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Minimum switching control for adaptive tracking
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SUMMARY

The switching adaptive control method has been used for quite a few years to solve the adaptive
stabilization and model reference adaptive control problems. However, a serious problem with the
switching control method is that the number of ‘candidate’ controllers can potentially be very large,
especially for multi-input–multi-output systems. In this paper, we consider a class of minimum-phase
multi-input–multi-output plants with some mild compactness assumptions. Given any polynomial
reference input, we provide a switching control law which guarantees exponentially stability of the
closed-loop system with exponential tracking performance. The main contribution of the paper is that we
give the minimum number of candidate controllers required for switching. In particular, the number is
equal to 2 for single-input–single-output plants (one for each sign of the high-frequency gain), and is equal
to 2m for m-input–m-output plants. That is, the number is independent of the degree and the relative degree
of the plant. Copyright # 2006 John Wiley & Sons, Ltd.

KEY WORDS: switching adaptive control; adaptive tracking; supervisory control; multi-input–multi-
output adaptive control

1. INTRODUCTION

Most of the classical model reference adaptive control methods (works priori to 1980) are based
on the following set of basic assumptions:

* The plant is of minimum phase;
* An upper bound of the plant degree is known;
* Its relative degree is known;
* Its sign of the high frequency gain is known; and
* The reference model has the same relative degree as the plant.

See, for example, References [1, 2] for overviews. It is well recognized that this set of
assumptions are often unrealistic in practical applications where the plant may be difficult to
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model. Adaptive controllers designed based on these assumptions may become non-robust, as
shown by well-known examples of Rohrs et al. [3].

One of the important lines of adaptive control research in recent years is to investigate the
minimal set of assumptions needed for the plant so that it can be adaptively stabilized. This line
of research can be traced back to a paper by Morse [4] which raised a number of open questions
regarding the classical assumptions. The first breakthrough was given in a paper by Nussbaum
[5] which provides a new adaptation method (called Nussbaum gain later) for treating the case
where the sign of the high frequency gain of the plant is unknown. Nussbaum’s result was
generalized by Martensson [6] which shows surprisingly that asymptotic stabilization of a
minimal plant can be achieved with a rather weak assumption, i.e. one only needs to know the
degree of a stabilizing controller. In fact, even this condition can be relaxed. Because
Martensson’s approach involves an exhaustive on-line search over the space of candidate gain
matrices before ‘latching on’ to an appropriate stabilizer, two serious problems arise: (1)
Lyapunov stability cannot be guaranteed and, consequently, an excessive overshoot may occur;
(2) the output must be free of (even arbitrarily small) persistent measurement noises to avoid
possible destabilization. These problems have been reported and carefully analysed in a paper
by Fu and Barmish [7].

An alternative approach to adaptive stabilization, called switching adaptive control, was
proposed by Fu and Barmish [7] to assure Lyapunov stability (in fact, exponential stability) and
to permit small measurement noises. More explicitly, Fu and Barmish show that adaptive
stabilization of a family of unknown multi-input–multi-output (MIMO) plants S can be
achieved if the following mild assumptions are satisfied:

* The upper bound nmax of the degree of the plant family is known;
* Every member of S is stabilizable and detectable;
* For each n4nmax; the set of state-space realization matrices of the subfamily Sn of plants

with degree n is compact (i.e. bounded and closed), and the compact set is known;

Indeed, it is shown in Reference [7] that there exists a finite number of fixed linear time-invariant
controllers (which will be called candidate controllers in the sequel) such that every member of S
will be stabilized by at least one of them. In other words, S has a finite partition S ¼

SN
i¼1 Si for

a finite N such that each Si admits a single robust stabilizer. Consequently, a switching
mechanism is applied on-line to search for a correct controller for an arbitrary unknown
member of S: The resulting controller is piecewise linear time-invariant with at most a finite
number of switchings. The closed-loop system is guaranteed to be exponentially stable, and
robust with respect to small measurement noises. Further, an extension of this result is given in
Reference [8] to treat the case where singular perturbations to the plants exist, i.e. the
compactness assumption above is violated.

