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Abstract: In this paper, we consider a number of technical problems associated with identifica-
tion of linear systems using quantized and intermittent information. More specifically, we study
asymptotic properties for identification of such systems, including strong consistency, asymptotic
normality and asymptotic efficiency, and determine their relationship with quantization errors
and the packet losses. Furthermore, we discuss how to design quantizers to improve these
asymptotic properties. Some open problems will also be proposed.
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1. INTRODUCTION

This paper is concerned with identification of linear sys-
tems using quantized and intermittent information. This
setting is motivated by networked control systems where
sensor measurements and actuator signals are transmitted
over a digital network. In contrast with traditional system
identification problems, limited communication capacity
imposed by network resource constraints means that it
is essential to understand the tradeoff between commu-
nication resources and identification performance. More
specifically, we need to know the adverse effect of un-
desirable properties of network communications, such as
quantization errors, packet losses and transmission delays,
on the key properties of system identification. Conversely,
we need to know how much communication resources,
expressed through communication network design param-
eters such as data rate, packet loss rate and latency distri-
bution, are needed to deliver a given measure of system
identification performance. In this paper, we will focus
on data rate and packet loss rate constraints only, but
it should be recognized that the key concepts and ideas
discussed in this paper can be readily generalized to treat
transmission delays as well.

System identification using quantized information has
been a rich area in recent years; see e.g., Wang et al. [2003,
2010] and references therein. In Wang et al. [2003], a com-
prehensive treatment on quantized system identification
is presented for single-input-single-output linear discrete-
time stable systems. Using periodic input signals, the com-
putational complexity and the impact of disturbances and
unmodeled dynamics on the identification accuracy is also
studied in Wang et al. [2003]. This work has been extended
to various other system models such as rational models,
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Wiener systems and Hammerstein systems Wang et al.
[2010]. Although these identification algorithms are shown
to be optimal in the sense of asymptotically achieving
the Cramr-Rao lower bound Wang and Yin [2007], the
assumption on periodic inputs makes the identification
algorithm inappropriate for tracking control applications.
The periodic input assumption is dropped in Godoy et al.
[2010], where an algorithm has been proposed for identify-
ing moving-average (MA) models using quantized output,
under the maximum likelihood criterion. In Marelli et al.
[2011], identification of auto-regressive moving-average
(ARMA) models has been considered using both quantized
and intermittent measurements. Special care was taken for
ARMA models because, in contrast with MA models, the
loss of a measurement cannot be dealt with by simply
removing the corresponding output error equation from
the identification recursions.

The goal of this paper is to provide conditions to guar-
antee certain asymptotic properties for system identifi-
cation based on quantized and intermittent data. These
properties are strong consistency (whether the estimated
parameters will converge to the true parameters with prob-
ability one), asymptotic normality (whether the estimation
error will converge to a normal distribution and which
will be the value of the error covariance) and asymptotic
efficiency (whether the asymptotic error covariance matrix
will approach the Cramr-Rao bound). For doing so, we aim
to generalize our analysis in Marelli et al. [2011], which was
done considering an ARMA model, and assuming that the
input signal is known, and the output noise is white. To
this end, we state in Lemma 1, a set of technical conditions
on the data and the statistical model, which guarantee the
above asymptotic properties. These conditions are given
in a very general setting, so that they can be used to
guarantee asymptotic properties for a wide range of system
identification problems. We then show how to use this
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result to derive the conditions obtained in Marelli et al.
[2011] for the problem described above.

