

(415) V(k + 1, J_Zk+1) = E[$;€+1Pk+1$k+1

d—1 d—1d—1
2 J / ..
42 @ Pl viaiea+ DY VhgrioaBrr () Uk —d]
=0 i=0 j=0

Plugging (2.1) into (4.15) and Completing square over col{uy, vy} will yield
(4.16) V(k+ 1, Tpr1)

i
_ 1Al ot p—1 Uk + Uy, o+ U
= Bl (Ap Pop1Ax — TRy, Ti) i + { vk, + U ] B { vk + 7y,

/ 2.7
—UpUg + Y ULV

d—1
+22) (A} Poy1 Cr — TR TR op—a + 224, Y (AP — TER, T ) okyj—a
j=1

d—1d—1
! / / i\ p—1J
03— 4Cr Pry1Crvp—a — Z Z Vpiea(Th) Ry, T Vetj—a
i=0 j=0
d—1d—1
+22’0k (ORI —a + YD VhyicaBrpr (= 1,5 — Doy ]
=1 j=1
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158 where
s -1
459 (4.17) { ?f ] = R;l(Tkxk + ZTgvkﬂ-,d)
v =
160 Applying (4.1)-(4.3), (4.9) and (4.11)-(4.12) in (4.16) yields
461 V(k+1,%k11)
!
_ ’ o ur + ”L_LZ Ur + ﬂz
162 = E[],‘k(Pk FF)a:k—F l: o +T)Z :l Ry, [ o +T)Z )
463 —ufuk, + Y200k
d-1 d—1d—1
164 +2), Z Plvgtj—a+ Z Z Voi—aB (i ) Ukt j—d]
j=0 i=0 j=0
465 Now it is straightforward to obtain
466 (4.18) V(k,Zp) = V(k+1,Tpt1)
N /
P _ IRl / 200 - UkJFﬂ/t UkJFﬂ;;
167 = E(x), F' Fay, + ujur — v 05,0 ; [ vk + T ] Ry [ vh + T )
YT up+ar | wy + 4

AR _ / A2 _ k k k k
468 E(z2, — v u,vg ];){ oh+ T } Rk[ on+ T })
169 Adding (4.18) from k =0 to k = N, we have
470 (4.19) V(0,Z9) = V(N +1,Zn41)

al a up + a1 Ug + Uy
e _ / A2, k k k k
471 kZ_OE[zkzk 0% Ukvk]+kz_()[ vh+ T ] Rk[ vp + T ]

172 Ask=N+1,V(N+1,Zn11) = an+1Pvr12n+1 from (4.14) and Remark 4.1; On the
473 other hand, as k > N —d, Ry, = diag{ E[B},Py+1By+1], —*I} from (4.5) and Remark
474 4.1; vi = 0 because the blocks in 7}, and Tg,j =0, ---,d—1 corresponding to vy are
475 null, which originates from Remark 4.1, as k > N —d, Pgil =0and Bx(d—1,5) =0.
476 Now it is easy to get from (4.19)

N e 7/ ok N
177 (4.20)  J = V(0, %) +Z [ i+ U } Ry, [ o+ T } + 72 Z v}
k=0

v + Uy, Vi + Uy, N
478 Given that Ry and A have the same inertia, (4.20) shows that J < 0 holds when
479 the initial data Zg = 0 and ug = uj. 0
480 At the moment, we associate the sufficient condition in Lemma 4.2 with the nec-

481 essary condition in Lemma 3 and give the following necessary and sufficient condition
482 for the solvability of the H,, preview control.

