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Abstract: The paper presents a fully distributed scheme to optimal parameter estimation, with
application in multi-area interconnected power systems. In this scheme, each area performs its
own local parameter estimation based on low-dimensional local and boundary measurements
as well as the estimate of boundary parameters from its neighbors. We show, under certain
assumptions, that the distributed estimation scheme provides the same accurate unbiased
estimate as the centralized weighted least-squares estimate with finite time convergence. The
distributed estimation scheme is robust to communication link failures, delays, and asynchronism
of control centers in different areas. A simulation using the IEEE 118-bus system is included to
demonstrate the performance.
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1. INTRODUCTION

Electric power networks are undergoing profound changes
recently and receiving increasing attention from re-
searchers in different fields. By incorporating a commu-
nication, computing and control overlay, more efficient
and intelligent processes are integrated into the electric
power networks. Parameter estimation for the so-called
quasi-steady state parameters is considered to be one of
the key integrating components for the real time energy
management system (EMS).

Quasi-steady state parameter estimation (or simply called
state estimation) in power networks has been introduced
in the early 1970’s Schweppe and Wildes (1970). The
traditional centralized parameter estimator is typically
installed in a control center collecting all measurements
over the entire network, and providing the optimal es-
timate of the parameters for the power network. The
data is measured by SCADA systems and the estimation
usually takes minutes to get a snapshot of a normal sized
power network Ren and Guo (2005); Huang et al. (2007).
However, due to the deregulation of energy markets, large
amounts of power are transferred over high-rate, long-
distance lines spanning multiple areas to form a very large
scale network Gomez-Exposito et al. (2011). Also, policy
and privacy considerations make a centralized estimation
inappropriate for a power network spanned over multiple
areas, regional transmission organizations (RTOs), and/or
countries. Thus, it leads to the emergence of hierarchical
estimation Gomez-Exposito and de la Villa Jaen (2009);
Korres (2011); Zhao and Abur (2005); Jiang et al. (2007);
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Patel and Girgis (2007); Jiang et al. (2008); Yang et al.
(2012) and distributed estimation Lin (1992); Lin and Lin
(1994); Falcao et al. (1995); Conejo et al. (2007); Xie et al.
(2011); Pasqualetti et al. (2012). A good recent survey
on quasi-steady state parameter estimation for power net-
works refers to Gómez-Expósito et al. (2011).

In principle, a desirable distributed estimator for large-
scale power networks should own the following properties:
(1) the distributed estimator should be able to deal with
the case where local parameters might not be uniquely
identifiable due to bad data removal and finer decomposi-
tion of control areas; (2) the information exchange between
different control centers should be kept as low as possible
to reduce the communication load and improve the esti-
mation response time; (3) the resulting estimate should be
accurate or close enough to the optimal one obtained from
the traditional centralized estimator; (4) the estimation
scheme should exhibit a fast convergence rate or even finite
time convergence for the purpose of real time monitoring;
(5) the convergence to a correct estimate should be robust
to link failures and time delays commonly occurred in com-
munication networks, and asynchronism inherent in the
distributed setup. However, no estimation scheme in recent
development incorporates all the desired properties. For
example, most algorithms such as hierarchical estimation
of Iwamoto et al. (1989); Zhao and Abur (2005); Korres
(2011) and distributed estimation of Lin and Lin (1994);
Falcao et al. (1995); Conejo et al. (2007), presume locally
topological observability. The locally topological observ-
ability assumption is no longer necessary in the distributed
estimation schemes of Xie et al. (2011) and Pasqualetti
et al. (2012). However, in Xie et al. (2011) and Pasqualetti
et al. (2012) each control center has to communicate its
own estimate of the entire high-dimensional parameter
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vector to its neighboring control centers, which scales
unfavorably with the size of the power network. Moreover,
in Pasqualetti et al. (2012) only an approximate estimate
is ensured though an analytical estimation error bound
is provided within a finite number of iterations. On the
other hand, Xie et al. (2011) shows almost sure conver-
gence towards the centralized parameter estimation result,
which is similar to asymptotic convergence of distributed
estimation strategies Cattivelli et al. (2008); Schizas et al.
(2009) developed in other fields. The performance is not
well suited for applications in power networks as the con-
vergence is only asymptotic. Besides, no analytical study
is conducted in Xie et al. (2011); Pasqualetti et al. (2012)
for the behavior of the estimation schemes in response
to communication link failures, transmission delays and
asynchronism of distributed control centers.