A unique feature in networked control systems is that the
data rate constraint leaves the flexibility for the choice
of quantizer. Thus, not only the quantization effect on
system identification needs to be understood, a much more
interesting and technically challenging problem is how to
jointly design the quantizer and the corresponding estima-
tion algorithm to minimize the estimation error. The main
challenge lies in the fact that the unknown parameters
are inaccessible to the design of an optimal quantizer.
For example, to estimate θ under binary quantization
of y = θ + v, where v is a Gaussian random variable
with zero mean, an optimal quantizer to minimize the
mean square error (MSE) is to simply place the quantizer
threshold at θ Ribeiro and Giannakis [2006]. However, such
threshold selection is impractical since θ is not available at
the estimator side. Instead, appropriate adaptive schemes
are needed for the selection of quantization thresholds.
Another major difficulty in quantizer design is the pos-
sible temporal correlation of the signal to be quantized.
Although this difficulty exists in the problem of state
estimation with quantized information (see, e.g., Sinopoli
et al. [2004], Schenato et al. [2007]) and many effective
algorithms exist for treating this problem, quantizer design
for system identification is more involved because, in this
case, the temporal correlation typically depends on the
system parameters to be identified. A key question we are
interested in is how to select the quantization thresholds
and quantized values in a recursive manner so that the
asymptotic properties of parameter estimation are opti-
mized.

The rest of the paper is organized as follows: In Section 2,
we formulate the technical problems with regard to the
asymptotic properties described above. This formulation
is done in a very general setting, and we describe three
system identification problems which fall into this setting.
Section 3 provides conditions to guarantee the asymptotic
properties. These conditions are rather technical because
they are stated in the most general setting. Using this
result, in Section 4.1 we provide a complete solution for
asymptotic conditions for the problem studied in Marelli
et al. [2011]. These conditions are valid for a given quan-
tization scheme and packet loss model. Section 4.2 then
studies quantizer design. A dynamic quantizer is used,
and quantization thresholds and quantized values are com-
puted iteratively using the probability density function of
the system measurements conditioned on the estimated
parameters. This design turns out to be able to achieve
asymptotic efficiency. Finally, in Section 5 we give con-
cluding remarks, and we discus the key technical difficul-
ties for using Lemma 1 in more challenging identification
problems.

2. PROBLEM DESCRIPTION

Let y(t) ∈ Rq, t ∈ N, be a vector random process. Let pθ,
θ ∈ D ⊆ Rp, denote a set of probability density functions
(PDF’s) for y(t), t ∈ N, and θ? ∈ D denote the vector
describing the ‘true’ statistics of y(t), t ∈ N. Let γ(t),
t ∈ N, be a sequence of Bernoulli random variables with
parameter λ(t) (i.e., P(γ(t) = 1) = λ(t)). The variables

γ(t) do not need to be statistically independent, but they
are independent of y(t). Let Qt, t ∈ N, be a sequence of
quantizers and z(t) = γ(t)Qt[y(t)]. Consider the maximum
likelihood estimator

θ̂N = arg max
θ∈D

pθ (ZN ) , (1)

where ZN = {z(1), · · · , z(N)}. We aim to provide condi-
tions for strong consistency, i.e.,

θ̂N
w.p.1→ θ?,

asymptotic normality, i.e.,
√
N(θ̂N − θ?)

in dist.→ N (0,Σ),

for some (positive-definite) matrix Σ, and asymptotic
efficiency, i.e.,

Σ = Ī−1Z (θ?),

where

ĪZ(θ) = lim
N→∞

1

N
IZN

(θ),

with

IZN
(θ) = Eθ

{
∂

∂θ
log pθ (ZN )

∂

∂θ′
log pθ (ZN )

}
denoting the Fisher information of ZN , and Eθ denoting
expectation under the PDF pθ, i.e., for all maps f : R→ R
and θ, φ ∈ D, Eθ {f(pφ(ZN ))} =

∫
pθ(ZN )f(pφ(ZN )) dZN .

Since the asymptotic covariance Σ depends on the quanti-
zation scheme Qt, t ∈ N, we also aim to study the optimal
scheme in the sense of minimizing the trace of Σ.

The setting stated above describes a general maximum
likelihood estimation problem based on quantized data.
We list below some system identification problems which
fall into this general description. To this end, we assume
that g(q, θ) is a parametric linear time-invariant single-
input-single-output model, where θ ∈ D is the parameter
vector and q is the forward-shift operator, i.e., qx(t) =
x(t+ 1).

