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Abstract— Dual-actuator control systems are designed by
piggybacking a small secondary actuator onto a primary
actuator. Yet the control design for such systems is challenging
due to the limited dynamic range of the secondary actuator and
its coupling with the primary actuator. In this paper, we propose
a new control design approach for dual-actuator systems. We
first show that, through a simple coordinate transformation,
a dual-actuator system can be separated into two subsystems,
one of them controlled only by the primary actuator, which
can be designed using conventional methods, and the other
one involving tracking control using the secondary actuator.
We then devise a switching control strategy for the secondary
actuator to achieve high precision control. Two dual-actuator
systems are used to demonstrate the use of dual actuators and
effectiveness of the new design approach.

I. INTRODUCTION

The structural characteristic of a dual-actuator system is
that there are two cascaded actuators operating along a
common axis. The primary actuator, called primary actuator,
is of long range but with poor accuracy and slow response
time. The minor actuator, called secondary actuator, is
typically piggybacked onto the primary actuator and delivers
much higher precision and faster response but has a limited
dynamic range. A good example of dual-actuator systems is
the so-called dual-stage hard disk drive servo system which
consists of a voice coil motor as the primary actuator and
a piezo-electric transducer as the secondary actuator [1]-[2].
Other examples include VLSI chip manufacturing machines
[3], [4] and high precision machining tools [5], [6].

Although the mechanical design of dual-actuator systems
appears to be simple and the functionalities of each actuator
appear to be qualitatively clear, it is a challenging task to
coordinate the two actuators to yield an optimal performance.
The main obstacle is that secondary actuator typically has a
very limited motion range. A naive design approach is to
tune the primary actuator to achieve a rough positioning or
tracking and then to activate the secondary actuator when
the primary actuator reaches its steady state. This approach
appears to make sense because the secondary actuator does
not have much influence when the tracking error is large;
and conversely, the secondary actuator should take over when
the primary actuator has exhausted its ability to reduce the
tracking error. However, such an approach is inadequate for
at least two reasons: 1) The overall response time is typically
excessively long; 2) In many applications the system is
subject to disturbances or the tracking reference signal is
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time-varying, which implies that the primary actuator can
never be in a steady state. Many other design approaches also
exist. For example, a common design approach for dual-stage
hard disk drive systems is to design two separate control
loops, one for each actuators by assuming that the interaction
between the two control loops is negligible. The two loops
can operate in either series [7] or parallel [8]. In such a
design, the primary and secondary actuators are assigned to
control low and frequency responses, respectively. However,
it is well known that this control approach typically results in
poor stability performance due to the coupling between the
two actuators. Indeed, the most difficult aspect of the dual-
actuator control design is to figure out how to coordinate the
two actuators in a region where both actuators have some
but limited control authorities.

In this paper, we propose a new control design approach
for dual-actuator systems. Our research starts with an inter-
esting observation that many dual-actuator systems can be
effectively decoupled through a simple coordinate transfor-
mation. The result of it is that we have two subsystems, a
primary system and a secondary system behaving as follows.
The primary system is approximately independent of the
secondary system and is purely driven by the primary ac-
tuator. The controller of the primary system can be designed
using standard means, and thus is not of primary interest.
On the other hand, the secondary system is controlled by
the secondary actuator and the coupling from the primary
system is only through the reference signal for positioning or
tracking. Motivated by the observation above, we then focus
on the control design for the secondary actuator. Modeling
the secondary actuator as a saturated controller, this problem
can be casted as a tracking control problem with an input sat-
uration. Existing design approaches range from anti-windup
compensators [9]-[10] to Riccati equation or linear matrix in-
equality based approaches [11]-[13]. In our design approach,
we choose to optimize a quadratic performance function.
To get around the difficulty with the input saturation, we
exploit a switching control strategy which applies different
control gains when the state of the system lie in different
regions. These regions are characterized by nested ellipsoids
with outer ellipsoids corresponding to looser performance
bounds and the inner ones to tighter bounds. As the tracking
error converges, the controller gradually switches from low
performance gains to high performance ones. Two design
examples are used to demonstrate our design approach. The
first one is a simple two-mass system exemplifying a single-
axis linear-motion dual-actuator system. The second one is
a dual-stage synchronization system commonly used in the
micro-manufacturing industry.
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Fig. 1. Typical Dual-Actuator Control System
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Fig. 2. A two-mass model for Dual-Actuator Systems (Linear Motion)

II. MODELING OF DUAL-ACTUATOR SYSTEMS

A dual-actuator system can be depicted in Fig. 1, where
Σp and Σs denote the primary and secondary systems (or
subsystems), respectively. The primary actuator up drives
the primary system directly and the secondary actuator us

controls the secondary system but it also injects a counter-
action directly onto the primary system. The state vectors of
the two subsystems are denoted by x and z, respectively. The
control objective is to design a suitable controller C such that
the output y of the secondary system tracks a given reference
signal yr with some prescribed performance specifications.