The objective of this paper is to propose a fully distributed
estimation scheme that incorporates all the desired fea-
tures. To this end, we propose a new distributed estimator
for each control center, called local estimator, which re-
quires only local (own area) and boundary information.
Each local estimator provides an estimate of the parame-
ters of its own area, and the connection with neighboring
areas is done by exchanging only small amounts of bound-
ary estimation data. Notice that the physical linkage (tie-
lines) between different areas is usually low-dimensional
and most measurements taken in one area are not affected
by the parameters in other areas. The proposed scheme
is based on the distributed method for weighted least
squares (WLS) developed in Marelli and Fu (2015). A key
property of this method is that it converges to the globally
optimal estimate. Moreover, this convergence is achieved
in a finite number of iterations, being equal to the diameter
of the graph modeling the interconnection of control areas.
Finally, we show that the finite-time convergence is also
ensured in the presence of link failures and communica-
tion delays, as well as asynchronism between distributed
control centers.

2. PROBLEM DESCRIPTION

2.1 Measurements in power networks

Consider a power network, for example, the IEEE 118-bus
system shown in Fig. 1. Let x ∈ Rn be the parameter
vector at a certain time instant consisting of the voltage
phasors at all buses. The measurements of the whole power
network usually take the following form:

z = h (x) + η, (1)
where z ∈ Rm is the measurement vector, h(·) is a
measurement function, and η is the Gaussian random
measurement error vector satisfying η ∼ N (0, Rη).

The traditional SCADA measurements typically contain
voltage magnitudes, power injections at the measured
buses, and power flows along the measured transmission
lines. In this case, the parameter vector (i.e., quasi-steady
state) x in eq. (1) is usually defined in the polar coordinate
form. Adopting the approximated estimation model pre-
sented in Schweppe and Wildes (1970) which follows from
the linearization around an operating point x̃ of eq. (1),
the measurements can be expressed as

z = Hx+ ν, (2)

where H ∈ Rm×n is the Jacobbian matrix of h(·) and ν is
still assumed to satisfy ν ∼ N (0, Rν). This model is also
appropriate if the measurements are made using phasor
measurement units (PMU).

2.2 Centralized parameter estimation

For the linear measurement model (2), the centralized
WLS estimation (Steven, 1993, Section 8.4) is represented
as

x̂opt = arg min
x̂

(z −Hx̂)R−1ν (z −Hx̂) . (3)

If H has full column rank and Rν is invertible, the WLS
estimate x̂opt and the estimation error covariance Σ take
the following explicit forms:

x̂opt = Ψ−1α; Σ = Ψ−1; (4)
where

α = HTR−1ν z; Ψ = HTR−1ν H. (5)
To have the centralized WLS parameter estimation solu-
tion, it requires to collect all the measurements distributed
in different areas and assume the complete knowledge of
the matrix H and Rν . Thus, both communication and
computation burden scales unfavorably with the size of
the power networks.