A slightly different switching control approach, called hysteresis switching, is also reported in
a series of papers by Middleton et al. [9], Morse et al. [10], and Weller and Goodwin [11] to solve
the problem of model reference adaptive control. No compactness assumption is required for
this approach. However, the family of plants S to be dealt with need to satisfy the following
assumptions:

* Every member of S is of minimum phase;
* Every member of S is stabilizable and detectable; and
* An upper bound nmax of the plant degree is known.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2006; 20:197–211

M. FU198



The basic idea in Morse et al. [10] and Weller and Goodwin [11] involves two steps. The first step
is to construct an estimator for each subfamily of plants with the same McMillian degree, the
same relative degree, the same high-frequency gain sign, and the same ‘permutation’ of outputs.
Subsequently, a classical model reference adaptive controller is designed for each such
subfamily. The second step is to use a so-called hysteresis switching algorithm based on
Middleton et al. to adaptively select a correct controller.

The number of candidate controllers for an uncertain plant family can potentially be very
large. For example, the method in Reference [11] requires 2m �m!�mnmax candidate
controllers for an m-input–m-output plant. For example, even for m ¼ 5 and nmax ¼ 10 which
are very moderate, this number is equal to 192 000. The excessively large number of candidate
controllers mean that it may potentially take an extremely long dwell time before a correct
controller can be found, assuming a ‘pre-routed’ switching law is used. To alleviate this
problem, several methods have been reported recently. The so-called supervisory control
approach is proposed by Morse [12, 13] to improve the transient response. The main idea of the
supervisory control approach is to apply an ‘optimal’ candidate controller based on certain on-
line estimation rather than sequentially eliminating invalid controllers. This approach has also
been studied by Hocherman-Frommer et al. [14, 15], Narendra and Balakrishnan [16, 17],
Narendra and Xiang [18], Hespanha [19], and Hespanha et al. [20]. Nice simulation results have
been demonstrated in these papers. A different approach to speeding up the switching process is
the localization approach proposed by Zhivoglyadov et al. [21–25] where a fast algorithm is
introduced to prune ‘bad’ candidate controllers, and therefore a ‘good’ set of candidate
controllers is quickly localized. Another method which uses a falsification idea is introduced by
Safonov and his co-workers [26, 27] in the context of model reference adaptive control. More
references on switching adaptive control can be found in Reference [28].

Regardless of the switching method, one of the key problems in switching adaptive control is
how to partition a given uncertain plant family S: Recall that the partitioning needs to be done
such that each subfamily Si admits a single robust stabilizer. Typically, assumptions are
imposed to guarantee the existence of a finite partition for the given S: But the partitioning
process is usually done by trial and error, which often leads to a large partition cardinality N:
Having a large N requires a lot of design and storage of candidate controllers because the design
is typically done off-line. Furthermore, a large N tends to complicate the pruning process in the
switching process.

For a general uncertain plant family, the partitioning problem can be quite difficult. In this
paper, we study a particular class of uncertain plant families for which the partitioning problem
can be solved. More precisely, we consider an adaptive tracking problem for a family of
uncertain plants. That is, given a family of uncertain plants and a reference signal, we want to
design an output feedback controller such that the closed-loop system corresponding to any
plant in the family is exponentially stable and its output exponentially approaches the reference
signal. The family of plants we consider in this paper have m inputs and m outputs and are
assumed to be minimum phase invariant and to satisfy some boundedness assumptions. The
reference signal is assumed to be a polynomial function. We show that the minimum partition
cardinality is given by 2m: Furthermore, the corresponding minimum partition has the property
that any other partition must be a refinement of this minimum partition in the sense that each
partitioned subfamily must be obtained by further dividing the minimum partition.

Our approach involves two key ideas: (1) We divide the family of plants into 2m subfamilies,
each robustly stabilizable by a single linear time-invariant controller. This step is based on an
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important paper on robust stabilization by Wei and Barmish [29]. By modifying their controller
and relaxing the assumptions they use for the controller design, we show that each subfamily
can be controlled by a single linear time-invariant controller such that the closed-loop system
associated with any member of the subfamily is exponentially stable and its output
exponentially tracks the reference signal. (2) Once these 2m candidate controllers have been
determined, any switching adaptive control algorithm can be applied. In particular, a simple
switching algorithm similar to the one in Fu and Barmish [7] can be employed on-line to search
for a correct controller. After at most 2m � 1 switchings, a correct controller will be found for an
arbitrary member of the plant family.

The rest of this paper is organized as follows: Section 2 formalizes the adaptive tracking
problem and assumptions; Section 3 considers the design of candidate controllers; Section 4
provides the switching algorithm and the main result on exponential stability and tracking; and
Section 5 concludes with some remarks.