A dual-actuator system with single-axis linear motion can
be represented by a two-mass model as shown in Fig. 2.
The mass, damping coefficient, spring constant, position and
velocity of the primary system are denoted by mp, cp, kp,
z1 and z2 respectively. Their counterparts for the secondary
system are denoted by ms, cs, ks, x1 and x2, respectively.
The output y equals x1. In this model, the primary system is
attached to a fixed base. However, additional dynamics to the
base and the interactions with them can be modeled into the
actuating function up. The dynamic equations of the system
are given as follows:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ż1 = z2

mpż2 = up − σ[us] − cpz2 − kpz1 + f(x1, x2, z1, z2)
msẋ2 = σ[us] − f(x1, x2, z1, z2)

(1)
where f(x1, x2, z1, z2) = cs(x2 − z2) + ks(x1 − z1 − l0)
represents the interaction force between two actuators, l0 > 0
denotes the offset distance between two masses, and σ[·] is
a saturation function defined by

σ[u] =

⎧⎨
⎩

a (u > a)
u (|u| ≤ a)
−a (u < −a)

a > 0 (2)

Next, we show that the model (1) can be decoupled into
two subsystems via a simple coordinate transformation. This
is motivated by the fact that the primary system typically has
a much larger mass than the secondary system. Let

z1 → ξ1 =
msx1 + mpz1

ms + mp
, z2 → ξ2 = ξ̇1 (3)

That is, we choose the mass center ξ1 and its derivative as
a new coordinate for the primary system. It follows that

ξ̇2 = bup(t) − a2ξ2(t) − a1ξ1(t) + ε(t) (4)

where b = (ms + mp)−1, a1 = kpmsm
−1
p , a2 = cpmsm

−1
p

and ε(t) = ms(ksx1 + csx2)/(m2
p + msmp) describes the

coupling force from the motion of the secondary system. Due
to the fact that mp � ms, we can simply ignore the ε(t)
term. It follows that the dynamics of the primary system is
approximately decoupled from that of the secondary system
and the design of up(t) can be done using any conventional
method.

On the other hand, if we define e1 = x1 − yr and e2 =
ė1 = x2 − ẏr , then

ė2 = g{σ[us(t)] − d(t)} − h2e2(t) − h1e1(t) (5)

where g = m−1
s , h1 = ksm

−1
s , h2 = csm

−1
s and

d(t) = cs(ẏr − z2) + ks[r − (z1 + l0)] + msÿr . (6)

The model (5) now becomes the model for the secondary
system. We observe that the coupling signal d(t) is domi-
nated by the error between the state of the primary actuator
(z1, z2) and the desired state (yr−l0 , ẏr) and the acceleration
command msÿr . If the error or the acceleration command is
large, it is not possible to completely compensate d(t) by
using us(t). It is only when d(t) is within a small region
(in comparison with a) that the secondary actuator has some
meaningful control effect.

The observation above means the following. We can use
the input of the primary actuator to drive the mass center such
that the new reference signal d(t) converges to a small region
as quickly as possible. Prior to such convergence of d(t),
the secondary actuator should be turned off because it does
not have much effect. The control gain of us(t) should be
gradually increased when d(t) becomes small. This motivates
the idea of a switching control strategy for the secondary
actuator, which we discuss in the next two sections.

III. CONTROL DESIGN FOR SECONDARY ACTUATOR

In this section, we focus on the design problem for the
secondary system in a dual-actuator system. In view of the
discussions in Section II, we consider the following model:

ẋ = Ax + b(σ[u] − d(t)), x(0) = x0 (7)

where x ∈ IRn is the state with initial condition x0, u ∈ IR
is the control input, d(t) ∈ IR is a given reference signal,
and A ∈ IRn×n and b ∈ IRn×1 are given. Without loss of
generality, we assume that the saturation level is a = 1.