(P1) Known input and quantized white output: In
this case

y(t) = g(q, θ)u(t) + v(t),

z(t) =Qt[y(t)],

where the noise v(t) is white and the input u(t)
is known. This scheme is the simplest to analyze
because the quantized samples z(t) are statistically
independent.

(P2) Unknown input and quantized output: The
scheme is similar to the one above, with the only
difference in that u(t) is unknown. Hence, u(t) is
modeled as a random process, and therefore the
quantized samples z(t) are correlated.

(P3) Quantized input and output: In this case

w(t) = g(q, θ)u(t) + v(t),

y(t) = [w(t), u(t)],

z(t) =Qt[y(t)],

where u(t) and v(t) are random processes. In this
case, the observations z(t) are not only correlated but
also vector-valued.
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In Section 4.1 we use the result of Section 3 to provide
conditions to guarantee the desired asymptotic properties
for problem (P1), and in Section 5 we discuss the tech-
nical difficulties for doing the same with problems (P2)
and (P3).

3. A SET OF SUFFICIENT CONDITIONS FOR THE
DESIRED ASYMPTOTIC PROPERTIES

In this section we state a set of sufficient conditions
for guaranteeing the asymptotic properties described in
Section 2. Conditions of this kind are provided in Ljung
[1999, Theorems 8.3 and 9.1] for the prediction (quadratic)
error identification criterion. Since we are concerned with
the maximum likelihood criterion, we derive our conditions
using generic asymptotic results, like those in Gourieroux
and Monfort [1996, Properties 24.2 and 24.16] and Gallant
and White [1988, Theorems 3.3 and 5.1]. We state these
conditions in a general setting, in the sense that they
are valid for any maximum likelihood estimation problem,
including (P1)-(P3) as listed earlier.

To study the problem described in Section 2, we write (1)
as

θ̂N = arg max
θ∈D

ΞN (θ), (2)

ΞN (θ) =
1

N
log pθ (ZN ) . (3)

Let Ξ(θ) = limN→∞ Eθ? {ΞN (θ)} and

Ξ̇N (θ) =
∂

∂θ
ΞN (θ), Ξ̇(θ) = lim

N→∞
Eθ?
{

Ξ̇N (θ)
}
,

Ξ̈N (θ) =
∂2

∂θ∂θ′
ΞN (θ), Ξ̈(θ) = lim

N→∞
Eθ?
{

Ξ̈N (θ)
}
,

whenever the limits above exist. Then, we have the follow-
ing result:

Lemma 1. Suppose;

(L1) D is compact (i.e., closed and bounded),

(L2) Ξ(θ), Ξ̇(θ) and Ξ̈(θ) exist, for all θ ∈ D,
(L3) arg max

θ∈D
Ξ(θ) = {θ?}, i.e., Ξ(θ) is maximized at the

unique value θ?,
(L4) θ? ∈ interior(D),

(L5) supN∈N supθ,φ∈D

∥∥∥Ξ̈N (θ)− Ξ̈N (φ)
∥∥∥ ‖θ − φ‖−1 w.p.1

< ∞,

(L6) for each θ ∈ D, ΞN (θ)
w.p.1→ Ξ(θ), Ξ̇N (θ)

w.p.1→ Ξ̇(θ)

and Ξ̈N (θ)
w.p.1→ Ξ̈(θ),

(L7)
√
N Ξ̇N (θ?)

in dist.→ N (0, C), for some (positive defi-
nite) matrix C.

Then, strong consistency and asymptotic normality hold
with

Σ = ĪZ(θ?)
−1CĪZ(θ?)