2. PROBLEM FORMULATION AND ASSUMPTIONS

Let Rm�m½s� denote the set of all m�m rational matrices. Given a set of rational matrices
S� Rm�m½s�; representing a family of uncertain plants, and a polynomial time function
rð�Þ : R! Rm; the adaptive tracking problem considered in this paper is as follows: Find an
adaptive controller C as depicted in Figure 1 such that for any GPðsÞ 2 S; the closed-loop system is
exponentially stable and its output yðtÞ will exponentially approach rðtÞ; i.e.

jjyðtÞ � rðtÞjj4Me�lt ð1Þ

for some M > 0 and l > 0:
Before we introduce the assumptions on the plant family we need to be involved with some

notational matters.

Definition 1 (Wei and Barmish [29])
Given GðsÞ 2 Rm�m½s� and two m�m polynomial matrices NðsÞ and DðsÞ; the pair ðNðsÞ;DðsÞÞ is
called a row Hermite factorization if the following conditions hold:

1. DðsÞ is invertible and GðsÞ ¼ NðsÞD�1ðsÞ;
2. NðsÞ and DðsÞ are coprime in the closed right-half plane;
3. DiiðsÞ is a monic polynomial for i ¼ 1; . . . ;m;
4. DijðsÞ ¼ 0 for all i5j;
5. degDijðsÞ5degDiiðsÞ for all i > j;

where DijðsÞ is the ijth element of DðsÞ:

Figure 1. Adaptive tracking problem.
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Remark 1
It is known that there always exists a row Hermite factorization for any rational matrix, as
pointed out in Reference [29]. This factorization is actually unique if the coprimeness condition
above is strengthened to include the open left-half plane. The reason we use a weaker
coprimeness condition is to allow a simpler factorization for parameterized rational matrices.
For example, a row Hermite factorization of

Gðs; qÞ ¼
sþ 1

sþ q
; q 2 ½1=2; 2�

is given by

Nðs; qÞ ¼ sþ 1; Dðs; qÞ ¼ sþ q

when the weaker version of coprimeness condition is used. For the stronger version of
coprimeness condition, the row Hermite factorization of Gðs; qÞ at q ¼ 1 must be given by

NðsÞ ¼ 1; DðsÞ ¼ 1

which causes discontinuity.

Based on the remark above, we can express S in an equivalent form

ðNP;DPÞ ¼ fðNPðsÞ;DPðsÞÞ : a row Hermite factorization for GPðsÞ 2 Sg ð2Þ

However, for notational simplicity, we will also denote ðNP;DPÞ by S unless confusion arises.

Remark 2
Using duality, we can define the so-called column Hermite factorization ( *DðsÞ; *NðsÞ) for every
GðsÞ; i.e. GðsÞ ¼ *D�1ðsÞ *NðsÞ: All the properties above about the row Hermite factorization also
apply using duality to the column Hermite factorization. In this paper, row Hermite
factorization will be used for the plant and column Hermite factorization, for the controller.

Definition 2
A given family of polynomials P is said to be of degree d if every polynomial pðsÞ 2 P is of
degree d: P (possibly with different degrees) is called spectrally bounded if the set of zeros of P is
a bounded set. The closure of P is defined to be the set of all limiting polynomials convergent
from a sequence of polynomials of the same degree in P: A family of polynomial matrices is
called spectrally bounded if every matrix element family is spectrally bounded.

Remark 3
A few comments on the boundedness condition are in order. If a family of polynomials P
contains a zero polynomial (which is identically equal to zero), then our definition of spectral
boundedness implies that P is not spectrally bounded because the zero polynomial has zeros
everywhere. In fact, P with maximum degree d is spectrally bounded if and only if the following
conditions hold:

* It does not contain a zero polynomial;
* For every 14d5 %d; the subfamily of polynomials in P with degree d has the following

property:
} The set of polynomial coefficients is a bounded set in Rdþ1;
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} There exists some d > 0 such that the absolute value of the leading coefficient of
every polynomial in the subfamily is no less than d:

Denote by ziðsÞ the ith lower principal minor of NPðsÞ; i.e. ziðsÞ is the determinant of the part
of NPðsÞ with the first ði � 1Þ rows and columns deleted. Further denote the families of
polynomials

Zi ¼ fziðsÞ : NPðsÞ 2NPg; i ¼ 1; . . . ;m ð3Þ

We will adopt the following set of assumptions in the rest of the paper.

Assumption A1 (Minimum phase invariance)
detNPðsÞ is Hurwitz for every member NPðsÞ in the closure of NP:

Assumption A2 (Upper bound of degree)
The upper bound of the degree dmax of DijðsÞ over DP is known.