483 THEOREM 4.3. For a given v > 0, the Hy, preview control problem (2.5) subject
484 to (2.1) is solvable if and only if (3.87)-(3.89) with 3.83-3.86 admit solutions such
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16 H. WANG, M. FU, AND H. ZHANG

that diag{Q, Ax} and A have the same inertias. Moreover, the Hy, preview control
law is given as

(4.21) u, = — Q. (BB}, Pii1Ar) vk + E[B},Pii1Crlvg—a

d
+ Z B/P]zlllvk+jfd)

j=1
In the above,
(422) Q=1+ BIP]C+1B + UB/Pk+1B
(4.23) A = 7’}/21 + C’Pk+d+1C + (TC'/P]H_d_HC

d
d—1 1 d—1
Z lc+f Rk-i—f k+f — (PZL)'BQ, " B'P

Proof. The straightforward calculation shows the explicit expressions of S (i, )
in the aforementioned as follows. In the case of ¢ < j, from (4.9) and (4.11),

.. 1—1
(4.24) Br(i,j) =C" Plg-i—z-i-l - Z( k+f) Rk+f k+]{
=0

In the case of i = j, from (4.9) and (4.12),
i

(4.25) Bilirj) = E[ChyiPrrin1Crri] — > (Ti )V Rt Tih
=0

As for the case of i > j, the explicit expression will be given by (4.10).
With the explicit expression of By (i, ), Ry and T},j =1,--- ,d — 1 can be read

as
. B'Pl
(4.26) T =|  pa-i-1 e
k ( k+]]+1) ¢ - Z ( lc+f)Rk+f k+JJ:
E[B},Py11By] (PELYB
(4.27) Ry, = { v
B'PL E[Cl/chd Pyt a41Ck+d

2
+diag{Il, —v"I — Z ) Rt T
=1

Now it is clear that (4.1)-(4.3) can be reformulated as (3.87)-(3.89), which together
with Lemma 3.5 and Lemma (4.2) shows H,, control problem is solvable if and only
if (3.87)-(3.89) have solutions such that Ry and A have the same inertia. In order to
obtain a preview control law, after making a LDU decomposition for Ry, (4.20) can
be rewritten as

N
(4.28) J(O,N) = )+ Z (ug + uf) Qe (ug, + y)
k=0

N—h
+Z (vr + 05) A (vr + 07)
k=0
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with
(4.29) uj, = Qp N(E[By, Poy1Ak)zr + BB Pry1Clvk—d
d
+> B'Pl ki a)
j=1
and 0F = v} as in (4.17). Consequently, the Ho, preview control law can be chosen

as —uj, ie. , (4.21). d

To compare the performances of the H., preview control and the standard H,
full-information control, we present the following theorem.

THEOREM 4.4. For a given v > 0, the Hoo full-information control problem (2.5)
subject to (2.1) with d =0 is solvable if and only if

(4.30) P, = AP A+ 0A' Py A~ T\R'Ty, + F'F

admit solutions such that diag{Qx, Ay} and diag{I,—~v?I} have the same inertia.
Moreover, the Ho full-information control law is given as

(4.31) uy, = = (BB}, Pit1 Ax)xr, + E[B}, Pit1Cilur)

In the above,

(4 32) Ry, = E[B];Pk-i-lBk] + 1 E[B]/gpk—&-lck]
’ E[O,;Pk_;,_lBk] 7’)’21 -+ E[C,;PkHCk]
B’ B .
(433) T, = |: c’ :| Pk-+1A+ |: o :| Pk+1A
(434) Q=1+ B/Pk+1B + O—BIPk+1B
(4.35) Ay, = =721 + E[C}, Py 1Cy]

—E[By Pi11Cy)'Q;,  E[By Py 1 Cy]

Proof. The necessity and sufficiency can be proved by applying the similar lines
to Lemma 3.1 and Lemma 4.2, respectively, we thus omit them. 0

Remark 4.5. The result generalizes the deterministic H,, control theory in state
space [14] and the idea is different from that of the existing literature [4] and [10].
Specifically, [4] and [10] solved the H,, control problem for stochastic systems by
obtaining the stochastic version of bounded real lemma. Moreover, [4] and [10] assume
that the controller is linear state-feedback, and the results are given by linear matrices
inequality.

5. Further discussions. In the section, we provide some explanations concern-
ing the relationship between the achievable performance v and the preview length d.
The derivation of the necessary and sufficient condition in the last two sections offers
some evidences supporting our explanations.