Roughly speaking, the design goal is to find a state feed-
back control law such that the state x is driven from its initial
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state x(0) to the origin with a pre-specified performance cost
or less and that the region of such initial state is maximal.

It is obvious that if |d(t)| > 1 holds persistently, it is not
possible to achieve the design goal. Therefore, it is necessary
for the primary actuator the bring the steady state value of
d(t) to be within [−1, 1]. In view of this, we assume that the
control action of the primary actuator has been applied prior
to t = 0 such that |d(t)| ≤ d0, ∀t ≥ 0 for some d0 ∈ (0, 1).

Under the assumption, we can compensate the disturbance
by introducing a feed-forward term in u(t) as follows:

u(t) = v(t) + d(t) (8)

Then we can rewrite (7) as

ẋ = Ax + bσd[v], x(0) = x0 (9)

where σd[·] is defined as in (2) with a = 1 − d(t) > 0.
We now consider the following quadratic cost function

J(x0, v) =
∫ ∞

0

{xT Qx + rσ2
d[v]}dt (10)

for some Q = QT ≥ 0 and r > 0 with (A, Q
1
2 ) being

detectable, where σd[v] = σ[u]− d(t). We seek to minimize
J(x0, v) by using a linear state feedback v = Kx. If there
is no saturation, it is well-known that the optimal solution
for v is given by

v∗ = −r−1bT P0x (11)

and the minimum quadratic cost is xT
0 P0x0, where P0 =

P T
0 > 0 is the solution to the following Riccati equation:

AT P0 + P0A + Q − r−1P0bb
T P0 = 0 (12)

In the presence of saturation, the optimal v is difficult
to compute. To get around this difficulty, we follow the
approach in [12] by parameterizing the controller by using
a bound on v. More precisely, given ρ ≥ 0, we restrict the
v to be such that

|v| ≤ ρ + (1 − d0) (13)

That is, ρ acts as an over-saturation bound. It is easy to
verify that for any v constrained by (13), σd[v] lies in the
following sector bound as shown in Fig. 3

δ(v) = σd[v] − ρ1v; |δ(v)| ≤ ρ2|v| (14)

where

ρ1 =
2(1 − d0) + ρ

2(1 − d0 + ρ)
, ρ2 =

ρ

2(1 − d0 + ρ)
(15)

Now, for a given ρ > 0, consider a Lyapunov function
candidate of the form V (x) = xT Pρx for some Pρ = P T

ρ to
be determined and define

Ωρ = AT Pρ + PρA + Q − r−1Pρbb
T Pρ (16)
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Fig. 3. Sector Bound for σd [v]

It is straightforward to verify that

J(x0, v) = lim
T→∞

V (x0) − V (x(T ))

+
∫ ∞

0

(V̇ + xT Qx + rσ2
d[v])dt

≤ V (x0) +
∫ ∞

0

ϕ(x, v, δ(v))dt

where

ϕ(x, v, δ(v)) = xT (AT Pρ + PρA + Q)x
+rσ2

d[v] + 2xTPρbσd[v]
= xT Ωρx + r(ρ1v + δ(v) − v∗)2 (17)

This implies that if ϕ(x, v, δ(v)) ≤ 0 along the trajectory of
the system (9) with the feedback control, we have

J(x0, v) ≤ V (x0) (18)

Using the analysis above, we formulate the following
(relaxed) auxiliary optimal control problem: For a given
ρ ≥ 0, design Pρ and v to minimize V (x0) subject to
ϕ(x, v, δ(v)) ≤ 0 for all x ∈ Rn and all δ(·) satisfying
the following sector bound:

|δ(v)| ≤ ρ2|v| (19)

In addition, determine the largest invariant set of the form

Xρ = {x : xT Pρx ≤ µ2
ρ} (20)

such that for any x0 ∈ Xρ, x(t) ∈ Xρ and |v(t)| ≤ 1−d0+ρ
for all t ≥ 0 and J(x0, v) ≤ V (x0).