Assumption A3 (Spectral boundedness of numerator)
Zi is spectrally bounded for every i ¼ 1; . . . ;m:

Assumption A4 (Spectral boundedness of denominator)
DP is spectrally bounded.

Remark 4
The Assumptions A1–A2 are similar to those used in References [10, 11]. The boundedness
assumptions will enable us to significantly reduce the number of candidate controllers and to
guarantee many other nice properties such as exponential stability and linear piecewise-
invariant control. Note that the spectral boundedness assumptions are rather weak in view of
Remark 3.

Finally we define the maximum degree of the reference signal rðtÞ to be

nr ¼ maxfn1; . . . ; nmg ð4Þ

where ni the polynomial degree of the ith component of rðtÞ; i ¼ 1; . . . ;m:

3. DESIGN OF CANDIDATE CONTROLLERS

Our method for designing candidate controllers is motivated by a robust stabilization
approach of Wei and Barmish [29]. These authors consider a family of uncertain plants
satisfying assumptions similar to A1–A4 (slightly stronger though) and the following
additional one.

Assumption A5
The leading coefficient of every principal minor ziðsÞ of NPðsÞ is either positive invariant or
negative invariant over NP:
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With this additional assumption, it is shown in Reference [29] that there exists a single linear
time-invariant controller to robustly stabilize the whole family of plants.

Our first result, Lemma 1 shows that a given family of plants satisfying Assumptions
A1–A4 can be decomposed into 2m subfamilies such that each subfamily will satisfy
not only Assumptions A1–A4 but also Assumption A5. Using the design approach
of Wei and Barmish [29], we can find a linear time-invariant stabilizer for each of the 2m

subfamilies of plants. Consequently, 2m candidate controllers can be designed to cover the whole
family S:

Lemma 1
Given a family of transfer matrices S in (2) satisfying Assumptions A1–A4, let Zi; i ¼ 1; . . . ;m
be given by (3) and define

Zþi ¼ fziðsÞ : ziðsÞ 2Zi with positive leading coefficientg ð5Þ

Z�i ¼ fziðsÞ : ziðsÞ 2Zi with negative leading coefficientg ð6Þ

Given any sign vector

a ¼ ða1; . . . ; amÞ; ai 2 f�;þg; i ¼ 1; . . . ;m ð7Þ

define

Sa ¼ fðNPðsÞ;DPðsÞÞ 2 S; ziðsÞ 2Z
ai
i g ð8Þ

Then, we have the following properties:

(i) S ¼ [
a
Sa ð9Þ

(ii) Each subfamily Sa satisfies Assumptions A1–A5.

Proof
By Assumption A3 and Remark 3,Zi does not contain a zero polynomial for every i ¼ 1; . . . ;m:
This implies

Zi ¼Zþi [Z�i ; i ¼ 1; . . . ;m ð10Þ

which in turn implies Condition (i). Furthermore, the sets Zþi and Z�i are spectrally bounded
because Zi is spectrally bounded. This implies that Assumptions A1–A4 are also obvious for
each Sa: &

Remark 5
Since each Zþi and Z�i have opposite signs for the leading coefficient, it is clear that plants in
different Sa in (8), if unstable, do not share a common linear time-invariant stabilizer. Therefore,
any other partition of S must be a refinement of the partition in (9) in the sense that it must be
obtained by further dividing the partition in (9), provided that the plants in S are all unstable.
This is an important property of the partition in (9).
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Our next step is to show that each Sa satisfying Assumptions A1–A5 admits a linear time-
invariant robust stabilizer. For this, we refer to Reference [29] and note that the assumptions
required there for robust stabilization can be restated as Assumptions A1, A2, A5 and the following:

Assumption (a)
The uncertain polynomials are parameterized using some uncertain parameter vector q; i.e.
NPðsÞ and DPðsÞ are expressed as NPðs; qÞ and DPðs; qÞ; respectively. In addition, q 2 Q for some
compact set Q:

Assumption (b)
NPðs; qÞ and DPðs; qÞ are continuous in q; q 2 Q:

Assumption (c)
For every d 2 dmax and 14i; j4m; the subset of the ði; jÞth element of NPðs; qÞ (resp. DPðs; qÞ)
with degree d; when q ranges in Q; is a compact set.

It is not difficult to see that Assumptions (a), (b) and (c) imply Assumptions A3–A4. A careful
examination of the proof in Reference [29] shows that the properties in Assumptions (a)–(c)
used in the proof are only those in Assumptions A3–A4. Hence, the robust stabilization result in
Reference [24] still applies when the assumptions are relaxed. The details are given below.