From Theorem 4.3, we know ~ is determined by the constraint Ay < 0. It
together with (4.23) means that v nonlinearly depends on all of coefficient matrices
in the system and the weighted matrices in performance index.
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According to (4.23), there holds

(5.1) Ay = I + E[C}; ¢Prtat1Crtd]
—E[Bi+aPrtar1Cridl Gt 4 B[BrtaPrsat1 Crod]

d—1 -1 d—1
*C,Pk+d+1 Ak-i—d (Pk+d+1 )/C

d—1

=D (TP R T, — (B B B R
f=1

Since max,, min, J(k, N) > min, J(k, N) for any v;,i = k,--- , N and a candidate of

min Jy (k, N) > 0 with v; = 0,i = k,--- , N, max, min, J(k, N) > 0. It shows P, >0

and B (4,7) > 0. Associated with (4.25), there hold

E[Chtit1 Prrir2Cryiza] 20

1
o 1 o
E[Cllc+i+1pk+i+20k+i+1] 2 E (le+{+f)le+1+lez+}1c+f
f=0

At the moment, it is direct that in order to guarantee that there exists v > 0 such
that Ay < 0 and
(5.2) Brs1(d—1,d—1) > (P{ 1) BQ 'B'PYL).

Observing Ay in Theorem 4.4 and A in Theorem 4.3, we find that there is
possibility to find a smaller v for the H,, preview control problem than «y for the H,
control for delay-free stochastic systems since the last three terms appear in Ay in
(5.1).

An intuitive analysis is given from the game theory in the sequel. As the two play-
ers, the control v and the disturbance v try to minimize and maximize the performance
J(0, N), respectively. The term v;(T:;f)’R;ing;]{vk can be regarded as the contri-
bution of these two players’ decision using the information v at instant k& + f to the
game value. This contribution will be very small in that they play the game. Yet the
player u contributes an additional value v}, (P,‘j;ll)’BQ,;lB’ Pg;llvk to the game value
at k instant, which may surpass the player v’s contribution U%C’PSJ:;HA,;jd(Pg;;H)’
Cuy, at k + d instant because vy, is the historical information at k + d and plays a
increasingly weaker role as d increases. Based on this and (5.1), there are two conclu-
sions. One is that H,, preview control can suppress the external disturbance better
than the standard H,, full-information control, i.e. the former has a smaller distur-
bance suppression level . The other one is the dependence of achievable performance
on the preview length. Specifically, the larger the preview length d is, the smaller
v is. Yet we should also notice that the performance v may saturate for a certain
finite preview length, which may result from that the early historical information may
not be useful. Our two conclusions and the saturation phenomenon are supported by
Figure 1.

6. Example. In this section, we provide an example to illustrate the H., control
for stochastic systems with disturbance preview.

Figure 1 [11] is a schematic of the quarter vehicle active suspension configuration.
It is broadly representative of the fundamental suspension problem of isolating the
vibration from the road. In this figure, mg is the sprung mass, which represents
the vehicle chassis; m, is the unsprung mass, which represents mass of the wheel
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Fic. 1. the quarter vehicle active suspension

assembly; Fy and F are damping force and elastic force from the suspension system,
respectively, and ¢; and kg are corresponding damping and stiffness, respectively; Fy
and F; are damping force and elastic force from the tire, respectively, and k, and
¢, stand for compressibility and damping of the pneumatic tyre, respectively; zs and
z, are the displacements of the sprung and unsprung masses, respectively; u is the
active input of the suspension system; z, is the roadway elevation at vehicle, and it
can be measured by the sensor mounting the suspension in advance and is thereby
the same as that at the sensor position but delayed by a time (equal to the distance
of the sensor in front of the vehicle divided by the vehicle velocity).
The dynamic equations of the sprung and unsprung masses are given by

(6.1) msZs + ¢s(2s — 2u) + ks(zs — 20) = u
(62) msfés —+ Cs(és — Zu) + ks(zs — Zu) + C'u,(z'u. — Zr) + ku(zu - Z’r) = —U

Define the following state variables:

(6.3) T1 = 25 — 2y
(6.4) Ty = 2y — 2r
(6.5) v3 = 4
(6.6) Ty = Zy

where x1 denotes the suspension deflection, x5 is the tire deflection, x3 is the sprung
mass speed, and x4 denotes the unsprung mass speed. We define disturbance input
v = %, which describes the roughness of the road. Then, by defining x = [z, —
Zu, (2s — Zu), Zs, 2u)’, the dynamic equations in (6.1)-(6.2) can be rewritten in the
following state-space form

