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Localization Based Switching Adaptive Control for
Time-Varying Discrete-Time Systems

Peter V. Zhivoglyadov, Richard H. Middleton, and Minyue Fu

Abstract—In this paper a new systematic switching control approach to
adaptive stabilization of linear time-varying (LTV) discrete-time systems
is presented. A feature of the localization-based method is its high model
falsification capability, which in the case of LTI systems is manifested as the
rapid convergence of the switching controller. We believe that the proposed
method may help pave the way for design of practical adaptive switching
controllers applicable to a wide range of linear time-invariant and time-
varying systems.

Index Terms—Adaptive control, discrete-time systems, switching control.

I. INTRODUCTION

It is well known [4] that classical adaptive algorithms prior to 1980
were all based on the following set of standard assumptions or varia-
tions of them: known plant order; minimum phase; known sign of high
frequency gain; the plant is LTI and noise free. A number of attempts
have been made since 1980 to relax the assumptions above. A major
breakthrough occurred in the mid 1980’s [2], [4], [8] for adaptive con-
trol of LTV plants with sufficiently small mean parameter variations.

In a separate research line, a number of switching control algorithms
have been proposed recently by several authors [1], [3], [5], thus sig-
nificantly weakening the assumptions above. Research in this direction
originated from the pioneering works by Nussbaum [7] and Martensson
[3]. A major drawback of conventional switching control based on
some mechanism of an exhaustive search [1], [3] is that the search may
converge very slowly, resulting in excessive transients which render the
system “unstable” in a practical sense. Supervisory control for adaptive
set-point tracking is proposed in a number of papers [5], [6] to im-
prove the transient response. The main idea of the supervisory control
schemes is to orchestrate the process of switching into feedback con-
trollers from a precomputed finite (continuum) set of fixed controllers
based on certain online estimation. This represents a significant depar-
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ture from traditional estimator-based tuning algorithms which usually
employ recursive or dynamic parameter tuning schemes. However, sev-
eral issues still remain unresolved. These include the controller being
nonconvergent and the proofs of stability being too complicated.

Our primary objective is to design an adaptive switching controller
applicable to a wide range of LTI and LTV systems which is free from
the drawbacks mentioned above. To this end, we present and analyze a
new systematic approach to switching adaptive control. This approach
is based on a localization method, which incorporates simultaneous fal-
sification of a large number of models in the switching scheme. The po-
tential advantages of localization based switching control include finite
convergence for switching, simplicity of the analysis, and applicability
to both LTI and LTV plants.

II. PROBLEM STATEMENT

We consider a general class of LTV discrete-time plants in the fol-
lowing form:

D(t; z�1)y(t) = N(t; z�1)u(t) + �(t� 1) + �(t� 1) (1)

whereu(t) is the input,y(t) is the output,�(t) is the exogenous
disturbance,�(t) represents the unmodeled dynamics,N(t; z�1) and
D(t; z�1) are polynomials inz�1, andz�1 is the unit delay operator.
We will denote by�(t) the vector of unknown time-varying param-
eters, i.e.,�(t) = (nn(t); � � � ; n2(t);�dn(t); � � � ;�d1(t); n1(t))

T

composed of the coefficients ofN(t; z�1) andD(t; z�1). Throughout
the paper, we will use the following nonminimal state space descrip-
tion of the plant (1):

x(t+ 1) = A(�(t))x(t) +B(�(t))u(t)+ E(�(t) + �(t)) (2)

wherex(t) = [u(t� n+1) � � � u(t� 1) j y(t� n+1) � � � y(t)]T

and the matrixA(�(t)) and the vectorsB(�(t)) and E are con-
structed in a standard way. We also define the regressor vector as
�(t) = [x(t) j u(t)]T . Then, (1) can be rewritten as

y(t) = �T (t� 1)�(t� 1) + �(t� 1) + �(t� 1): (3)

The following assumptions [4] are used throughout the paper.

A1) The ordern of the nominal plant (excluding the unmodeled
dynamics) is known.

A2) There exists a known compact set
 2 RRR2n such that�(t) 2

 for all t 2 NNN .

A3) The plant (1) with frozen parameters and zero unmodeled dy-
namics (i.e.,�(t) � 0) is stabilizable over
.