−1. (4)

Sketch of proof. We split the proof in steps:

(Step 1) Condition (L5) is required so that the conver-
gences in (L6) are uniform on θ. To see this fix i, j ∈
{1, · · · , p} and define fN (θ) =

[
Ξ̈N (θ)− Ξ̈(θ)

]
i,j

, where

[·]i,j denotes the i, j-th entry of a matrix. For all θ, φ ∈ D,

|fN (θ)− fN (φ)| ≤
∣∣∣∣[Ξ̈N (θ)− Ξ̈N (φ)

]
i,j

∣∣∣∣
+

∣∣∣∣[Ξ̈(θ)− Ξ̈(φ)
]
i,j

∣∣∣∣ .
Then, from (L5) it is not difficult to verify that there exists
M > 0 such that

|fN (θ)− fN (φ)|
w.p.1

≤ M ‖θ − φ‖ .
Hence, from Davidson [1994, Theorem 21.10], fN (θ) is
strongly stochastically equicontinuous. Then, from David-

son [1994, Theorem 21.8], [Ξ̈N (θ)]i,j
w.p.1→ [Ξ̈(θ)]i,j , uni-

formly on θ, which shows the uniform convergence of
Ξ̈N (θ). The uniform convergences of ΞN (θ) and Ξ̇N (θ)
then follow from Rudin [1976, Theorem 7.17].

(Step 2) Consider the set (in the underlying probability

space), where Ξ̇N (θ) and Ξ̈N (θ) converge uniformly on θ.
Then, on this set, we have

Ξ̈(θ?) = lim
N→∞

Eθ?
{

∂2

∂θ∂θ′
ΞN (θ?)

}
= lim

N→∞

∂2

∂θ∂θ′
ΞN (θ?)

(a)
=

∂2

∂θ∂θ′
lim
N→∞

ΞN (θ?)

= Ξ̈(θ?)

(b)
< 0,

where (a) follows from two applications of Rudin [1976,
Theorem 7.17], and (b) follows from (L3).

(Step 3) The existence of Ξ̇N (θ) implies that ΞN (θ) is
continuous. This, together with (L1), (L3) and the uniform
convergence of ΞN (θ), gives the conditions for strong
convergence stated in Gourieroux and Monfort [1996,
Property 24.2].

(Step 4) From condition (L5), it follows that Ξ̈N (θ) is con-
tinuous. This, together with (L1), (L4), (L7), Step 2 and

the uniform convergence of Ξ̈N (θ), gives the conditions for
asymptotic normality stated in Gourieroux and Monfort
[1996, Property 24.16], with Σ given by (4).

Corollary 2. If, in addition to (L1)-(L5),
√
N Ξ̇N (θ?)

in dist.→
N (0, ĪZ(θ?)), then asymptotic efficiency also holds.

4. IDENTIFICATION OF AN ARMA MODEL WITH
KNOWN INPUT AND QUANTIZED WHITE OUTPUT

In this section we study problem (P1) described in Sec-
tion 2. We assume that

g(q, θ) =
b0 + · · ·+ bnq

−n

1 + a1q−1 + · · ·+ amq−m
,

where θ = [b0, · · · , bn, a1, · · · , am]T , and define x(t, θ) =
g(q, θ)u(t). In Section 4.1 we use Lemma 1 to provide con-
ditions to guarantee the asymptotic properties described in
Section 2. Then, in Section 4.2 we use this result to derive
the optimal quantization scheme in the sense of minimizing
the asymptotic error covariance.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

306



4.1 Asymptotic Properties

Definition 3. A time-varying quantizer is a sequence of
maps Qt : R → Vt, t ∈ Z, from R to the set Vt =
{vt,1, · · · , vt,Kt

} ⊆ R of Kt quantization levels, for some
given Kt. It is said to be uniformly bounded if there
exists M ≥ 0, such that, |bt,k| < M , for all t ∈ Z and
k = 1, · · · ,Kt − 1, where bt,k is defined by [bt,k−1, bt,k] =
Q−1[vt,k].

Theorem 4. Suppose;

(T1) The set D is compact,
(T2) θ? ∈ interior(D),
(T3) the model g(q, θ) is such that its poles have magni-

tudes smaller than or equal to 1− ε, for some ε > 0,
(T4) the input u(t) is such that

(T4a) supt∈N u(t) <∞,

(T4b) limN→∞
1
N

∑N
t=1 u(t) exists,

(T4c) limN→∞
1
N

∑N
t=1 (g(q, θ)u(t)− g(q, θ?)u(t))

2
= 0

holds for θ ∈ D, if and only if θ = θ?,
(T5) the quantizer Qt is uniformly bounded,
(T6) the noise v(t) is white and v(t) ∼ N (0, σ2),
(T7) the random process λ(t) is ergodic, i.e.,

1

N

N∑
t=1

λ(t)
w.p.1→ λ̄ , lim

N→∞

1

N

N∑
t=1

E {λ(t)} .