(6.7) z=A.x+ Bu+ Cov
where
0 0 1 -1
0 0 0 1
(68) AC = _ ks 0 _ Cs. Cs
kTa kit C:ns ZLjrCt
(6.9) B.=[0 0 L LY
(6.10) Co=[0 -1 0 —2& ]
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20 H. WANG, M. FU, AND H. ZHANG

In designing the control law for a suspension system, we need to consider ride com-
fort. It is widely accepted that ride comfort is closely related to the body acceleration.
Therefore, when we design the controller, one of our main objectives is to reduce the
body acceleration, that is, 3. In addition, in order to make sure the vehicle safety,
we should ensure the firm uninterrupted contact of wheels to road, and the dynamic
tire load kyzo should be small so that |kize| < (ms + mu)g. Because of mechanical
structure, the suspension stroke x; should not exceed certain allowable maximum and
it should be small either. Therefore, when we design the control law, our main ob-

/
jective is to guarantee that the regulated signal z = { P13 pg(mﬁifim P3T1 } ,

a weighted column vector reflecting suspension body acceleration, the safety index
(proportional to the tire deflection) and the body displacement (suspension stroke),
is less than the weighted roughness of the road in the sense ||z|| < 7||v||, where
pi > 0,7 = 1,23, are weights and are used for adjusting design preference. Now
according to (6.7), z admits

(6.11) z=F.x+ D_.u
where
ks Cs Cs
Pl 0 TPl Pl
(6.12) F.= 0 mmfﬁ 0 0
03 0 0 0
(6.13) De=[pm= 0 0]

It is clear that system (6.7) has its matrices (A., Be, C.) depending on the physical
parameters kg, ky, Cs, ct, ms. When they randomly deviates from their nominal val-
ues as a result of oscillatory motion and the change with the operation conditions,
ks, ku, Cs, ¢, s can be modeled as ks +wis(t), ky + Wiy (1), Cs +wes (), co+Hwee (), ms+
Wps(t), here, ws(t), Wi (t), Wes(t), wet (t), wms(t) are independent white processes
with varinces oys, Ogu, Ocs, Octs Oms, respectively. The simple derivation shows that
Zwks(t), ;- Wku(t), - Wes (1), 75 wet(t), 72-wms(t) are white processes with vari-

? Oku
ance o. In particular, the approximation m:n{ (1- me(t)) is used. This is
the reason that we study the model with the multiplicative noise in this paper.
We borrow the quarter-vehicle suspension model parameters from [9] and list it in

Table 1. Via the discretization of the vehicle suspension (6.7) and consideration of the

TABLE 1
vehicle suspension parameters

My My, ks Cs ky ct
973kg | 11dkg | 42720N/m | 101115N/m | 1095Ns/m | 14.6Ns/m

parameter random uncertainty mentioned above, we obtain a discrete time stochastic
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system in the form of (2.1)-(2.2) with

0.0251 01582 0.0176 —0.0164
0.0660  0.8403  0.0022 0.0167
(6.14) A=\ 07711 —02260 09722 0.0263
| 61633 —14.8141 02248 06133
0 0 0 0
- 0 0 0 0
(6.15) A=100002 0 00004 0.0002
| 0.0002 0.0002 0.0004 0.0004

0.0018 0
s —0.0016 | - 0
(616)  B=10""x1 0180 [Z=1 0.0001
—0.1443 0
[ —0.0011 0
—0.0189 | - 0
617 C=1 g0015 ['C=| o
| 0.1618 0.003
43905 0  —0.1125 0.1125 0.001
(6.18) F = 0 0.9492 0 0 D=1 o0
08 0 0 0 0

where the sample period 7' = 0.02, and p; = 0.1, p3 = 0.1, p3 = 0.8.

