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Abstract 

In this paper, we consider a factorization scheme for lin- 
ear time varying (LTV) IIR all pass systems to be used 
specifically in the analysis bank of multirate subband 
coders. The factorization scheme is based on a certain 
base dyadic structure. Such LTV analysis banks are 
required to be square systems. It is known that linear 
time invariant (LTI) square all pass systems admit such 
dyadic factorizations and that a limited class of FIR 
LTV all pass square systems have a specialized dyadic 
factorization. We extend these results to all pass IIR 
LTV square systems that have uniformly completely 
observable and uniformly completely controllable real- 
izations. 

1 Introduction 

Motivated by Linear Time Varying (LTV) Filter Bank 
(FB) theory as applied to subband coding and other 
multirate signal processing problems, this paper con- 
siders the factorization of M-input M-output, LTV all 
pass operators. 

In recent years there has been considerable interest in 
the theory and design ot LTVFB [l, 21. Two require- 
ments often imposed on FB design are that the analysis 
bank (AB) be collectively all pass (individual analysis 
filters of course will not be all pass), and that the over- 
all FB have the perfect reconstruction (PR) property. 

More precisely [3], it is known that a LTVFB can be 
represented as in figure 1, where q-' is the unit delay 
operator, k is the time index, u(k)  is the FB input, Q ( k )  
is the output, E ( k ,  4-l)  is the M-input M-output (M x 
M) type I polyphase matrix of the AB, and R(q-', k) 
is the M x M type I1 polyphase matrix of the synthesis 
bank (SB). For the purposes of this paper, E(k,q- ' )  
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Figure 1: A PR filter bank 

and R(q- l ,k )  can be treated as two M x M matrix 
LTV systems, the presence of k indicating their time 
varying nature. Then the all pass requirement on the 
AB boils down to the: requirement that with E ( k ,  q- ' )  
at initial rest, for all square summable ui (k ) ,  

k = - m  i=O k = - m  i = O  

The PR requirement boils down to 

R(q-', k ) E ( k ,  q-') = I (2) 

Generally E ( k , q - l )  is causal, and under the all pass 
requirement, R(q-', k) anticausal. See [4] for details 
on how an anticausal R(q-',k) can be implemented 
through the transmission of judiciously chosen samples 
of the states of the A.B . 

An attractive property of linear time invariant (LTI) all 
pass, M x M systems is that they admit rather elegant 
dyadic-based realizations. One such is given below. In 
figure 2 we have what we call the base dyadic cascade, 
with Ho an M x M unitary matrix, i.e. 

H: H~ = I (3) 

't' denoting the conjugate transpose, H i ( q - l ) ,  as in 
figure 3 with U ( k )  = [uo(k), . . . , u~- l ( l c ) ] ' ,  Y ( k )  = 
[yo(k)  ,..., y ~ - ~ ( k ) ] ' ,  vtvi  = I ,  vi, M x 1, and ai a 
scalar obeying [ail <: 1. Note, henceforth the absence 
of thc t i m G  index iE from on operator auch ae H,(y- ' )  
will denote its time invariance. 

There is another dyadic based factorization involving 
Householder matrices given in [5] .  Details on these 
factorizations will be presented later. 



0 
0 

Figure 2: A dyadic cascade 

The main issue addressed in this paper is as follows. 
Given an M x M ,  causal, all pass, IIR E ( k ,  q- ' ) ,  does 
E ( k ,  q- ' )  admit similar factorizations? To avoid struc- 
tural variability, we will require the number of delays, 
and hence the number of blocks in figure 2 to be time 
invariant. 

The only LTV result of this type that we are aware of 
is in [3]. It concerns FIR blocks as in figure 3 with vi 
now time varying, hence denoted v i (k ) ,  and obeying 

vj(k)v;(k) = 1 V k, and a; = 0. (4) 

Essentially, [3] demonstrates that certain types of FIR, 
LTV all pass M x M systems can be so factorized, but 
that even within the FIR LTV all pass system, this class 
could be quite narrow. In the M = 1 case for example 
only trivial systems admit such a factorization. 

The main result of this paper is to demonstrate that, 
under mild assumptions, all M x M IIR LTV all pass 
systems can be implemented as slight variations of 
the dyadic implementations of figures 2 and 3. We 
also show that implementations that are analogs of the 
other two dyadic based LTI factorizations given in [5], 
also follow. An interesting aside to these results is that 
while certain FIR LTV all pass M x M systems do not 
have a factorization as in [3], they can be implemented 
through the factorization given here. 

Section 2 gives certain preliminary facts concerning 
LTV systems in general and all pass LTV systems 
in particular. Section 3 concerns certain observabil- 
ity/controllability properties. Section 4 states the main 
results. Section 5 concludes. 