Theorem 1: Consider the system in (9), the quadratic cost
function in (10) and a given bound ρ ≥ 0 on the level of
over-saturation. Define ρ0 = ρ2/ρ1. Suppose the equation

AT Pρ + PρA − r−1(1 − ρ2
0)Pρbb

T Pρ + Q = 0 (21)

has a solution Pρ > 0. Then the optimal Kρ and the
associated Xρ for the auxiliary optimal control problem are
given by

Kρ = −ρ−1
1 r−1bT Pρ (22)

µρ =
2(1− d0) + ρ

2
√

bT Pρb
r (23)
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Proof: We first solve

min
v

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v))

for a given x ∈ IRn . It is straightforward to compute

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v))

= xT Ωρx + r{(ρ1v − v∗)2 + 2ρ2|(ρ1v − v∗)v| + ρ2
2v

2}
where v∗ = −r−1bT Pρx. We consider two cases: 1) ρ1v

2 ≥
v∗v and 2) ρ1v

2 ≤ v∗v. For the first case, we have

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v))

= xT Ωρx + r{(ρ1v − v∗)2 + 2ρ2(ρ1v − v∗)v + ρ2
2v

2}
= xT Ωρx + r(v − v∗)2

The last step is obtained by using ρ1 + ρ2 = 1. The
minimizing v subject to ρ1v

2 ≥ v∗v is given by v = ρ−1
1 v∗,

then

min
v:ρ1v2≥v∗v

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v))

= xT Ωρx + r(ρ−1
1 v∗ − v∗)2

= xT Ωρx + rρ2
2ρ

−2
1 (v∗)2 = xT Ω̃ρx

where Ω̃ρ = AT Pρ + PρA + Q− (1− ρ2
0)Pρbb

T Pρ. For the
second case, we have

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v))

= xT Ωρx + r{(ρ1v − v∗)2 − 2ρ2(ρ1v − v∗)v + ρ2
2v

2}
= xT Ωρx + r((ρ1 − ρ2)v − v∗)2

It follows that

min
v:ρ1v2≤v∗v

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v))

= xT Ωρx + r((ρ1 − ρ2)ρ−1
1 v∗ − v∗)2

= xT Ωρx + rρ2
2ρ

−2
1 (v∗)2 = xT Ω̃ρx

with the same optimal v. Hence, we conclude that the optimal
v is ρ−1

1 v∗ which is the same as (22). From the above
discussion, we know that given x and v,

max
|δ(v)|≤ρ2|v|

ϕ(x, v, δ(v)) ≤ xT Ω̃ρx + ∆(x, v)

where ∆(x, v) ≥ 0 with ∆(x, ρ−1
1 v∗) = 0.

Next, we need to minimize xT
0 Pρx0 subject to

xT Ω̃ρx + ∆(x, v) ≤ 0

or equivalently,

xT Ω̃ρx ≤ −∆(x, v)

We note that the upper bound of Ω̃ρ increases as ∆(x, v)
decreases. Also, Pρ has a well-known monotonicity, i.e.,
it decreases when Ω̃ρ increases. Hence, the optimal Pρ is
obtained by minimizing ∆(x, v) and maximizing Ω̃ρ, i.e.,
by setting v as in (22) and Ω̃ρ = 0 which leads to (21).

In order to characterize the invariant set Xρ, all we need
to do is to determine the largest µρ such that

max
xT Pρx≤µ2

ρ

|Kx| =
∣∣ρ−1

1 r−1BT Pρx
∣∣ = 1 − d0 + ρ (24)

Let η = P
1/2
ρ x. Then,

max
xT Pρx≤µ2

ρ

|Kx| = max
‖η‖≤µρ

|r−1ρ−1
1 BT P−1/2

ρ η| (25)

The optimizing η is given by

η0 =
µρ

‖P 1/2B‖P 1/2
ρ b (26)

Substituting x = P
−1/2
ρ η0 into (24), we obtain (23).

Remark 1: If ρ = 0, the Riccati equation (21) and the
control gain (22) recover the results in (12) and (11) for no
saturation. The associated invariant set is given by

X0 := {x : xT P0x ≤ µ0}, µ0 =
2(1 − d0)r

2
√

bT P0b
(27)

IV. NESTED SWITCHING CONTROL

Roughly speaking, a practical way to avoid or reduce input
saturation is to make the controller gain small when the state
is large and to increase the gain when the state is small.
Switching control with a sequence of nested control laws
is motivated by this basic idea. To do this, a sequence of
control laws need to be designed in such a way that the
invariant sets are nested. More precisely, we need to find the
controllers Ki, i = 0, 1, · · · , N such that the corresponding
invariant sets Xi = {x : xT Pix ≤ µ2

i }, i = 0, 1, · · ·, N ,
satisfy X0 ⊂ X1 ⊂ · · · ⊂ XN . Furthermore, we also demand
P0 < P1 < · · · < PN so that the quadratic performance gets
improved gradually when the control gain switches from KN

to K0.
The desired nesting properties above can indeed be

achieved by using the design method in the previous section
with different values of ρ. This is due to the monotonicity
of the Riccati equation (21). Indeed, we can rewrite (21) as