2.3 Partition of power networks

For a practical power network, the measurements are ei-
ther related to the parameters of one bus (such as power
injections and voltage phasor measurements), or indicate
the relationship between two adjacent buses (such as power
flows and current phasor measurements). These character-
istics naturally lead to a sparse measurement matrix H.
The measurements can also be classified as local measure-
ments, meaning that the measurements are only functions
of the parameters of one control area, and boundary mea-
surements, consisting of tie-line measurements related to
the parameters of more than one control areas. The local
measurements are given by

yi = Aixi + vi, (6)
where xi and yi represent the local parameter vector
and the local measurement vector in the control area i,
and vi ∼ N (0, Ri) is the local measurement noise. The
boundary measurements linking the parameters in control
area i and j are represented as

zi,j = Di,jxi + Ci,jxj + wi,j , (7)
where wi,j ∼ N (0, Si,j) is the boundary measurement
noise. Note that the boundary measurement zi,j is usually
of very low dimension and that the boundary measure-
ment (7) is shared by both control center i and j, i.e.,
zi,j = zj,i. All measurement noises are assumed to be
uncorrelated.

We use a graph G = (V, E) to abstract the partition of
a power network, where V = {1, . . . , I} is a set of nodes
with each node corresponding to a control area and E is an
edge set with an edge (i, j) ∈ E indicating that there is a
boundary measurement zi,j relying on both xi and xj . In
the following, we use Ni to represent the neighbor set of
i, i.e., Ni = {j : (i, j) ∈ E}. For a partition made in Fig. 1
for the IEEE 118-bus system, the graph G is depicted in
Fig. 2, for which an edge (1, 3) represents the boundary
measurement related to the parameters in areas 1 and 3.
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Fig. 1. Topological structure of the IEEE 118-bus system.

1

2

3 4 5

6

7

(1,2)

(2,3)

(3,4) (4,5)

(5,6)

(5,7)

Fig. 2. The graph G describing the partition of the IEEE
118-bus system.

2.4 Distributed parameter estimation problems

The distributed parameter estimation problem we address
in this paper is as follows: For a graph G = (V, E)
reflecting the abstract structure of a power network, design
a local estimator at each control center i (i ∈ V) to
have an unbiased local estimate x̂i, based on the local
measurements (6) and the boundary measurements (7),
as well as its neighbors’ local estimate x̂j (j ∈ Ni),
minimizing the global objective function

J (x̂) := (z −Hx̂)
T
R−1ν (z −Hx̂) , (8)

where x̂ is the aggregated parameters of the local estima-
tion x̂i, i.e., x̂ =

[
x̂T1 , · · · , x̂TI

]T .
We make the following assumptions in the paper:

• Assumption 1: The graph G is acyclic;
• Assumption 2: The measurement matrix H has full
column rank and Rν is invertible.

Assumption 1 means that the graph corresponding to a
partition of a power network does not have a cycle, which
in practice can be made by properly partitioning the power
network and by properly placing the measurement units.
An example is given in Fig. 1 for the partition, and Jiang
et al. (2007) gives another example. Assumption 2 is also
necessary for centralized estimators.

3. DISTRIBUTED ESTIMATION ALGORITHM

In this section, we propose a distributed estimation algo-
rithm, in which each control center builds an estimate x̂i

for the local parameters xi in its region. In Section 3.1,
we state the algorithm for a network whose graph has a
particular topology, and in Section 3.2 we use this result
to state the proposed algorithm.

3.1 Preliminary

1

2 3

r*

Fig. 3. Topological structure of a star graph.

Fig. 3 shows a star graph of order r + 1 with a central
node denoted by ? and r neighbor nodes. For this network
topology, the measurement equation is given by

y?
y1
...
yr
z1
...
zr


=



A? 0 · · · 0
0 A1 · · · 0
...

...
. . . 0

0 0 · · · Ar
D1 C1 · · · 0
...

...
. . .