2 Preliminaries 

This section contains certain preliminary definitions 
concerning LTV systems. The analysis in this paper is 
concerned with State Variable Realizations (SVR) . A 
pinput M-output M x p  system, with p x  1 input vector 
U ( k )  and M x 1 output vector Y ( k )  is said to have an 
SVR, { A ( k ) ,  B ( k ) ,  C ( k ) ,  D ( k ) } ,  with n x 1 state vector 
~ ( k ) ,  if one has for all k, 

where A ( k )  is n x n,  B(k)  is n x p ,  C(k)  is M x n, D ( k )  
is M x p and the realization matrixis denoted by 
, 

Figure 3: The base dyadic structure 

We call the realization (1) real if C ( k )  is real for all k. 
This system is said to be exponentially asymptotically 
stable (eas) if A ( k ) ,  B ( k ) ,  C(k) ,  D ( k )  are bounded and 
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for zero U ( k )  there exist some positive constant, c, and 
some constant, 6, with 0 < 6 < 1,  such that for all 
initial times, ko, the state obeys 

llz(k)Il I c l l z (ko) l l~k-ko .  (3) 

A linear system with input U ( k )  and Y ( k )  is all pass if 
for all U ( k )  E 12,  

m m 

k = - m  k = - w  

whenever the system is at  initial rest. 

We also need the concepts of uniform completely con- 
trollability and observability. To this end we first define 
the state transition matrix 

@(k, ko) = A(k - l)A(k - 2) * * e A ( k . 0 )  (5) 

with 
@(k, k) = I .  (6) 

The system described in (1) is called uniformly com- 
pletely controllable (UCC) if there exist positive K1, PI ,  
and P2 such that for all times, k, 

k t K i  
p1I - < @ ( k + & , i ) B ( i - l ) B + ( i -  l ) @ + ( k + K l , i )  

i = k  

I P2I .  (7) 
The same system is called uniformly completely observ- 
able (UCO) if there exist positive K2, p 3 ,  and p4 such 
that for all times, I C ,  

k + K z  

p31 5 at(i, k)Ct( i )C(i)@(i ,  k) I p41. (8) 
i = k  

Essentially, uco and ucc generalize the concepts of ob- 
servability and controllability to the LTV case. In the 
sequel (1) is called a minimal realization of the system 
it describes if (1) is uco and ucc and C ( k )  is bounded. 
Further if a system has a minimal realization as in (1), 
it is said to have McMillan degree n. 

Observe that the McMillan degree of a system, should 
it exist, measures the minimum number of delays that 
are needed to implement the system. It is moreover, 
time invariant. As opposed to this one has the instan- 
taneous degree of (1) .  Suppose, with zero initial con- 
ditions the input output description exemplified by (1) 
is Y ( k )  = H ( k , q - ' ) U ( k )  with H ( k , q - ' )  rational for 
each k. Then the instantaneous degree p ( k )  at time k is 
the McMillan degree of the transfer function H ( k ,  q-') 
frozen at time k. Clearly p ( k )  need not be time in- 
variant, even if the McMillan degree as defined above 
exists. 

Consider for example the LTV 1 x 1 system, 

k even 
Y ( k )  = { f F l k - 2 )  k odd 

This system has 

0 k even 
2 k odd 

Yet it has the uco, ucc realization 

(9) 

z(k + 1) = - a ( k ) x ( k )  + J i T q q U ( k )  (11) 

Y(k)  = diZ%(k) + a ( k ) U ( k )  (12) 
1 k even 
0 kodd  a ( k )  = (13) 

Thus, its McMillan degree is 1.  A few features about 
this example are noteworthy. First in this case the 
McMillan degree is, actually smaller than the largest 
instantaneous degnee. Second, despite the fact that 
this system is FIR ,at every instant, the frozen SVR in 
(1 1,12), is not. Thus the minimal realization of an LTV 
FIR system may well have frozen IIR values. Moreover 
the mere inspection of the input output operator may 
lead to erroneous coaclusions about the minimum num- 
ber of delays required to implement an LTV operator. 
Further, results to be presented later will show that this 
system is all pass. For such an all pass FIR system to 
have a factorization as in figures 2, 3 with (4) holding, 
[3] shows that it is necessary that p(k+l) 2 p(k) .  Thus 
this system cannot have such a factorization. Yet, it 
will have the factorization to be presented in this paper. 

Next we present the LTV version of the discrete time 
All Pass Lemma. We have not found this result in the 
open literature, though we have been informed by A. 
VanderVeen, that :such a Lemma does indeed appear 
in his PhD thesis [7]. Henceforth if (1) is uco, ucc or 
eas, we will say that C ( k )  is uco,ucc or eas respectively. 
All realizations tha,t obey all three of these properties 
and have a bounded realization C ( k ) ,  will be called 
compatible. 