AT Sρ + SρA − r−1(1 + ρ0)SρBBT Sρ + Qρ = 0 (28)

where Sρ = (1− ρ0)Pρ and Qρ = (1− ρ0)Q. Using Sρ and
Qρ, the invariant set (20) can be expressed as

Xρ =
{

x : xT Pρx ≤ (1 − d0)2r2

(1 − ρ0)bT SρB

}

=
{

x : xT Sρx ≤ (1 − d0)2r2

bT SρB

}
(29)

Theorem 2: The solution Sρ to equation (28) is monoton-
ically decreasing in ρ > 0, i.e., Sρ+ε < Sε, if 0 ≤ ρ < ρ+ε.
Consequently, Xρ has the following nesting property:

Xρ ⊂ Xρ+ε, 0 ≤ ρ < ρ + ε (30)

Similarly, we have

Pρ < Pρ+ε, 0 ≤ ρ < ρ + ε (31)
Proof: It suffices to establish the result above for suffi-

ciently small ε > 0. It is easy to verify that ρ0 = ρ/[2(1 −

959



d0)+ρ] is monotonically increasing in ρ. Thus, for any ε > 0,
we can write

ρ + ε

2(1 − d0) + ρ + ε
= ρ0 + ε1

with some ε1 > 0. It follows that the Riccati equation (28)
for ρ + ε can be represented as

AT Sρ+ε + Sρ+εA − r−1(1 + ρ0 + ε1)Sρ+εBBT Sρ+ε

+(1 − ρ0 − ε1)Q = 0 (32)

Let E = Sρ − Sρ+ε. From (28) and (32), we have

ÃT E + EÃ + +r−1(1 + ρ0 + ε1)EBBT E

+ε1Q + ε1SρBBT Sρ = 0 (33)

where Ã = A − r−1(1 + ρ0 + ε1)BBT Sρ. From (28), we
know that A − r−1(1 + ρ0)BBT Sρ is Hurwitz. Therefore,
A − r−1(1 + ρ0 + ε1)BBT Sρ is also Hurwitz when ε1 (or
equivalently, ε) is sufficiently small. It follows from (33) and
the detectability of (A, Q1/2) that E > 0, i.e. Sρ > Sρ+ε.
The nesting property of Xρ then follows from (29).

The monotonicity of Pi is proved similarly.
Based-on the nesting property of the invariant set Xρ,

we can apply Theorem 1 to design a sequence of control
gains Ki(= Kρi ), i = 0, 1, · · ·, N, for a sequence of over-
saturation bounds 0 = ρ0 < ρ1 < ρ2 < · · · < ρN , and switch
the gain to Ki whenever x ∈ Xi(= Xρi ) but is outside
of Xi−1(= Xρi−1). The next result shows the performance
improvement by using this switching control.

Theorem 3: Suppose the switching controller above is
applied to the system in (9) with x0 ∈ XN . Let τi be the time
instance Ki is switched on, i = 0, 1, · · · , N . In particular,
τN = 0. Then,

J(x0, v) = xT
0 PNx0 −

N−1∑
i=0

xT (τi)∆Pix(τi) (34)

where ∆Pk = Pi+1 − Pi > 0, i = 0, 1, · · · , N − 1.
Proof: Following the proof of Theorem 1, we have

xT Qx + rσ2
d[Kix] ≤ − d

dt

{
xT Pix

}
(35)

along the trajectory of x(t), t ∈ [τi+1, τi). Integrating the
inequality above yields (34).

V. DESIGN EXAMPLES

A. Single-axis Dual-Stage Positioning control

Recall the dual-stage positioning system in Fig. 2. The
control problem is to drive the output y to a given command
yr . The physical parameters of the system are shown in
Table I. The saturation level for the secondary stage is a =
0.02 and the offset between the two stages is l0 = 0.05. Re-
scaling the control input and the input matrix as 0.02u → u
and 0.02B → B, the system can be rewritten as model (1)
with the saturation level a = 1. Choose Q and r as

Q =
[

50 0
0 10

]
, r = 0.1 (36)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

time[sec]
0 2 4 6 8

0

0.2

0.4

0.6

0.8

time[sec]

y(
t)

y(
t)

Fig. 4. Time response (y(t)[m])

Fig. 5. State trajectories

In order to show the effectiveness of the nested switching
control strategy, we are mainly interested in the control
design for the secondary stage. The primary actuator is
simply controlled by a PID controller with the gains kp =
50.0, kI = 5, kd = 0.