...
Dr 0 · · · Cr




x?
x1
...
xr

+



v?
v1
...
vr
w1

...
wr


, (9)

where x?, x1, . . . , xr represent the local parameters
to be estimated, y?, y1, . . . , yr denote the mea-
surements on the nodes, and z1, . . . , zr denote the
measurements on the edges (1, ?), . . . , (r, ?). Also,
[v?, v1, · · · , vr, w1, · · · , wr]T ∼ N (0, T ) is the measure-
ment noise with T = diag {R?, R1, · · · , Rr, S1, · · · , Sr}.
Consider the following subsystem

y?
z1
...
zr

 =


A?
D1

...
Dr

x? +


v?
w1

...
wr

 (10)

obtained from eq. (9) by eliminating the measurements
and terms not related to the parameters x?. This can be
thought as how node ? understands the measurement from
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its local point of view. The information vector α̌? and
information matrix Ψ̌? for the WLS associated to (10) are

α̌? =AT?R
−1
? y? +

r∑
j=1

DT
j S
−1
j zj ,

Ψ̌? =AT?R
−1
? A? +

r∑
i=1

DT
j S
−1
j Dj .

Correspondingly, the WLS estimate and the estimation
error covariance based on the modified measurement equa-
tion (10) are respectively

x̌? = Σ̌?α̌?, Σ̌? = Ψ̌−1? .

Similarly, from node j’s local point of view (j = 1, · · · , r),
the modified measurement equation becomes[

yj
zj

]
=

[
Aj
Cj

]
xj +

[
v1
wj

]
.

Thus,

α̌j =ATj R
−1
j yj + CTj S

−1
j zj ,

Ψ̌j =ATj R
−1
j Aj + CTj S

−1
j Cj ,

and
x̌j = Σ̌jα̌j , Σ̌j = Ψ̌−1j .

In order for node ? to obtain an optimal estimate for the
local parameters x?, it has to combine its own estimate
with its neighbors’ estimates. The following lemma, which
follows from Marelli and Fu (2015, Lemma 13), makes this
statement precise.
Lemma 1. Suppose Assumption 2 holds.

(1) The optimal WLS estimate x̂? of x?, and its associ-
ated estimation error covariance Σ?, are given by

x̂? = Σ?

α̌? − r∑
j=1

β?,j

 , (11)

Σ? =

Ψ̌? −
r∑
j=1

Φ?,j

−1 , (12)

where

β?,j =DT
j S
−1
j Cj x̌j , (13)

Φ?,j =DT
j S
−1
j CjΣ̌jC

T
j S
−1
j Dj (14)

(2) The matrices Ψ̌j , j = ?, 1, · · · , r and Ψ̌? −
∑r
j=1 Φ?,j

are invertible.

3.2 Distributed WLS Algorithm

Based on Lemma 1 we can devise a distributed estimation
algorithm, which is summarized in Algorithm 1.

The idea of the distributed parameter estimation algo-
rithm is simple. Initially, each control center i calculates
the estimate x̌(0)i and estimation error covariance Σ̌

(0)
i , for

the local parameters xi, based on the reduced measure-
ment equation, as for the central node in the star graph
case. Then each control center updates its estimate x̂(t+1)

i

and estimation error covariance Σ
(t+1)
i , by combining its

own estimate x̌
(0)
i and estimation error covariance Σ̌

(0)
i

with the correction factors (γ(t)i,j , Υ
(t)
i,j ) received from its

neighbors. Meanwhile, each control center calculates the
correction factors (γ(t+1)

j,i , Υ
(t+1)
j,i ) related to its own most

recently updated local estimate and estimation error co-
variance, and next transmits them to its neighbors.

Algorithm 1 Distributed WLS estimation: (Algo-
rithm on node i, i ∈ V)
Initialization:
(1) Compute the local estimate and its associated esti-

mation error covariance
x̌
(0)
i = Σ̌

(0)
i α̌i, Σ̌

(0)
i = Ψ̌−1i ,

with

α̌0
i =ATi R

−1
i yi +

∑
j∈Ni

DT
i,jS

−1
i,j zi,j ,

Ψ̌0
i =ATi R

−1
i Ai +

∑
j∈Ni

DT
i,jS

−1
i,Ni(k)

Di,j .

(2) Transmit to every node j ∈ Ni the correction factor

γ
(0)
j,i = Di,j x̌

(0)
j , Υ

(0)
j,i = Di,jΣ̌

(0)
j DT

i,j .

