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Abstract

Given m square matrices Ay, ..., Am, let A denote the set
of all their convex combinations. Then we consider the
problem of determining a member of A whose minimum
singular value is the smallest. A related problem, known
as robust nonsingularity problem, is to determine if every
member of A is nonsingular. Clearly a solution to our
problem automatically solves the robust nonsingularity
problem. Unfortunately, the robust nonsingularity prob-
lem has been demonstrated to be NP-hard which in turn
makes our problem NP-hard. To avoid this computational
intractability, we provide an algorithm that computes a
lower bound and an upper bound on the least minimum
singular value within a prescribed tolerance. Of course, if
the prescribed tolerance is set to zero then our algorithm
would compute the least minimum singular value. Our
method makes use of the so-called simplicial algorithms.

1. Introduction

In this paper we will be concerned with the least mini-
mum singular value problem. Before defining the prob-
lem precisely, we have a few words regarding notation.
Throughout this paper ®,R™ and R™*" (resp. C,C™ and
€™*™) will denote the set of real (resp. complex) numbers,
m-vectors and nzn matrices respectively. A¥ stands for
complex conjugate transpose of a complex matrix, vector
or number A, 0min(-) denotes the minimum singular value
of a matrix and Amin(-) denotes the minimum eigenvalue
of a Hermitian matrix.

1t is well known, [1], that for a real or complex nonsingular
matrix A, Omin(A) measures the distance of A from the
set of singular matrices, i.e.

Omin(A) = min {||E|| : A+ E is a singular matrix} (1.1)

where || - || denotes the spectral norm of a matrix. Hence
if the minimum singular value of a matrix is large, then it
can tolerate relatively large perturbations in its elements
before becoming singular. On the other hand, if the min-
imum singular value of a matrix is small, then numerical
problems occur in various computations (e.g. inversion)
involving the matrix.

Both the least minimum singular value problem and the

robust nonsingularity problem, consider a polytope of ma-
trices. Recall that a polytope of matrices is represented
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as
A = convex hull of {A,...,Am}
= {A(u) =) miAizpe r} (1.2)
i=1
where A; € C"*™,i=1,...,m and

m
I‘:{p.:uE?Rm,u.‘ZO,i:l,...,m,Zm=1}.(l.3)
=1

The set T in (1.3) is known as an (m-1) dimensional unit
simplex. In rest of the paper a family A, asin (1.2}, will be
denoted by co(Ai,...,Am). The polytope matrix family
A is said to be robustly nonsingular if all its members
are nonsingular. The concept of minimum singular value
can be extended in a natural way for a polytopic family.
We define the least minimum singular value (LMSV) of a
polytope matrix family A as follows:

LMSV(A) = 21615 Imin(A). (1.4)

The importance of LMSV stems from (1.1) which gives
the following:

LMSV(A) = min{||E}: A+ E is a singular
matrix for some A € A} (1.5)

i.e. LMSV(.) of a polytope matrix family measures its
distance from the set of singular matrices. Note that A
is robustly nonsingular iff LM SV (A) > 0. The primary
objective of this paper is to develop an algorithm that cal-
culates LM SV (A) for any given polytope matrix family
A.

The computation of LMSV is related to some well known
robust stability problems. The first one is the robust sta-
bility of a polytope matrix family A in (1.2). The family
A is said to be robustly stable if all its members are sta-
ble (i.e. have eigenvalues in the open left half complex
plane). A number of authors, [2]-[6], have observed that
the robust stability problem can in fact be transformed
into an equivalent robust nonsingularity problem. The
common theme behind these transformations is to create
an associated polytope matrix family such that original
family is robustly stable if and only if the associated fam-
ily is robustly nonsingular. Several such transformations
have been formulated, e.g. power transformations [2, 3, 4],
bialternate product [4, 5] and Kronecker sum [5, 6].
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The second robust stability problem related to the compu-
tation of LMSV is a generalization of the first one, namely,
we consider the following family of matrices:

m
As={E+) mAi:p€l,E€C™ |IE| <6} (16)
i=1
where T is given by (1.3), u represents some parametric
uncertainty, £ is some unstructured uncertainty which is
norm bounded by § > 0. The robust stability problem
is to determine if every member of the matrix family in
(1.6) is Hurwitz stable. From the well-known zero ezclu-
sion principle (see for example [7]), the robust stability of
Aj; is equivalent to the following:

(i) As has at least one member which is Hurwitz stable;
(i) minaea Omin(jwl — A) > 6 for all w .

That is, the robust stability problem boils down to com-
puting the LMSV. Besides being directly connected to a
robust stability problem, robust nonsingularity problem
is also useful in sensitivity analysis of linear systems [8].

Note that determining LM SV (A) is NP-hard. This is
because even a special case of robust nonsingularity prob-
lem has been demonstrated to be NP-hard [9]. To avoid
this computational intractability, we take the following
approach. We compute a lower bound and an upper
bound for LM SV (A). If these bounds are unsatisfactory,
a branch and bound technique [10, 11] is used to system-
atically improve the bounds. The improvement can be
done till the bounds are within a prescribed tolerance.
The idea behind this is that if the upper bound calcu-
lated turns out to be very small then, even if the set is
robustly nonsingular, numerical problems may occur in
dealing with this set. Of course, if the prescribed toler-
ance is zero then our algorithm will compute the least
minimum singular value, but will require an exponential
number of steps. Our method makes use of the so-called
simplicial algorithms [12].

The organization of the paper is as follows. Section 2
derives the lower bound. Section 3 discusses simplicial
algorithms and the computation of upper bound. Sec-
tion 4 gives the branch and bound technique to improve
the bounds. Section 5 presents some examples and Sec-
tion 6 concludes. Due to space constraints, most of the
proofs have been omitted. The reader should contact the
authors for proofs and additional discussion.

2. Lower Bound

In this section we derive a lower bound on LMSV of poly-
tope matrix family. The following key lemma plays an
important role in this derivation.

Lemma 2.1 Let B € C™*" be a Hermitian matriz and \x
be an eigenvalue of B with the corresponding unit eigen-
vector xx € C”. Then perturbations in Ay relate to per-
turbations in B in the following fashion.

5Ax = s (6B)zs + higher order terms (2.1)

Since the minimum singular value of a matrix is always
nonnegative and 02,;,(A4) = Amin(A¥ A), it easily follows
that

(LMSV(A)) = min Amin(AT A). (2.2)

Further, for smooth variations of parameters g in T,
Amin(A¥(4) A(p)) varies continuously and is also differ-
entiable except when there are multiple eigenvalues corre-
sponding to the Am;n(-). However, note that minimum of
Amin (A7 (#)A(p)) over A is not achieved at any nondiffer-
entiable interior point'. This fact can be roughly argued
as follows: Suppose the minimum of Amin(A¥(p)A(g))
is achieved at a nondifferentiable interior point x* € I
Then, there exists a line L C T passing through u* such
that the line derivative of Amin(A¥(1)A(s)) on T' does
not exist at u*. This nondifferentiability is caused by the
crossing of two continuously differentiable eigenvalues of
AT()A(n). That is, one eigenvalue achieves the mini-
mum on one side of L, the other eigenvalue does so on the
other side, and they meet at u*. By the continuous dif-
ferentiability of these two eigenvalues, there exists i € L
in an arbitrarily small neighborhood of u* such that

Amin (A¥ (8)A()) < Amin (A% (") A(4"))

which contradicts the initial assumption that the mini-
mum of Amin (A () A(n)) is achieved at p*.

From the foregoing discussion it is clear that if the mini-
mum of Amin (A7 () A(u)) is achieved at an interior point
of A, then the first order necessary conditions must be
satisfied at that point. Towards this end we have the fol-
lowing lemma.