In the following, applying the more general version of Theorem 4.3 to the system
(2.1)-(2.2) with (6.14)-(6.18), we will illustrate the performance of the closed-loop
discrete-time suspension system with disturbance preview and random parameter un-
certainty. Evaluation of the vehicle suspension performance is based on the examina-
tion of the sprung mass acceleration &3 (body acceleration), the safety index zo (tire
deflection x5 ), the sprung mass displacement z; (body displacement) and the H
level . A controller is to be designed such that the regulated signal z is bounded
by the weighted disturbance. In order to evaluate the suspension characteristics with
respect to ride comfort and safety, the variability of the road profiles is taken into
account. In the context of the vehicle suspension performance, road disturbances can
be generally assumed as shock. Shocks are events of relatively short duration and
high intensity, caused by, for example, a pronounced bump or pothole on an other-
wise smooth road. In the following, a kind of road profile is used to validate the
performance of the presented control approach. Now consider the case of an isolated
bump in an otherwise smooth road surface given by

(6.19) Zr = é(l - cos(QWét))

where A and L are the height and the length of the bump. Assume A = 80mm, L =
15m and the vehicle forward velocity V' = 45(km/h).

As Figure 2 shown, the random uncertainty deteriorates the suspension perfor-
mance, in other word, the body acceleration z;, body displacement x, safety index
z2 and the H., performance = increase as the random uncertainty of the suspension
increases (i.e. o becomes larger). On the other hand, the more the disturbance pre-
view (larger d), the better the suspension performance, which means that the body
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F1G. 2. Bump response of the vehicle active suspension

acceleration z;, body displacement x, safety index z, and the H,, cost v are smaller
when more disturbance preview is utilized by the controller.

We also depict the curve of the optimal v versus the preview length d for N =
300 and several different ¢ in Figure 3. From Figure 3, the curve for ¢ = 0 is in
agreement with the one provided by the method in [27]. Besides, we also observe two
phenomenona from Figure 3. One is the same conclusion as in Figure 2. The other is
that using too much disturbance preview will not improve the suspension performance
~ abidingly and the H., performance will saturate after a certain length d.

7. Conclusions. In the paper, we obtain an analytic solution to the H., preview
control problem, which is an outstanding problem. It is shown that the problem is
solvable if and only if a group of equations have solutions and an inertia condition
holds. The proof depends heavily on how to characterize the necessary condition
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Fic. 3. Optimal Hee performance versus the length of preview in our example

better as the problem is solvable. We characterize it by a pair of stochastic difference
equations with the aid of the projection principle in indefinite space which is helpful
to get an explicit link between the two variables in the pair. The idea can also be
used to solve the standard H, control for stochastic systems completely and provide
a solvability condition very similar to that for the deterministic counterpart. In fact,
the idea can be applied to solve the game problems for stochastic systems with input
delays too.

Appendix A. Proof of Lemma 3.5. We will present the proof of Lemma 3.5
here by using dynamic programming, which provides an effective means of obtaining
the optimal solution to the minimax problem by solving a sequence of static games
in reverse time.

For using dynamic programming, we define a similar notation as in the proof of
Lemma 3.1. Let

- TP 201012
(A1) I8 = ], =Pl
Then
N N—d
(A.2) J(i,N) = E[Z 22k — 7> Z v}, Uk
k=i k=i
N N—d
= E[Z(x;CF’ka + ufuy) — > Z VL VK]
k=i k=i
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In fact, in the case of i > N —d,

(A3) ‘](Z7N) = ||Z||522[i,N]

N
=FE E 252k
k=i
N

= Ez:[ar:;cF’Fa:;C + ujuk)
k=i

since Zg;id v, = 0.

With the same reason, if there is an adapted controller such that (2.5) holds for
some y > 0, (3.2) is solvable. According to Lemma 3.1, the optimal u; and v can be
characterized by (3.4) and (3.5). It should be stressed that the delay in disturbance
input vy leads to a special characterization (3.5) of the optimal vg, where there is a
time-lag between adapted processes v and Agiq4. It will be very difficult to obtain
the solvability and the optimal inputs.