Then strong consistency, asymptotic normality and asymp-
totic efficiency hold with

Σ =
σ2

λ̄

(
lim
N→∞

1

N

N∑
t=1

µ(t)ψ(t, θ?)ψ
′(t, θ?)

)−1
, (5)

ψ(t, θ) =
∂

∂θ
g(q, θ)u(t), (6)

µ(t) =
σ̄2(t)

σ2
, (7)

σ̄2(t) = Eθ?
{

(ȳ(t, θ?)− g(q, θ)u(t))
2
}
, (8)

ȳ(t, θ) = Eθ {y(t)|z(t), γ(t)} . (9)

Sketch of proof. The proof consists in showing that Con-
ditions (T1)-(T7) imply Conditions (L1)-(L7) of Lemma 1.
To this end, notice that, since z(1), z(2), · · · are indepen-
dent, we have

ΞN (θ) =
1

N

N∑
t=1

ξ(t, θ), (10)

where
ξ(t, θ) = log pθ(z(t)). (11)

We split the proof in seven steps, after noting that Condi-
tions (L1) and (L4) are the same as (T1) and (T2).

(Step 1) Using Cappé et al. [2005, Proposition 10.1.4], with
some algebraic steps we can show that

∂

∂θ
ξ(t, θ) =

∂

∂θ

∫
log pθ (z(t), y(t)) pθ (y(t)|z(t)) dy(t)

=
1

σ2
(ȳ(t, θ)− x(t, θ))ψ(t, θ), (12)

where

ψ(t, θ) = φ(q, θ)u(t)

φ(q, θ) =

[
ΩTn (q)

A(q, θ)
,
q−1B(q, θ)ΩTm−1(q)

A2(q, θ)

]T
.

and Ωn(q) = [1, q−1, · · · , q−n]T . Using this, Condi-
tion (L2) follows from (T4b).

(Step 2) From (10)-(11), (L5) holds if

sup
N∈N

sup
θ,φ∈D

∥∥∥ξ̈(t, θ)− ξ̈(t, φ)
∥∥∥ ‖θ − φ‖−1 w.p.1

< ∞, (13)

where ξ̈(t, θ) = ∂2

∂θ∂θ′ ξ(t, θ). Condition (13) in turn can be
verified using (T3), (T4a), (T5) and (T6).

(Step 3) Since the PDF of z(t) depends on θ only
via x(t, θ), we define p̃(z(t)|x) such that pθ(z(t)) =
p̃(z(t)|x(t, θ)). Let

ft(d) = Eθ? {log p̃(z(t)|x(t, θ?))− log p̃(z(t)|x(t, θ?) + d)} .
Then, it is straightforward to verify that,

arg max
θ∈D

Ξ(θ) = arg min
θ∈D

H(θ). (14)

where

H(θ) = lim
N→∞

Eθ? {ΞN (θ?)− ΞN (θ)}

= lim
N→∞

1

N

N∑
t=1

ft (x(t, θ)− x(t, θ?)) . (15)

Now, in view of (T3) and (T4a), |x(t, θ) − x(t, θ?)| is
bounded. Then, from (T6), we can find ε > 0 such

that ft (x(t, θ)− x(t, θ?)) > ε (x(t, θ)− x(t, θ?))
2
, for all

t. Hence, (L3) follows from (T4c), (14) and (15).

(Step 4) Since ξ(t, θ) are independent, so are its deriva-
tives with respect to θ. Hence, (L6) follows from Rajch-
man’s strong law of large numbers Chung [2001, Theorem
5.1.2]. To this end, the uniform boundedness of second
moments need to be verified. This follows from (T3), (T4a)
and (T5).