Lemma 2.2 For a polytope matriz family A, as in (1.2)
and (1.3), the first order necessary conditions at an inte-
rior point of A for the minimum of Amin (A¥ (2)A(p)) are
given by

2En (AT (8)(A; ~ Ax) + (AF = AF) A(W)]min(k)
=0Yj#k, jk=1,...,m (2.3)

where Tmin(p) € C" is the unit eigenvector associated with
the Amin (A7 (1) A(n)).

As a first step towards deriving a lower bound LMSV of
polytope matrix family, we have the following theorem.

Theorem 2.1 Suppose for a polytope matriz family A,
as in (1.2) and (1.8), the minimum of Amin{A™ (5)A(u))
i3 achieved at an interior point of T. Then

AJHC-}- CHAJ') . 24)

L4 2 3 .
(LMSV(A)) nggm;nxm...( a

Now, to give a general lower bound LMSV of polytope
matrix family, we need a word on notation. For a polytope
matrix family A, as in (1.2) and (1.3), A¥ will denote
the k-dimensional boundaries of A (i.e. (k+1) out of m
coefficients u; are nonzero on these boundaries and rest

! A point p € I is said to be an interior point if u ¢ 8T, i.e.,
not on the boundary of T.
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are zero). Note that A?, A} and A™? are respectively
vertices, edges and facets of A; A:"_l is A itself. Finally
V(A¥) denotes the vertices of A¥. This brings us to the
promised characterization of a lower bound.

Theorem 2.2 For a polytope matriz family A, as in
(1.2) and (1.3), the following holds.

A¥c+CHa,

(LMSV(A))* > min max min _ Amin ( 5

Wk CeAk ajev(ak)
(2.5)

Proof: Follows simply by repeated applications of The-
orem 2.1 and by noticing that boundaries, A¥, themselves
are polytopes of a smaller dimension and A; are the ver-
tices of the polytope A™~1. ™

Though Theorem 2.2 gives a lower bound on LMSV, it
is hard to implement since the maximization over C €
A% is in general not a convex problem. The following
theorem simplifies the characterization of the lower bound
in Theorem 2.2, and indeed it is this characterization we
use for our lower bound calculations.

Theorem 2.3 For a polytope matriz family A, as in
(1.2) and (1.3), the following holds.

(LMSV(A))* > max ( _ min A.—,,o) (2.6)
6,3€{1,...,m}

where we have defined a symmetric matrizr A € R™*™
having the ijth element
AF A+ AT A
Ai; = Amin (—J-—‘;—L—i> . (2.7)

Remark 2.1 Note that diagonal elements Ay of A in
(2.7) are actually equal to (omin(A:))? and thus are triv-
ially an upper bound for (LMSV(A))?. Hence if the
least element of A is a diagonal element Ai+;+, then
(LMSV(A))? = Ajeoin.

Remark 2.2 As the size of polytope A shrinks, i.e. ||Ai—
Aj]| = 0, elements Aij of A in (2.7) approach Aii. Con-
sequently it follows from Remark 2.1 that the lower bound
of Theorem 2.8 and thus also of Theorem 2.2 asymptot-
ically approach (LM SV (A))? as the size of A shrinks to
zero.

3. Upper bound

In this section we derive an upper bound on LMSV of
polytope matrix family. Note that omin(A) for any A € A
is trivially an upper bound on LMSV(A). However,
choosing an A € A blindly for upper bound calculations
would lead to a conservative upper bound. Hence we ap-
ply simplicial algorithms to calculate an approximate local
minimum of function Amin(A(z)¥ A(pt)) over parameters
p €T and use it for upper bound calculations. Simplicial

algorithms will be described later in this section. But first
we need a few preliminary results to make our problem
amenable to application of simplicial algorithms.