Theorem 1
Consider a family of uncertain plants Sa � Rm�m½s� satisfying Assumptions A1–A5. Then, for
any reference signal polynomial reference signal rð�Þ : R! Rm of degree n ¼ ðn1; . . . ; nmÞ; there
exists an m�m rational matrices CðsÞ such that the closed-loop system associated with any
uncertain plant GPðsÞ 2 Sa; as depicted in Figure 2, is Hurwitz stable and its output yðtÞ
exponentially tracks rðtÞ:

The rest of this section is devoted to the proof of the theorem above. A controller design
procedure will be introduced at the same time. The proof and design procedure are modified
from References [29, 30]. Two steps are involved: The first step is to cascade the plant by an
integrator matrix so that the tracking problem becomes a robust stabilization problem. The
second step is to apply a design procedure similar to Wei and Barmish [29] to achieve robust
stabilization.

3.1. Step 1: Conversion of robust tracking to robust stabilization

Recall that the maximum degree of the reference signal is given by nr: Define the integrator matrix

IðsÞ ¼ diagfs�nr ; . . . ; s�nrg 2 Rm�m½s� ð11Þ

Figure 2. Tracking problem.
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the family of cascaded plants

#S ¼f #GPðsÞ ¼ GPðsÞIðsÞ : GPðsÞ 2 Sg

¼ fðNPðsÞ;DPðsÞI�1ðsÞÞ : ðNPðsÞ;DPðsÞÞ 2 Sg ð12Þ

and their subfamilies #Sa: We will denote

#DPðsÞ ¼ DPðsÞI�1ðsÞ

Since Sa satisfies Assumptions A1–A5, it is easy to verify that #Sa still satisfies Assumptions
A1–A5. Using Part (ii) of Lemma 1, we know that there exists a robust stabilizer for #Sa:
Further, the following fact is well-known: If there exists a controller #CaðsÞ 2 Rm�m½s� which
robustly exponentially stabilizes #Sa; then the following controller:

CaðsÞ ¼ IðsÞ #CaðsÞ ¼ #CaðsÞIðsÞ ð13Þ

will robustly exponentially stabilize Sa and guarantee the exponential tracking requirement for
any reference signal rðtÞ with maximum degree nr: This is illustrated in Figure 2.

3.2. Step 2: Robust stabilization of #Sa

This step is constructive. That is, a design procedure is given for #CaðsÞ: This procedure is
identical to a robust stabilization procedure in Reference [29].

Step 2.1: Choose

Tm ¼ diagf�1;�1; . . . ;�1g

such that all the lower principal minors #ziðsÞ; i ¼ 1; 2; . . . ;m; of

#NPðsÞ ¼ TmNPðsÞ

have positively invariant leading coefficients. We also define #zmþ1ðsÞ ¼ 1:
Step 2.2: The controller will be of the form

#CaðsÞ ¼ A�1m ðsÞBmðsÞTm ð14Þ

where AmðsÞ and BmðsÞ are determined recursively, i.e. for i ¼ 1; 2; . . . ;m

AiðsÞ ¼ diagfa1ðsÞ; a2ðsÞ; . . . ; aiðsÞ; 0; 0; . . . ; 0g

BiðsÞ ¼ diagfb1ðsÞ; b2ðsÞ; . . . ; biðsÞ; 1; 1; . . . ; 1g

where the polynomials aiðsÞ and biðsÞ are Hurwitz (but specified later). In addition, for
i ¼ 1; 2; . . . ;m; we define

ViðsÞ ¼ diagfa1ðsÞ; a2ðsÞ; . . . ; aiðsÞ; 1; 0; . . . ; 0g

WiðsÞ ¼ diagfb1ðsÞ; b2ðsÞ; . . . ; biðsÞ; 0; 1; . . . ; 1g

DiðsÞ ¼ detðAiðsÞ #DPðsÞ þ BiðsÞ #NPðsÞÞ

D0iðsÞ ¼ detðViðsÞ #DPðsÞ þWiðsÞ #NPðsÞÞ

and will denote by piðsÞ the determinant of the top left i � i submatrix of AiðsÞ #DPðsÞþ
BiðsÞ #NPðsÞ:
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Step 2.3 (Initialization): Take