To design the secondary stage, we take d0 = 0.01 and
choose the over-saturation levels to be ρ4 = 50, ρ3 =
10, ρ2 = 5, ρ1 = 1 and ρ0 = 0. This leads to the switching
feedback control gains

K4 = [−76.0594 − 57.8713]
K3 = [−50.1572 − 30.7876]
K2 = [−40.1313 − 23.2691]
K1 = [−25.0582 − 13.6835]
K0 = [−17.9129 − 9.6805]

(37)

The corresponding domains of attraction have µ4 =
1.1450, µ3 = 0.1069, µ2 = 0.0449, µ1 = 0.0108 and µ0 =
0.0051. The corresponding Lyapunov matrices for µ4 and
µ0, for example, are given by, respectively,

P4 =
[

28.1408 1.9384
1.9384 1.4749

]
, P0 =

[
24.4199 0.8956
0.8956 0.4840

]

Simulation results are shown in Figs. 4-5 (the left plots)
which demonstrate the step response to the set-point com-
mand yr = 0.5. The domains of attraction are also shown
in Fig. 5. To compare the performance of the proposed
switching controller, we also show the response (the right
plots in Figs. 4-5) when the secondary stage is controlled
by a P controller with “optimized” gains kp = 0.45, ki =
0, kd = 0. It is clear from the simulations that the proposed
switching controller can drive the output y to yr much faster
than a PID controller.

B. Synchronizing control of multi-stages

Synchronization of two or more mechanical machines is
very important when the machines must cooperate. Stepping-
and-laser scanning systems are typical machines of this kind
widely used in the semiconductor manufacturing industry.
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Fig. 6 shows a typical setup of such a system. In this setup,
a wafer is placed on the master stage (called wafer stage)
and a reticle are placed on a slave stage (called reticle stage).
The two stages are required to move in synchrony with high
precision along the same axis so that the content in the reticle
can be exposed to the wafer. In order to achieve the high
precision in synchronization, a dual-stage is usually used
for the reticle stage. The control of the secondary stage is
targeted at tracking the motion of the wafer-stage.

The parameters of the system used in the simulation are
shown in Table II. For simplicity, the parameters of the dual-
stage system is chosen to be the same as in Example 1.
Consequently, the same switching controller for Example 1 is
used here. However, the PID controller for the primary stage
is adjusted to have kp = 100, ki = 15, kd = 0 to improve the
synchronizing performance. Two different command signals
of yr , ramp and sine wave, are used in the simulation. The
responses of the master stage are shown in Fig. 7 (the plots
in the top), and the corresponding synchronization errors are
shown in Fig. 7 (the plots in the middle).

To compare the effectiveness of the proposed synchroniza-
tion approach where the reticle stage is actuated by the dual-
stage with the switching controller, we also show in Fig. 7
(the last two plots) the synchronization error when the reticle
stage is driven by a single actuator, i.e. the secondary stage
is fixed on the primary stage. It is clear from Fig. 7 that the
proposed switching controller performs much better.
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Fig. 7. Synchronization with the proposed control and PID control (the
master stage position ym(t)[m] and the synchronization error e(t)[m])

TABLE I

PHYSICAL PARAMETERS OF THE DUAL-STAGE

Mass[kg] Spring[N/m] Damper[Ns/m]
Primary-Stage 0.1 0.2 0.1

Secondary-Stage 0.01 0.1 0.025

TABLE II

PHYSICAL PARAMETERS OF THE STAGES

Mass[kg] Spring[N/m] Damper[Ns/m]
Master-Stage 0.1 0.7 0.6

Primary-Stage 0.1 0.2 0.1
Secondary-Stage 0.01 0.1 0.025

VI. CONCLUSIONS

For dual-actuator systems, an effective way to achieve fine
control quality is to design the control strategy with delicate
sensitivity, due to the primary and the secondary actuator
have different range and different response properties. Partic-
ulary, the secondary actuator is usually saturated and of small
range. In this paper, we have shown that a feasible method to
this end is to focus the design arm on the secondary actuator,
since the control can be decoupled by a simple coordinate
change. We proposed a nested switching control approach
for the secondary actuator which takes the saturation and
the interaction from the primary actuator into account.
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