(Step 5) From, (T3) and (T4a), for each y ∈ Rp, it
can be verified that y′ ∂∂θ ξ(t, θ?) satisfies Lyapunov’s con-
dition Klenke [2007, Definition 15.40]. Then, in view
of Klenke [2007, Definition 15.40] and the Lindeberg-Feller
central limit theorem Klenke [2007, Theorem 15.43], and
since ∂

∂θ ξ(t, θ?) are independent and have zero mean,

1√
N

N∑
t=1

y′
∂

∂θ
ξ(t, θ?)

in dist.→ N (0, y′Cy).

where C = limN→∞
1
N

∑N
t=1 Eθ?

{
∂
∂θ ξ(t, θ?)

∂
∂θ′ ξ(t, θ?)

}
.

Then, (L7) follows from Davidson [1994, eq. (25.28)].

(Step 6) In view of the steps above, strong convergence
and asymptotic normality hold. To see that asymptotic
efficiency also does, notice that, since ∂

∂θ ξ(t, θ?) are inde-
pendent,

C = lim
N→∞

1

N
Eθ?

{
N∑
t=1

∂

∂θ
ξ(t, θ?)

N∑
s=1

∂

∂θ′
ξ(s, θ?)

}

= lim
N→∞

1

N
Eθ?
{
∂

∂θ
log pθ?(ZN )

∂

∂θ′
log pθ?(ZN )

}
= ĪZ(θ?).
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Hence, Σ = Ī−1Z (θ?).

(Step 7) Finally, (5)-(9) follow from (12).

The asymptotic covariance given in the theorem above
depends on the known input u(t). The next corollary
considers the case where the known input is a realization
of a random process.

Corollary 5. If the conditions in Theorem 4 hold, u(t)
is the realization of a wide-sense stationary and ergodic
random process, then the result of Theorem 4 holds with

Σ
w.p.1
=

σ2

λ̄
Eu
{
µ(t)ψ(t, θ?)ψ

T (t, θ?)
}−1

,

where Eu{·} denotes the expectation taken with respect to
u(t).

Proof. See Marelli et al. [2011].

4.2 Optimum Quantization Scheme

The result of the Theorem 4 is valid for any uniformly
bounded quantizer. This section studies how to choose the
quantizer to minimize the asymptotic covariance Σ.

We have that

σ̄2(t) = E
{(
Q̄t [y(t)]− x(t, θ?)

)2}
= E

{(
Q̃t [y(t)− x(t, θ?)]

)2}
, (16)

where Q̄t and Q̃t are the quantizers defined by

Q̄t [y] = E
{
y|y ∈ Q−1t [vk]

}
, if y ∈ Q−1t [vk]

Q̃t [y] = Q̄t [y + x(t, θ?)]− x(t, θ?),

and for each t ∈ N and k = 1, · · · ,Kt, Q−1t [vk] = {y ∈
Rq : Qt[y] = vk}. From (16), σ̄2(t) can be interpreted as
the power of the quantized version of ỹ(t) = y(t)−x(t, θ?),

obtained from the time-varying quantizer Q̃t.
It is clear that Σ is minimized if Qt is chosen so that σ̄2(t)
is minimized for each t ∈ N. In view of Gersho and Gray
[1991, eq. (6.2.14)], this is equivalent to minimizing the

quantization error of ỹ(t). This is achieved by choosing Q̃t
to be a Lloyd-Max quantizer for the density of ỹ(t), and
choosing

Qt[y] = Q̃t [y(t)− x(t, θ?)] + x(t, θ?). (17)

Moreover, if this results in σ̄2(t) = σ̄2 being independent
of t, then,

Σ =
σ2

λ̄µ

(
lim
N→∞

1

N

N∑
t=1

ψ(t, θ?)ψ
′(t, θ?)

)−1
, (18)

with µ = σ̄2/σ2.