In order to re-express the optimal game value, we derive a relation as follows

S

(A.4) TpNe—1 — Ty 1 Ak
= E[x;q(E[A;cAkLFk*l] + F/F.’L'k)
—(Agzy, + Brug + Crvg—a) i)

=F J,‘;gF/F.Z‘k — (Bkuk + C’kvk_d)’/\k]
Applying (3.4) in the relation (A.4) leads to

(A.5) B[z} Ae—1 — T 1 M0]
= E[z},F'Fx), — Clvj,_ g\, + ujug]

Adding from k =n+1 to k = N on the two sides of the equation (A.4), we have

(A.6) Elz), 1A — @y AN]
N
= Z B[z} F' Fxy — Clvj,_ Ak + ujug)
k=n-+1

Denote the optimal game value max, min,, J(n+1, N) as J*(n+1, N) and apply (3.5)
for £k > n+ 1, then

min{n+d,N}
(A7) J*(n+1L,N)=Ex, Ml + > Elp_4Cili
k=n-+1
Let
(A.8) J(n,N) = J"(n+1,N) + 2,2, — v*v, v,

According to the dynamic programming principle, global optimization is the same

as local one, i.e. if maxmin ||Z||122[0 N T HU||122[0 n_q 18 solvable, max min ||z|\l22[ o

||U\|l22[i ~_a 18 Inevitably solvable, here 0 <@ < N. Moreover, the optimal solution of
the later is in accordance with the former’s in the overlapped interval [i, N]. Hence,

J(n, N) is solvable over u,,, vy,.
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With the above preparations, we now prove the three conclusions in the lemma
using the inductive method on k.
First consider the case of k = N. Applying (2.1), we have

(A.9) J(N,N) = Elzyzn + ¢y 1 PNt12N41)
= Elxy(F'F+ AyPyi1AN)TN

+u'y (I + ByPni1Bn)uy

Ty _qaCnPr+1CNUN -4

+22/y AN Pna1(Byun + Cnvn_q)

+2u'y By Pny1CNUN _d]
Because (3.2) is solvable, so is max, min,, J(N, N). Given that J(N, N) only contains
a variable uy to be determined, max, min, J(N, N) actually becomes min,, J(N, N).
Hence, E[I + B\ Py1+1By] > 0 and Ry = diag{E[I + B\ Py1+1Bn],—7*I} has the

same inertias with A.
According to (3.4), the optimal uy can be given as

(AlO) UN = —E[I + B§VPN+1BN]_1(E[Bg\IPN-&-lAN]-rN
+E[B;VPN+1CN]’UN,(1)
which associates with vy = 0 shows (3.38) holds because of the facts Syy1 =
0,Pl, =0,5%,,=0,j=0,--- ,d—1.
Inserting (A.10) and (2.1) into (3.6),
(A.11) AN—1 ZE[A/N)\N‘]:N_J—FF/FxN
= E[AINPNJrl(AN.’L‘N + Byuyn
+CN'UN—d)|]:N71] + F/FxN
= E[ANPni1(Avey + Cnon—g
—BNE[I + By Py 1By (E[ByPni1AN]zN
+E[B§VPN+1CN]UN7d)] + F/F.’L'N
X E[I + By Pyi1By| ' E[By Pyny1An]) N
+(E[ANPy+1CN] — E[Ay Py+1By]
X E[I + B\ Pyn41By] ' E[By\Pni1COn]uN—a)
The direct algebra calculation from (3.43)-(3.45), (3.46)-(3.48) and the initial matrices
values Sy 1= 0,5y, =0,P,, =0,j=0,---,d—1 gives Py = E[AyPni1AN] +
F'F — E[Ay Py 41 By E[I + By P11 By| " E[By Px41An), Py = (E[A} Px1 Oy —
E[APni1BN)E[I + BEVPN+1BN]71E[BEVPN+1CN]7 and PIJV =0,7=1,---,d—1.
Comparing them with (A.11), we can see that (3.39) holds as k = N.
What follows is to prove (3.40) holds for k = N. If the delay d = 1, then

(A12) )\NJrh,l = >\N = PN+1.’EN+1.
Plugging (2.1) and (A.10) into (A.12) yields

(A13) )\N+d71 = PN+1(AN — BNE[I + BEVPNJABN]_IE[B&PN+1AN]).’EN
+PN+1(CNBNE[I + B;VPN+1BN]71E[B§VPN+1ANDUN—d
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which indicates that An_yq—1 is in the form as (3.40) and the related coefficients only
involves wy. If the delay d > 1, then

(A.14) AN+d-1 =0,

so it is trivial and (3.40) holds for k = N .