A0ðsÞ ¼ 0

B0ðsÞ ¼ I

p0ðsÞ ¼ 1

V0ðsÞ ¼diagf1; 0; . . . ; 0g

W0ðsÞ ¼diagf0; 1; . . . ; 1g

which gives

D0ðsÞ ¼ detðA0ðsÞ #DPðsÞ þ B0ðsÞ #NPðsÞÞ ¼ det #NPðsÞ

D00ðsÞ ¼ detðV0ðsÞ #DPðsÞ þW0ðsÞ #NPðsÞÞ ¼ #d11ðsÞ#z2ðsÞ

where #d11ðsÞ is the (1,1) entry of #DPðsÞ:
Step 2.4 (Recursion): For any 04i4m� 1; select an arbitrary Hurwitz polynomial biþ1ðsÞ

with a positive leading coefficient and degree kiþ1 satisfying

kiþ15deg D0iðsÞ � deg DiðsÞ � 1 8 #NPðsÞ; #DPðsÞ ð15Þ

To explain the design procedure for aiþ1ðsÞ; we observe that

Diþ1ðsÞ ¼ aiþ1ðsÞD
0
iðsÞ þ biþ1ðsÞDiðsÞ

D0iþ1ðsÞ ¼piðsÞdðiþ1Þðiþ1ÞðsÞ#ziþ1ðsÞ

Denote

aiþ1ðsÞ ¼
Xliþ1
j¼0

aiþ1; js j

where ljþ1 is the order of aiþ1ðsÞ; and denote

Diþ1;kðsÞ ¼
Xk
j¼0

aiþ1;jsj
 !

D0iðsÞ þ biþ1ðsÞDiðsÞ; k ¼ 0; 1; . . . ; liþ1

We have

Diþ1;kþ1ðsÞ ¼ aiþ1;kþ1skþ1D
0
iðsÞ þ Diþ1;kðsÞ; k ¼ 0; 1; . . . ; liþ1 � 1 ð16Þ

and Diþ1ðsÞ ¼ Diþ1;liþ1 ðsÞ: The design procedure for aiþ1ðsÞ is given below.
Step 2.4.1 (Recursion): For k ¼ 0; 1; 2; . . . ; choose aiþ1;k > 0 to guarantee that Diþ1;kðsÞ is

Hurwitz invariant and spectrally bounded. If required, aiþ1;k can be chosen such that aiþ1;kðsÞ is
also Hurwitz.

Step 2.4.2 (Termination): Terminate the recursion when piþ1ðsÞ has a positively invariant
leading coefficient. Set liþ1 ¼ k at the termination.

3.3. Step 3: Proof of robust stabilization

Suppose the recursion in Step 2.4 succeeds. We will get #CaðsÞ in (14) such that

DmðsÞ ¼ detðAmðsÞ #DPðsÞ þ BmðsÞTmNPðsÞÞ
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is Hurwitz invariant. This will imply that #CaðsÞ is a robust stabilizer for #Sa: Hence, it remains to
show that Step 2.4 indeed succeeds.

By Assumptions A1 and A3, D0ðsÞ is Hurwitz invariant and spectrally bounded. Now we can
start the recursion. Take any 04i4m� 1; by Assumption A2, kiþ1 in (15) is finite. Also, the
choice of kiþ1 means that

deg D0iðsÞ4deg biþ1ðsÞ þ deg DiðsÞ þ 1

To see the success of Step 2.4.2 when liþ1 is sufficiently large, an inductive argument is used. It is
straightforward to check that

p1ðsÞ ¼ a1ðsÞ #d11ðsÞ þ b1ðsÞ#n11ðsÞ

where #nijðsÞ is the (i; j) entry of #NPðsÞ: Hence, it suffices to have l1 such that

deg a1ðsÞ #d11ðsÞ > deg b1ðsÞ#n11ðsÞ

for all #NPðsÞ and #DPðsÞ: Similarly,

p2ðsÞ ¼ det
a1 #d11 þ b1 #n11 b1 #n12

a2 #d21 þ b2 #n21 a2 #d22 þ b2 #n22

2
4

3
5

Again, if l2 is such that

deg a2ðsÞ #d22ðsÞ > deg b2ðsÞ#n22ðsÞ

for all #NPðsÞ and #DPðsÞ; the leading coefficient of p2ðsÞ is positively invariant. The argument
above can be easily generalized to p3ðsÞ; p4ðsÞ; . . . :