It is well known, [1}, that any matrix A € C™*" can
be written as Z:;l a;u;v,»”, where o; are real numbers
such that g3 > ... > on > 0 and uy,...,un (v1,...,%n)
are n-dimensional orthonormal vectors, i.e. uju; =1
(vfv; = 1) Vi, and uFu; =0 (vfv; = 0) Vi #£ ;. Such a
decomposition of A is known as a singular value decom-
position (SVD). Few easy consequences of this decompo-
sition are that Amin(A” A) = (0,)? with associated unit
eigenvector Tmin = vn; and Avn = Onun. Then, with
Z:;l (7,‘([1.)11-,‘(#)1'.(‘[)1! as SVD of a matrix A(p) belong-
ing to polytope matrix family A of (1.2) and (1.3), we
have the following equivalent characterization of first or-
der necessary conditions of Lemma 2.2.

Lemma 3.1 For a polytope matriz family A, as in (1.2)
and (1.3), the first order necessary conditions at an in-
terior point of A for the minimum of Am,-,,(A(p)HA(u))
are given by

2(an(1))? = on(p)[un(B)? Aiva(p) + va(p)” A un(n)]
=0, fori=1,...,m. 3.1)

For a polytope matrix family A, as in (1.2) and (1.3),
we associate a function f : T' — R™ as follows. The ith
component of { is given by

fi(n) = 20n(1)) —on(p)[url (1) Acvn(p)+or (B) AT un ()],

Then from Lemma 3.1 it is clear that a zero point of
function f (i.e. u* such that f(u*) = 0) in the interior
of T corresponds to a local optimum of Amin(A(g)¥ A())
in A. Actually more can be said about the properties of
function f. But before presenting the properties of f, we
need the following definition.

Definition 3.1 A function f : ' — R™ is said to be a
complementary function on T, if it satisfies /J.Tf(p) =0
for all p € T. Further, a point u* € I' 13 said to be a
complementary point of such a function f if fi(p") =0
whenever u} > 0 and fi(u") < 0 whenever p = 0.

Theorem 3.1 Function f associated with the polytope
matriz fammily A of (1.2) and (1.3) is indeed a complemen-
tary function on I'. Further, a point u* € I' corresponds
to a local minimum of Amin(A(p)¥ A(p)) only if p* is a
complementary point of f.

Remark 3.1 Suppose u* be a complementary point of f
and Z be the set of all those indices j for which p; =
0. Further if fi(p*) < 0 for ani € Z, then p* can not
correspond to a local mazimum of Amin(AH () A(p)).

From Theorem 3.1 and Remark 3.1 it is clear that a
good way to compute an upper bound on LM SV (A) is
to search for complementary points of function { associ-
ated with A. Also note that calculation of f(u) gives
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Omin(A(s)) as a by-product. We apply simplicial algo-
rithms to get approximate complementary points of func-
tion f.

A simplicial algorithm operates on an underlying triangu-
lation of the domain I'. Triangulation of simplex I' parti-
tions it into many smaller simplices in an orderly fashion.
Various types of triangulations are known. The particular
triangulation we employ is known as the V-triangulation.
V-triangulation of a simplex is completely determined by
two parameters: a starting point v and the grid size g~*.
The size of resultant simplices gets smaller as the grid
size decreases. An example of V-triangulation for a 2-
dimensional unit simplex with grid size g~* = 1/2 is given
in Figure 3.1. Here e1,e; and e are the points repre-
sented by the parameter vector u7 taking values [1,0,0],
[0,1,0] and [0,0,1] respectively. A detailed description of
V-triangulation can be found in [12, pages 51-54).