Main loop: For t = 0, 1, · · · , let γ
(t)
i,j , Υ

(t)
i,j be the

correction factor received by node i from node j.
(1) Update the local estimate and its associated estima-

tion error covariance based on the received correction
factor:

x̂
(t+1)
i = Σ

(t+1)
i

α̌0
i −

∑
j∈Ni

β
(t)
i,j

 , (15)

Σ
(t+1)
i =

Ψ̌0
i −

∑
j∈Ni

Φ
(t)
i,j

−1 , (16)

where

β
(t)
i,j =DT

i,jS
−1
i,j γ

(t)
i,j , (17)

Φ
(t)
i,j =DT

i,jS
−1
i,j Υ

(t)
i,jS

−1
i,j Di,j . (18)

(2) Compute

x̌
(t+1)
j,i = Σ̌

(t+1)
j,i

α̌0
i −

∑
k∈Ni/{j}

β
(t)
i,k

 ,

Σ̌
(t+1)
j,i =

Ψ̌0
i −

∑
k∈Ni/{j}

Φ
(t)
i,k

−1
for every j ∈ Ni, and then transmit to node j the
correction factor
γ
(t+1)
j,i = Cj,ix̌

(t+1)
j,i , Υ

(t+1)
j,i = Cj,iΣ̌

(t+1)
j,i CTj,i.

Remark 2. Notice that the information
(
γ
(t)
j,i ,Υ

(t)
j,i

)
ex-

changed by nodes is usually of very low dimension.

2015 IFAC SYSID
October 19-21, 2015. Beijing, China

565



4. FINITE-TIME-CONVERGENCE AND
OPTIMALITY

4.1 Ideal Setup

In this section we assume that inter-node communications
do not have communication delays and packet loss, and
all local control centers operate synchronously. We then
state a result asserting that the local estimate x̂i, given
by Algorithm 1, at every node i ∈ V, converges after a
finite number of steps, to the (block) component x̂opti of
the globally optimal estimate x̂opt.

We introduce the following definitions. For a given graph, a
path is a concatenation of adjacent edges (without loops),
and its length is the number of edges forming it. The radius
Γi of node i is defined as the maximum length of a path
from node i to any other node in the graph. Also, the
diameter of the graph is the maximum radius over all
nodes and is denoted by Γ. The convergence result is stated
in the following theorem, which follows from Marelli and
Fu (2015, Theorem 15).
Theorem 3. Consider the system (2) with Assumption 1
and 2. If Algorithm 1 is used, then for every i ∈ V,

x̂
(t)
i = x̂opti for all t ≥ Γi. (19)

Moreover, for any i ∈ V and t ∈ N0 the matrices Ψ̌0
i −∑

j∈Ni
Φ

(t)
i,j and Ψ̌0

i −
∑
j∈Ni/{k} Φ

(t)
i,k for any k ∈ Ni are

invertible.
Remark 4. From (19) in Theorem 3, it follows that the
local estimates on all nodes converge to the optimal one
after Γ = max {Γi, i ∈ V} steps.
Remark 5. Notice that the invertibility of the matrices
Ψ̌0
i −

∑
j∈Ni

Φ
(t)
i,j and Ψ̌0

i −
∑
k∈Ni/{j} Φ

(t)
i,k, for all j ∈ Ni

is necessary for the validity of Algorithm 1.

4.2 Communication Packet Loss, Delays and
Asynchronism

In practical applications, communication packets among
different control centers may be lost or delayed. Also,
clocks in different control centers may not be perfectly
synchronized, causing mismatches between time-stamps at
different nodes. In this section we introduce a modification
to our proposed algorithm to deal with these issues.