The success of Step 2.4.1 can also be shown by induction. Firstly, we can guarantee
that Diþ1;0ðsÞ is Hurwitz invariant and spectrally bounded when aiþ1;0 > 0 is sufficiently
small. This is because biþ1ðsÞDiðsÞ is Hurwitz invariant and spectrally bounded and piðsÞ is
spectrally bounded with a positive leading coefficient. Indeed, all the zeros of Diþ1;0ðsÞ will
approach those of biþ1ðsÞDiðsÞ when aiþ1;0 ! 0 with the possible exception of one zero
approaching �1 if

deg D0iðsÞ ¼ deg biþ1ðsÞ þ deg DiðsÞ þ 1

The existence of the required aiþ1;k for k > 0 is similarly guaranteed if we note (16), the Hurwitz
invariance and spectral boundedness of Diþ1;kðsÞ and that

deg skþ1D0iðsÞ4deg Diþ1;kðsÞ þ 1

Using a similar argument as above, when aiþ1;kðsÞ is Hurwitz, aiþ1;kþ1ðsÞ can always be made
Hurwitz by choosing aiþ1;kþ1 > 0 small enough. Hence, Step 2.4.1 always succeeds. This ends our
proof.

Remark 6
Given a family of plants S satisfying Assumptions A1–A4, Theorem 1 implies that at most 2m

candidate controllers are sufficient to cover the whole S: We point out that this number is also
minimal if there are no further assumptions available. To see this, consider the following family
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of plants:

S ¼ diag a1
1

s� 1
; . . . ; am

1

s� 1

� �
; ai 2 f�1; 1g; i ¼ 1; . . . ;m

� �
ð17Þ

Obviously, it is necessary to have 2m linear time-invariant stabilizers to cover the whole family,
one for each combinations of faig: Also in view of Remark 5, we call the partition (9) the
minimum partition.

Remark 7
We emphasize an important property of the proposed controller, i.e. #CaðsÞ is diagonal, minimum
phase and stable. Also, the degree of the controller is typically low.

4. SWITCHING ALGORITHM

Once the 2m candidate controllers fCaðsÞg are designed, the next step is to specify a switching
algorithm which, when applied on-line, is able to adaptively find a correct controller for any
given plant GPðsÞ 2 S: To this end, many suitable switching algorithms (e.g. those in [12–17]) can
be considered. Since in our case the number of candidate controllers is typically small (unless the
number of inputs=outputs is large), the design of the switching algorithm may not be critical.
For illustrative purposes, we adopt an algorithm similar to Fu and Barmish [7].

We index all the subfamilies of plants Sa and the controllers CaðsÞ by Si and CiðsÞ;
respectively, i ¼ 1; . . . ; 2m: We use the plant output to generate the following signal:

’fðtÞ ¼ jjeðtÞjj2 ð18Þ

where

eðsÞ ¼ IðsÞðyðsÞ � rðsÞÞ ð19Þ

(see Figure 2). Define a test function

8ðt; tÞ ¼ fðtÞ � fðt� tÞ ¼
Z t

t�t
jjeðtÞjj2 dt ð20Þ

for t50 and t 2 ½0; t�:
Given any plant GPðsÞ 2 S; suppose the controller CiðsÞ is applied at some time ti�1:

If GPðsÞ 2 Si; then a nice property of eðtÞ is that it converges to zero exponentially. It follows
that there exists a dwell time ti > 0 such that Vðt; tiÞ has the following monotonic decreasing
property:

Vðt; tiÞ4rVðt� ti; tiÞ; 8t5ti�1 þ 2ti; GPðsÞ 2 Si ð21Þ

for any prescribed r 2 ð0; 1Þ; see more details in Reference [7].
On the other hand, if GPðsÞ =2 Si; one of the three cases will happen:

(1) Property (21) fails at t ¼ ti�1 þ 2ti immediately;
(2) (21) holds for a little while after t ¼ ti�1 þ 2ti and then fails at, say ti; and
(3) (21) holds forever.

In the first case, we will know immediately (at ti�1 þ 2ti) that GPðsÞ =2 Si; so another controller
should be selected. In the second case, we will not know that the controller is wrong until ti:
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Again, switching is needed at ti: However, the controller CiðsÞ has managed to decrease the test
function for the period of time from ti�1 þ 2ti to ti: In the third case, we will never find out that
GPðsÞ =2 Si; so CiðsÞ will be applied to GPðsÞ forever. It follows from (21) that the test function will
decay to zero exponentially, and so will the error signal eðtÞ (see (20)). That is, the tracking
requirement is satisfied. Because (NPðsÞ; DPðsÞ) is a row Hermite factorization, NPðsÞ and DPðsÞ
are co-prime in the closed right-half plane (see Definition 1). Hence, the exponential decay of
eðtÞ also implies the exponential stability of the closed-loop system.