Inductively, assume those three conclusions in the lemma holds for all &k > n + 1
, we will verify that those three conditions hold for k = n.

Since the case for n > N — d is simpler and it can be handled with the similar
lines with the case for n < N —d , we assume n < N — d. Plugging (A.7), (3.6) with
k=mnand (2.1) in J(n, N) yields

(A.15) J(n,N) = J*(n+1,N) + 2}, 2, — Y*0,,vp
min{N,n+d}
= Ele, ]+ Y Ei_aCiM]]
k=n-+1

+zgzn — vzv;vn
= E[(Anxy + Bpuy + Cpvp_q)’
d—1

X(Prt1Zni1 + Y Payitniiyiod)]
i=0
min{N,n+d}

+ ) B O]
k=n+1

+a! F'Fa, 4 ulu, — v v,
As we focus on the quadratic term over the vector col{uy,,v,} in J(n, N), there holds

(A.16) J(n,N) = E[(Byuy)'(Po1Bnun + P {v,)]
+un iy, + EV),Ch gAnta] — V2 0R0n +
= B[(Bpun) (Poy1Bnun + Piriv,)
-l g, — 2l v,
+E[U%C;+d(sn+1Bnun + Sg;%vn)}
un ]’ U
_E|:/Un:|Rn|:vn:|+...
Observing the above expression, if the inertias of R, is not equal to that of the matrix
diag{I,—~?I}, one can come to a conclusion that max, min, J(n, N) is not solvable,
which conflicts with our previous result about it. Therefore, the inertia of R,, equals

to that of diag{I,—~*I} as max, min, J(n, N) is solvable.
In light of (3.4)-(3.5) and the relation (3.39)-(3.40), there holds

-1

(A-17) —Up = E[Bn(Pn-i-lxn-‘rl + Z Per+1Un+1+j—d)|]:n—1]
=0
d—1 )

(A.18) Y2on = E[Crta(Snt1@ns1 + Y Shi1ni1ej—a)|Faoi]
=0
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Plugging (2.1) into them generates

B Up, E[B!, Pyi14,)
(A.19) 0=R, { . ] + [ E[C;H-dsn—i-lAn] Ty

d—1 i—1
E[B,P’ E[B], Py 11Cy,
+Z |: E[[ / n;r—l]l] :| Untj—d + |: [ / 1 ] Un—d
j=1

n+dSn+1 E[C’n+d5n+10n]
where we use the fact that S, and Sle’ j =20,---,d—1 only involve the noises
Wnbds Wntd—1, " sWn+1. Now applying the notations (3.46)-(3.48), the optimal ug, vy

admits (3.38).
In the sequel, we will verify the relationships (3.39)-(3.40) hold for £k = n. By
virtue of (3.6),

(A.20) An_1 = E[A! A\p|F] + F'Fa,,
(A.Zl) Antd—1 = E[A;m+d)‘n+d|]:n+d] + F,F$n+d

From the inductive assumption, (3.39)-(3.40) hold for k = n + 1, consequently,

d—1
(AZQ) Ap—1 = E[A;L(Pn+11'n+1 + ZPTJL+1Un+1+j7d)|fn] + F’Fl’n
j=0

d—1

(A-230\nta1 = EIA) g(Prorar1Tni + Z Pl girVniiti—d)| Fovd + F' Fonyq
=0

Substituting the system (2.1) with & = n and the expression (3.38) of the optimal
ug, Vg with k& = n into the equality (A.22) and applying the recursive relations (3.43)-
(3.45), one can derive that (3.39) holds for k = n. Apply (2.1) withk =n, - ,n+d—1
and (3.38) with k = n,--- ,n+d—1 in (A.23) until there only contain those terms over
ZpyUn—1," " ,Un—q and then rearrange them, a relation like (3.40) can be obtained,
and therein all of coefficient matrices indeed involve the noises {ws,, -+ , Wp+q—1}. At
this moment, the case for k = n has been clarified. The inductive proof is completed.
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