We introduce the following modification to the notation
used Algorithm 1. Recall that

(
γ
(t)
i,j ,Υ

(t)
i,j

)
denotes the

correction factor transmitted by node j to node i at
time t. This information can be lost, delayed, or affected by
timing mismatch. Consequently, a number of packets, say(
γ
(t−τ1)
i,j ,Υ

(t−τ1)
i,j

)
, · · · ,

(
γ
(t−τN )
i,j ,Υ

(t−τN )
i,j

)
, n = 1, · · · , N ,

may be simultaneously received by node i and time t.
Let τ̃ = min {τn : n = 1, · · · , N} denote the smallest time
delay among those packets, and(

γ̃
(t)
i,j , Υ̃

(t)
i,j

)
=
(
γ
(t−τ̃)
i,j ,Υ

(t−τ̃)
i,j

)
, (20)

be the packet associated to that delay. Then, the modi-
fication to the algorithm consists in using

(
γ̃
(t)
i,j , Υ̃

(t)
i,j

)
in

place of
(
γ
(t)
i,j ,Υ

(t)
i,j

)
in (17)-(18).

We do the following assumption.

Assumption 3: The timing mismatch between every two
nodes is upper bounded by a finite integer. Also, the
probability distribution of delays and packet losses is such
that, for each t, and with probability one, there exists t?
and s > t satisfying(

γ̃
(t?)
i,j , Υ̃

(t?)
i,j

)
=
(
γ̃
(s)
i,j , Υ̃

(s)
i,j

)
. (21)

In words (21) guarantees that, for every t, a packet from
node j equal or newer than

(
γ
(t)
i,j ,Υ

(t)
i,j

)
is guaranteed

to eventually arrive to node i. Under this condition, the
following property follows,
Corollary 6. Consider the system (2) together with As-
sumptions 1-3. If Algorithm 1 runs with the modifica-
tion (20), then, with probability one, there exists t? such
that

x̂
(t)
i = x̂opti for all t ≥ t?. (22)

5. SIMULATION RESULTS

We use the IEEE 118-bus system to test the performance
of the proposed distributed estimation algorithm. The
system composed of 118 buses is partitioned into 7 sub-
systems connected by tie-lines, as shown in Figs. 1-2. The
measurement locations are given in Table 1.

Subsystem Buses with local measurements
Sub 1 3 5 9 12
Sub 2 25 28 114
Sub 3 15 17 21 34 37 40 71
Sub 4 45 70 76
Sub 5 49 68 79 96
Sub 6 53 56 62 64
Sub 7 85 86 89 92 100 105 110

Tie-line Boundary buses
(1, 3) 12 13 14 15 16
(2, 3) 17 31 113
(3, 4) 34 37 38 40 41 42 43 70 71
(4, 5) 42 45 47 48 49 68 69
(5, 6) 53 54 56 62 64 65 66
(5, 7) 94 96 98 99 100

Table 1. Measurement Locations

We run Algorithm 1 on the system described above and
use 2000 Monte Carlo simulations to compute, at iter-
ation t, the expected value of the norm squared of the
difference between the distributed and centralized esti-

mates, i.e.,
I∑
i=1

∥∥∥x̂(t)i − x̂opti

∥∥∥2, and the expected value of∑I
i=1 Tr

{
Σ

(t)
i

}
. Random i.i.d. packet loss with rate p of

different values is considered. Fig. 4 and Fig. 5 show the
simulation results. As expected, Fig. 4 and Fig. 5 show
that a higher packet loss rate causes longer convergence
steps, but the algorithm still converges in a finite number
of iterations. The curves corresponding to p = 0 in both
of Fig. 4 and Fig. 5 show that, as indicated in Theorem 3,
the algorithm converges after t ≥ Γ = 4 steps.

6. CONCLUSIONS

We have proposed a novel distributed parameter estima-
tion algorithm for large-scale power networks. The algo-
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distributed (D) and centralized estimates.
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Fig. 5. The trace of the estimation error covariances of the
distributed (D) and centralized (C) estimates.

rithm only requires locally topological structure informa-
tion, local measurements and low-dimensional boundary
information exchange from its neighbors. The local es-
timates converge in finite time to the centralized WLS
estimate and they exhibit good robustness against packet
losses, time delays or asynchronous processing.
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