Based on the analysis above, we are ready to build a switching function. Initially, we apply
C1ðsÞ and set the switching time t0 ¼ 0: Then, for i ¼ 1; 2; . . . ; 2m�1; define the new switching
instant

ti ¼ supft : t5ti�1 þ 2ti;Vðt; tiÞ4rVðt� ti; tiÞg ð22Þ

and the switching index function

hðtÞ ¼ i; for t 2 ½ti�1; tiÞ ð23Þ

Then, choose the switching control law given by

C ¼ ChðtÞ ð24Þ

In case ti ¼ 1 for some i52m � 1; the generation of ti is terminated and the controller remains
to be CiðtÞ indefinitely.

We make a few observations about the switching algorithm above. Firstly, there are only a
finite number of switchings and the switching index hðtÞ converges to a constant. In fact, suppose
GPðsÞ 2 Sj ; 14j42m; then switching stops when or before the switching index reaches j:
Secondly, for each switching index hðtÞ ¼ i; the testing function diverges for at most 2ti time
long. So the overall behaviour of the testing function is that it decays exponentially everywhere
(except for a bounded finite period of time which is negligible). Consequently, the error function
eðtÞ exponentially converges to zero. This, in turn, guarantees the exponential stability of the
closed-loop system. The detailed analysis can be found in Reference [7]. Finally, one may
perceive that the dwell time ti is necessarily large when each controller CiðsÞ needs to cover a
potentially large subfamily of plants Si: We stress that this is not necessarily the case for two
reasons: (i) The dwell time can be reduced by increasing feedback gain, although this has a
possible negative effect of increasing the overshoot; (ii) The dwell time is often dominated by a
‘worst-case’ plant rather than the ‘size’ of Si:

The switching law above is the so-called pre-routed in the sense that the switching sequence is
predefined. One can easily replace such a pre-routed switching law by an on-line switching law
where at each switching instance, a new switching index is selected by optimizing some sort of
on-line measure. This is the basic idea behind the supervisory control [4]. It is easy to see that, if
old switching indices are not recycled, the switching index will also converge just like in the pre-
routed case because the on-line switching law can be viewed as a special pre-routed law. Hence,
we can interpret (23) as permitting such an on-line switching law.

In summary, we have the following result

Theorem 2
Given a family of uncertain plants S� Rm�m½s� satisfying Assumptions A1–A4 and a reference
signal rð�Þ : R! Rm with maximum degree nr: Let the candidate controllers CiðsÞ; i ¼ 1; . . . ; 2m

be designed according to the procedure in Section 3 and the switching control law be given by
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(18)–(24). Then, for any (unknown) member plant GPðsÞ 2 S; the closed-loop system is
exponentially stable and the tracking error converges to zero exponentially.

5. CONCLUSIONS

In this paper, we have considered an adaptive tracking problem for a family of uncertain
m-input–m-output plants which satisfy Assumptions A1–A4. We have shown that at most 2m

candidate controllers are required such that any plant in the given plant family can be
exponentially stabilized with exponential tracking performance by one of these controllers. This
2m number is also shown to be the minimum number if no further knowledge on the plant family
is given. Once these 2m controllers are found, a simple switching algorithm is established using
the idea in Reference [7]. This switching algorithm guarantees that a correct controller will be
found adaptively. More importantly, both exponential stability and exponential tracking are
guaranteed for the closed-loop system. The resulting switching controller is a piecewise linear
time-invariant one with at most 2m � 1 switchings.

The key idea involved in the design of the candidate controllers comes from a result on robust
stabilization of Wei and Barmish [29]. We, however, have relaxed and simplified their conditions
slightly. In particular, we have used two spectral boundedness conditions (Assumptions A3–A4)
on the plant family rather than the so-called standardness condition which is somewhat more
complex (see Reference [29] for details).

Although we have only studied the case where the output of the system is measured perfectly,
if the output measurement is noisy, the switching law can be modified by allowing recycling old
switching indices. If the measurement noise is additive and uniformly bounded, the tracking
error becomes bounded by cycling through the switching indices. If the intention is to minimize
the tracking error, some sort of on-line switching algorithm (such as supervisory control) would
be preferred.

Finally, we comment that the result in this paper relies on the key assumption of minimum
phase invariance. It remains an interesting open problem to understand how to partition a
family of non-minimum phase uncertain plants.
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