Remark 6. The equation above differs from the classical
result of system identification Ljung [1999] in the factor
1/λ̄µ, which accounts for the effect of the quantizer and
packet drops. The coefficient µ states the inverse ratio
between the power of the signal ỹ(t) and the power of the
signal obtained after quantizing ỹ(t) using an optimum
Lloyd-Max quantizer. Hence, µ monotonically increases
and tends to 1 as the number of quantization levels tends
to infinity.

In practice, it is not possible to choose the quantizer Qt
as in (17), because this requires the knowledge of the true
parameters θ?. A practical workaround is to replace θ?by

the previous estimate θ̂t−1, i.e.,

Qt[y] = Q̃t
[
y(t)− x(t, θ̂t−t)

]
+ x(t, θ̂t−1).

Assuming that the arrival of each packet is acknowledged

by the receiver, θ̂t−1 is known at both ends. A ques-
tion that naturally arises then is whether the minimum
value (18) of the asymptotic covariance matrix can still be
achieved in this case. The answer turns out to be positive.
The proof of this claim can be found in Marelli et al. [2011].

5. CONCLUDING REMARKS

We studied conditions to guarantee asymptotic properties
for identification of linear systems using quantized and
intermittent information. More specifically, we studied
strong consistency, asymptotic normality and asymptotic
efficiency. In Lemma 1 we stated a number of technical
conditions in a rather general setting. We then showed
how to use this lemma to provide conditions to guarantee
asymptotic properties for problem (P1) in Section 2, and
we discussed how to design quantizers to improve the
asymptotic estimation error covariance.

A key property of problem (P1) is that the quantized
samples z(t) are statistically independent. This permits
writing ΞN (θ) as a Cesro summation of ξ(t, θ), as in (10)-
(11). Then, we can replace (L5) by (13), i.e., a condition
on the joint PDF pθ(ZN ) by one on the PDF pθ(z(t)) of
each sample. Also, the independence of z(t) results in the
independence of ξ(t, θ) and its derivatives. Hence, (L6) can
be guaranteed using a version of the strong law of large
numbers for independent variables. Similarly, (L7) can be
guaranteed using a version of the central limit theorem for
independent variables. These versions essentially require
that samples have uniformly bounded moments of certain
order. In problems (P2) and (P3), the samples z(t) are not
independent. Hence, the remarks above do not apply, and
more technical effort is required to address their analysis.
This is an interesting topic for future research.
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Marelli, and Torbjörn Wigren. Identification of FIR
systems having quantized output data. to appear in
Automatica, 2010.

Christian Gourieroux and Alain Monfort. Statistics and
Econometric Models: Volume 2. Cambridge University
Press, 1996.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

308



Achim Klenke. Probability Theory: A Comprehensive
Course (Universitext). Springer, 12 2007.

Lennart Ljung. System Identification: Theory for the User.
Prentice Hall, Upper Saddle River, NJ, second edition,
1999.

Damián Marelli, Keyou You, and Minyue Fu. Identifica-
tion of arma models using intermittent and quantized
output observations. submitted to Automatica, 2011.

A. Ribeiro and G. Giannakis. Bandwidth-Constrained
Distributed Estimation for Wireless Sensor Networks-
Part I:Gaussian Case. IEEE Transactions on Signal
Processing, 54(3):1131–1143, 2006.

W. Rudin. Principles of mathematical analysis. McGraw-
Hill, New York, 1976.

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and
S. Sastry. Foundations of control and estimation over
lossy networks. Proceedings of the IEEE, 95(1):163–187,
2007.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla,
M. Jordan, and S. Sastry. Kalman filtering with inter-
mittent observations. IEEE Transactions on Automatic
Control, 49(9):1453–1464, 2004.

L. Wang and G. Yin. Asymptotically efficient parameter
estimation using quantized output observation. Auto-
matica, 43(7):1178–1191, 2007.

L. Wang, J. Zhang, and G. Yin. System identification
using binary sensors. IEEE Transactions on Automatic
Control, 48(11):1892–1907, 2003.

L. Wang, G. Yin, J. Zhang, and Y. Zhao. System identifi-
cation with quantized observations. Birkhäuser Boston,
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