e p3 =0 e

Figure 3.1: V-triangulation with grid size g~ = 1/2

Just like the underlying triangulations, various types of
simplicial algorithms are known in the literature. Of these
algorithms, the one known as vector labeling algorithm
on V-triangulation has been found to be good for finding
complementary points of certain functions that appear in
Economics. It is this algorithm which we employ for up-
per bound calculations. Starting from the initial point of
underlying V-triangulation, the algorithm evaluates func-
tion f at certain vertices of simplices obtained by trian-
gulation and follows a piecewise linear path till it finds an
approximate complementary point of f. The algorithm
is a variable grid refinement type, i.e. if the the approxi-
mate complementary point found is not satisfactory, then
one can restart the algorithm with this approximate solu-
tion as the starting point and a smaller grid size to obtain
a better solution. Ultimately as the grid size shrinks to
zero, the algorithm converges to a complementary point
of f, provided f is a continuous function. Note that for a
continuwous complementary function f, the existence of a
complementary point is guaranteed from an easy modifi-
cation of Brouwer’s fixed point theorem (see [12, pages 22~

23]). A detailed description of vector labeling algorithm
on V-triangulation can be found in [12, pages 84-93].

Few remarks on the use of vector labeling algorithm on
V-triangulation for upper bound calculations are in or-
der. Since the algorithm calculates f at various points
in T and thus also provides value of omin(A(p)) at those
points, an upper bound can be taken as the minimum of
0min(A(s)) among these points. Indeed it is this upper
bound that we use in our algorithm, to be presented in the
next section. Secondly, as refining just the upper bound
without refining the lower bound is not of much value,
we need not restart the algorithm with finer grid size to
find more accurate complementary points. In fact, we use
1/2 as the grid size of the underlying triangulation. We
conclude this section with the following remark.

Remark 3.2 Since the upper bound calculated is actually
minimum singular value of a matriz in the polytope, it
asymplotically approaches LM SV (A) as the size of the
polytope A shrinks to zero (see Remark 2.2 for definition).

4. Algorithm for Improving the Bounds

In this section, we discuss an algorithm to improve bounds
on LMSV(A). The algorithm is based on the branch
and bound techniques of [10, 11]. The algorithm com-
putes LM SV (A) asymptotically. The algorithm parti-
tions A into various matrix polytopes of the same form,
i.e. a polytope B belonging to the partition is of the
form co(B:,..., Bm) where B; € A. This partitioning
corresponds to an equivalent partitioning of {m — 1)-
dimensional unit simplex T associated with .4 into various
{m — 1)-dimensional simplices of smaller size.

The algorithm computes LM SV (A) to within an abso-
lute accuracy of € > 0, using two functions LB(B) and
U B(B) defined over polytopes B in the partition. These
two functions satisfy the following conditions.

(C1) LB(B) < LMSV(B) < UB(B), i.e. the functions
LB and U B compute a lower bound and an upper bound
on LM SV (B) respectively.

(C2) As the size of B goes to zero, the difference between
upper and lower bounds uniformly converges to zero, i.e.

Ve> 0,36 >0s.t. | Bi—B;|| <8Vi,j = UB(B)-LB(B) < e.

Roughly speaking, the bounds LB and U B become sharp
as the polytope shrinks to a point.

The algorithm starts by computing LB(A) and UB(A).
If UB(A) — LB(A) < ¢, the algorithm terminates. Oth-
erwise A is partitioned into sub-polytopes B,,..., By and
LB(B:) and UB(B;) are computed. Then

min LB(B;) < LMSV(A) < min UB(B;),
1<i<p 1<isp

and we have new bounds on LM SV (A). If the difference
between these new bounds is less than or equal to ¢, then
the algorithm terminates. Otherwise, partitioning of A
is refined and new bounds are calculated. Once the size
of the polytopes constituting the partitioning gets smaller
than & then by condition (C2) above it follows that

min UB(B;)— min LB(B;)