Theorem 2.1 Suppose the LTVsys tem (1)  is compat- 
ible. Then this system i s  all pass iff there exists an n x n 
matrzx P ( k ) ,  scalar p5, /?6 > 0, such that f o r  all k ,  

(14) 

and 

C t ( k )  [ P(k: ] C ( k )  = [ 'p' 1 .  (15) 

Further if ( 1 )  is real, then P ( k )  is real for  all k 
3383 



3 SVR's of Cascade Blocks 

The basic factorization to be undertaken in this paper 
is as depicted in figures 2 and 3. It then becomes im- 
portant to consider how the SVR of the overall system 
in figure 2 relates to the SVR's of the cascade compo- 
nents. In addition, we also need to study the uco, ucc 
and unitary nature of the individual blocks. To this 
end we will consider two distinct settings, respectively 
depicted in figures 4 and 5. 

Figure 4: A cascade of dynamic and static systems 

Figure 5: A dynamic cascade 

The first Lemma concerns the SVR of the setting in 
figure 4. In t he se- 
que1 dynamic operators such as H i ( k , q - ' )  will have 
SVR's { A i ( k ) ,  B i ( k ) ,  Ci(k), Di(k)}. Related quantities 
such as realization and state transition matrices will be 
denoted by Ci(k) and Q j i ( k )  respectively. Throughout 
we will assume that there exists Mi such that for all k 

IlCi(k)ll I Mi (1) 

Lemma 3.1 Consider the LTV system in figure 4, 
with H ( k , q - ' )  and H l ( k , q - ' )  M x M ,  LTV opera- 
tors, and H o ( k )  and H z ( k )  M x M matrices. Then an 
SVR of H ( k , q - l )  is  given by 

{ A l ( k ) ,  B l ( k ) H O ( k ) ,  H Z ( k ) C l ( k ) ,  H Z ( k ) D l ( k ) H O ( k ) l  
(2) 

i.e. 

The next Lemma is with respect to figure 5. 

Lemma 3.2 In figure 5 suppose both H l ( k ,  q- ' ) ,  
H z ( k ,  q - l )  are M x M ,  LTV dynamical systems. Then 

We now turn to such properties of the SVR's corre- 
sponding to the settings depicted in figure 4 and 5 as 
uco, ucc and unitariness. 

Lemma 3.3 Under the hypothesis of Lemma 3.1, as- 
sume that for all k 

~ i ( k ) ~ ~ ( k )  = ~ , t ( k ) ~ ~ ( k )  = I .  ( 6 )  
Then with C ( k )  as in Lemma 3.1, & ( k )  is uco, ucc 
and unitary for all k, iff so is C ( k ) .  

We conclude with the setting of figure 5. 

Lemma 3.4 Suppose the hypothesis of Lemma 3.2 
holds, C ( k ) ,  C l ( k ) ,  and &(k) are as in that Lemma, 
and obey the relationships in (4, 5), and &(k) i s  uni- 
tary for all k. Then: 

( i )  & ( k )  is unitary i#C(k)  is unitary. 

(iz) & ( k )  and &(k) are both compatible if C ( k )  is 
compatible. 

4 Main Results 

In this section we provide the statements of the main 
results of this paper. In Section 4.1 we talk about the 
base dyadic factorization as well as explaining the sig- 
nificance of some of the underlying assumptions. Sec- 

4.3 discusses the anticausal inverses of these structures. 
tion 4.2 describes the second dyadic structure. Section 

4.1 The Base Dyadic Structure 
In this section we consider factorizations of square 
M x M LTV all pass systems of the form described 
in Definition 4.1 

Definition 4.1 This LTV M x M operator has a base 
dyadic factorization if it is as in figure 6 where H o ( k )  
is an M x M matrix that obeys for  all k 

Hi(k)Ho(k) = I (1) 
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and each H i ( k ,  q-')  is an M x M LTV operator of the 
form in figure 7, with wi(k)  M x 1 vectors obeying 

Theorem 4.1 Suppose an all pass M x M LTV system 
has McMilIan degree n and a compatible realization. 

and 
&;(k) = Jl - la;(k)12 v k. 

Figure 6: The base dyadic cascade 

Then it has a base dyadic implementation described in 
Definition 4.1, with n as in figure 6, and with each 
H i ( k , q - l )  as in figure 6, 7 having McMillan degree 
1. Furthermore, if this system has a real compatible 
realization then the H o ( k )  in figure 6 and V i ( k )  and 
a;(k) in figure 7 am! real for  all k .  Finally, all systems 
admitting an implementation of the form in Definition 

('1 

(3) 

(4) 4.1 are all pass. 