1<i<p 1gigp
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< lr;l‘.as)tp(UB(Bi) — LB(Bi)) <,

and LM SV (A) is determined within an absolute accu-
racy of ¢. However, for this “§-grid”, the number of
polytopes forming the partition (and thus the number of
lower and upper bound calculations) increases exponen-
tially with 1/6. To avoid this combinatorial explosion a
heuristic rule is applied for partitioning A: Given a parti-
tion A = |J7_, Bi that is to be refined, pick a polytope B;
from the partition such that LB(B;) = min;<i<p, LB(B:),
and split it into two halves. The rationale behind this
heuristic is that since we are trying to find the minimum
of a function, we should concentrate on the “most promis-
ing” polytope. Further the splitting of a polytope B is
carried out in the following fashion. Suppose the least
element of A (see Section 2) associated with B is Aj, i.e.
LB(B) = \/Ai; if Aij > 0 and zero otherwise. Clearly, if
i = j then this is also the upper bound (see Remark 2.1)
and the algorithm can be terminated, i.e. there is no need
to partition B. Hence without loss of generality assume
i # j and B = co(By,..., Bm) is to be split into two sub-
polytopes. Then the subpolytopes Br and Bj; are given
as
B[ = CO(D[, ey Dm)
Brr =co(F, ..., Fm)

where

Dk:{Bk k£ ’sz{ak ifk#j

G otherwise G otherwise

Aj; = Az
and G = 2 J! B;
((A-‘-' = Aij) + (A5 - AJ'-‘))

Aii — Ay
* ((A-'-' - Aij) + (855 - A,;)) Bi:
An example of the splitting is shown in Figure 4.1, where
a polytope B = co(Bi, B2, Bs) is split along edge (B1, B2),
ie.i=1and j=2.

By B,

Figure 4.1: Splitting of polytope B along edge (B, B2)

The rationale behind this splitting is that after the split-
ting we should have
2

H Hp.
,\min(cﬂc) < Amin (M)

B¥G +GHB;
and Amin(GFG) < Amin (—’——i——’),(m)

2

so that the term in As of the subpolytopes corresponding
to G,G is a better candidate than those corresponding
to B, G and B,,G for determining their respective LBs.
Thus either the lower bound of subpolytopes is trivially
an upper bound also or some new edge is split when fur-
ther splitting of these subpolytopes is required. Solving
(4.1) approximately using first order approximations, G
found, is indeed as given above. It can be shown that
this splitting reduces the size of subpolytopes created in
the partitioning uniformly in the long run and thus guar-
antees that the algorithm terminates in finite number of
steps.

Note that after splitting, to calculate the lower bounds
of the new polytopes created we need to do just {m+1)
eigenvalue calculations, namely those involving the new
vertex G with itself and the vertices of the old polytope
(rest of the entries in their As are known from previous
iteration). Also note that the diagonal elements Ai; of
A involved in the lower bound calculation give minimum
singular values of the vertices (see Remark 2.1) and can
also be used for the upper bound calculations. In fact we
use

LB(A) = square root of the lower bound in (2.6)
and U B(A) = min(upper bound from simplicial

algorithm, . / min Ay).
Vigism

With these definitions in mind, the algorithm can be de-
scribed as follows:

k=0;

Lo = {A};
Lo = LB(A);
Uo=UB(A);

while Ux — L > ¢, {
pick B € Lx such that LB(B) = Lx;
split B into B; and Biy;
Ly = (Lx — BYU{B1,Bi1};
Lk41 = mingec, ., LB(B);
Uk41 = mingec,,, UB(B);
k=k+1

In the above description, k denotes iteration index, Lx is
the list of polytopes and Lx and Ui are respectively the
lower bound and the upper bound at the end of k itera-
tions. We conclude this section by mentioning that as it-
erations proceed, some of the polytopes can be eliminated
from consideration as LM SV (A) can not be achieved in
them. The polytopes that can be pruned are the ones sat-
isfying LB(B) > Ux. Pruning reduces the computation
and storage requirement of the algorithm.

5. Some Examples

In this section we apply the algorithm of the previous
section to two examples.
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Example 5.1: Consider a polytope A = co( A1, Az, A3)
given by

[ 1 1 1 ] [ 11 1
A=} 0 -2/3 -1/2 |, A2=|0 1/3 1/2],
0 1/2 -2/3 0 -1/2 1/3

11 1
A3=[0 1/3 -1/2].
0 1/2 1/3

This polytope has been deliberately constructed so that
it contains exactly one singular matrix in the interior. By
calculating the determinant of a generic member of the
polytope, one can easily verify that the singular matrix
corresponds to parameters puy = 1/3, 42 = 1/2, 43 = 1/6.
Running our algorithm on this polytope with a tolerance
(¢) of 0.1, we obtain an upper bound of 8.4574¢-04 and a
lower bound of 0 in just 5 eigenvalue calculations. Fur-
ther the coordinates of the point which achieves this upper
bound are p; = 0.3323, p2 = 0.5010, ga = 0.1667 (quite
close to the correct solution). No splittings of the poly-
tope were required in this case. Note that as the value
of LM SV (A) in this example is exactly zero, the lower
bound can not be improved with repeated refinement of
partitioning of A. This example thus illustrates the power
of our simplicial algorithm for upper bound calculations.
In this case just 5 SVD are needed to calculate an approx-
imate complementary point of function f associated with
A. Secondly, this example highlights a point stressed in
Section 1 that even though determining LM SV (A) ex-
actly would require an exponential number of steps, just
5 SVD are enough to tell us that the polytope is nearly
singular (as the upper bound obtained is very small).

Example 5.2: Consider a polytope A = co(A;, Az, A3)
where A1, Az, As are respectively

0.6313 + 0.6295j
1.9958 + 0.73625
1.2203 + 0.72545

1.4314 + 0.2332;
1.0976 + 0.3063,
1.1497 + 0.35105

0.1738 + 0.1254;

1.8482 + 0.8278;
1.3301 4+ 0.01595

0.5435 + 0.95545
2.3122 4 0.7483j
1.6653 + 0.55467

1.4814 + 0.38775
1.0239 + 0.65215 2.3811 + 0.4997; 1.0669 + 0.9554;
1.4121 + 0.1503;  0.9563 +0.1475; 1.7973 + 0.5561;

Running our algorithm on this polytope with a tolerance
(€) of 0.1, we obtain an upper bound of 0.2009 and a lower
bound of 0.1381 in 53 eigenvalue calculations. Further the
coordinates of the point which achieves this upper bound
are p; = 0.8646, p2 = 0.1354, 3 = 0. No pruning was
performed in this example and three splittings (i.e. three
iterations) of the polytope were required. It is clear that
the polytope of this example is robustly nonsingular. If
one was just interested in checking the robustly nonsin-
gularity of the polytope alone, we can just use the lower
bound refinement part of our algorithm, which in this case
gives a lower bound of 0.0431 after just 2 splittings and
needing 14 eigenvalue calculations.

1.2145 + 0.8024;
1.0714 4 0.0331

[ 1.4558 + 0.88705

1.4885 + 0.1598;
2.3231 +0.21285

1.2096 + 0.59015

[ 2.2598 + 0.57173

We conclude this section by noting that: (1) as the dimen-
sion n of the matrices in the polytope increases, the com-
putational burden of our algorithm increases in proportion
to the increased burden associated with each SVD, and

0.7183 4 0.8420; ]

(2) as the polytope size m increases, the computational
burden of our algorithm at each polytope splitting step
increases linearly with m.

6. Conclusion

We have given an algorithm that calculates bounds on
least minimum singular value of a polytope matrix fam-
ily. A novel formula for lower bound on LMSV has been
derived and a novel use of simplicial algorithm is made
for calculating upper bound on LMSV. We conclude this
paper by noting that our method can be easily modified
to handle matrix families of type (1.2) whose parameter
set [ is a product of unit simplices (known as simplotope)
by making use of simplicial algorithms on simplotopes.
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