The need for the uco/ucc assumption is to guarantee 
eas of the implementation. Without eas, these imple- 
mentations will be potentially nonrobust even to mi- 
nor implementation errors. It is well known that the 
all pass assumption together with the uco/ucc require- 
ment suffices to guarantee eas [6]. 

Finally, consider the all pass system in 9, which as 
noted earlier, despite being FIR, does not have the FIR 
based dyadic implementation given in [3]. Yet, from 
(11,12), observe that this system is aspecial case of the 
structure in figure 7 ( U ( k ) , Y ( k )  are 1 x 1. v;(k)  = 1 V 
k). Thus, this system has the dyadic implementation 
depicted in figures 6 and 7 

4.2 Householder Structure 
In this subsection we present a variation of the House- 
holder matrix based factorization presented in [5]. A 
Householder matrix is a unitary matrix that can be 
expressed for some column vector w ,  

I -- Pww', wtw = 1. (5) 

Then the structure is as defined in Definition 4.2. 

Definition 4.2 Th.is structure has a Householder fac- 
torization if it is as in Figure 8 with Go(k) M x M ,  
and obeying 

Gi(k)Go(k)  = I; V k (6) 

for suitable M x 1 vectors w;(k),  W ; ( k )  is 

Wi(k) = I - Wj(k)Wf(k), Wf(k)Wi(k) = 1, v k, (7) 
Figure 7: A degree one LTV dyadic structure 

Observe the difference between the structure in figures 
6 and 7, and that in figures 2, 3. The need for this 
somewhat different version of the base dyadic structure 
can be understood in the following terms. While the 
SISO LTV structure relating z ; l (k )  and z ; z ( k )  is all 
pass as long as (3,4) hold, the block relating z i l ( k )  and 

under (3), [3]. Note the structure in figure 7 is often 
referred to as the normalized version of that in figure 
3; that in figure 3 is all pass under (3) if a i ( k )  is a 
constant. We can now state the main result of this 
subsec tion. 

the M x M operator 

O ] (8) A i ( k , q - ' )  = [ 0 & ( k , q - l )  
IM-1 

with A;(k,q-') the same as the block relating zil and 
z;2 in figure 7, and with a i ( k ) ,  &(k) as in (3,4). 

Then the main result of the subsection is as follows. ; l i z (k)  in figure 3 will not in general be all pass, even 

Theorem 4.2 Suppose an all pass M x M ,  LTV sys- 
tem has McMillan degree n with a compatible realiza- 
tion. Then it has o Householder based implementation 
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Figure 8: A householder structure 

described in Definition 4.2, with as in figure 8, with 
each block in, Aj(k, q - l )  block having McMilZan degree 
1. Furthermore, if this system has a real compatible 
realization, then the Go(k) and W;(k) in figure 8 and 
arj(k) (see defenition 4,2) are real f o r  all k. Finally, 
all systems admitting an implementation of the form 
in Definition 4.2 are all pass. 

As with Theorem 4.2, the uco, ucc nature of each block 
& ( k ,  q - l )  guarantees that the LTV system in figure 8 
is uco and ucc. Further, the corresponding structure in 
[5] is identical to that in figure 8, with the Ai(k ,q- ’ )  
replaced by blocks of the form relating z;l and zi2 in 
figure 3 

4.3 The Anticausal Inverse 
We can now turn to the question of a realization of the 
synthesis bank R(q-l ,  k) in figure 1,  when the analysis 
bank is all pass and has a McMillan degree. To achieve 
the PR requirement, we wish R(q- l ,  k) to be the anti- 
causal inverse of E ( k ,  q- ’ ) .  Given that E ( k ,  q-’) will 
have either of the two implementations given in Sec- 
tions 4.1 and 4.2, the following fact readily follows from 
[4]: That in each case, the corresponding R(q-’,  k) can 
be implemented by reversing the order of the blocks in 
figure 4 or 8 as the case may be, and by replacing q-l 
by q. The resulting realization of R(q-l ,  k) is also all 
pass and is eas, uco and ucc. 

5 Conclusion 

We have developed a factorization scheme for LTV IIR 
square all pass systems which are often used in LTV 
filter banks. This scheme is based on a simple dyadic 
structure and is guaranteed to  exist if the system is ucc, 
uco, and eas. Moreover, certain FIR systems which 
cannot be realized with the dyadic structure in [3] do 
have realizations of the type presented here. Compu- 
tation simplification may be achieved by implementing 
a Householder variation of the dyadic structure; and in 
both cases, an anticausal inverse may be used in the 
synthesis bank of the LTVFB. 
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