A4) The exogenous disturbance� is uniformly bounded, that is,
sup

t�t j�(t)j � � for some known constant�.
A5) The unmodeled dynamics is arbitrary subject to

j�(t)j � �(t) = � sup0�k�t �
t�kkx(k)k for some

constants� > 0 and0 � � < 1 which represent the “size”
and “decay rate” of the unmodeled dynamics, respectively.

A6) The uncertain parameters are allowed to have two types of
time variations: i) slow parameter drift described byk�(t)�
�(t � 1)k � �; 8 t > t0 for some constant� > 0, and ii)
infrequent large jumps constrained byt+�N

i=t
si � � for all

t � 0, where� > 0 andN > 0 are constants with1=N
representing the “frequency” of large jumps, andsi = 0 if
k�(i)� �(i� 1)k � �, andsi = 1 otherwise.

We note that Assumption A4) can be completely removed at the ex-
pense of a slightly more complicated controller (see [9] for details).
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The switching controller to be designed is of the following form:
u(t) = Ki(t)x(t) whereKi(t) is the controller gain applied at timet,
andi(t) is the switching index taking value in a finite index setI . The
objective of the control design is to determine the set of control gains
KI = fKi; i 2 Ig and an online switching algorithm fori(t) so that
the closed-loop system will be “stable” in some sense.

Definition 2.1: System (1) satisfying A1)–A6) is said to be glob-
ally �-exponentially stabilized by the switching controller if there exist
constantsM1 > 0; 0 < � < 1, and a functionM2(�) : RRR+ ! RRR+

with M2(0) = 0 such thatkx(t)k � M1�
(t�t )kx(t0)k + M2(�)

holds for allt0 � 0; x(t0); � � 0, and�(�) and�(�) satisfying A4)
and A5), respectively.

III. L OCALIZATION TECHNIQUE FORLTI PLANTS

The localization technique being the key element in the proposed
method implies appropriate decomposition of the uncertainty set
 and
an effective on-line mechanism of discarding incorrect controllers. To
define decomposition of
 we use the notion of quadratic stability.

Definition 3.1: A set of matricesfA(�) : � 2 
g is called quadrat-
ically stable if there exist symmetric positive-definite matricesH;Q

such thatAT (�)HA(�) � H � �Q; 8� 2 
. Now we decompose
the parameter set
 to obtain afinite coverf
ig

L
i=1 which satisfies the

following conditions.

C1) 
i � 
; 
i 6= ;; i = 1; � � � ; L.
C2) L

i=1 
i = 
.
C3) For eachi = 1; � � � ; L; 9�i 2 
i (“center”), ri > 0

(“raduis”), Ki (control gain),q > 0 (scalar parameter) and
symmetric positive definite matricesHi andQi such that
(A(�) + B(�)Ki)

THi(A(�) + B(�)Ki) � Hi � �Qi;

8 k� � �ik � ri + q; i = 1; � � � ; L.

Conditions C1) and C2) basically say that the uncertainty set
 is
presented as a finite union of nonempty subsets. Condition C3) trans-
lated as one requiring the existence of a common quadratic Lyapunov
function for any subset
i further facilitates the process of decompo-
sition. It is well known that such a finite-cover can be found under
assumptions A1)–A3) (see, e.g., [1] and [5] for details). The computa-
tional complexity of decomposing the uncertainty set, in general, de-
pends on many factors including the “size” of the set, its dimension
and “stabilizability” properties, and has to be evaluated on a case by
case basis. The key observation used in the localization technique is
the following fact: Given any parameter vector� 2 
j and a control
gainKi(t) for somei(t); j = 1; � � � ; L. Suppose thati(t) = j, then it
follows from (3) that

�
T
j �(t� 1)� y(t) � rjk�(t� 1)k+ � + �(t� 1): (4)

If the above inequality is violated at any time instant, we know that the
switching indexi(t) is wrong (i.e.,i(t) 6= j), so it can be eliminated
(falsified). The unique feature of the localization technique comes from
the fact that violation of (4) allows us not only to eliminate a single
index,i(t) (if i(t) 6= j) from the set of possible controller indices, but
many others. We now describe the localization algorithm. LetI(t) de-
note the set of “admissible” control gain indices at timet and initialize
it to be I(t0) = f1; 2; � � � ; Lg. Choose any initial switching index
i(t0) 2 I(t0). Fort > t0, defineÎ(t) = fj : (4) holds,j = 1; � � � ; Lg.
Then, the localization algorithm is simply given by

I(t) = I(t� 1) \ Î(t) 8 t > t0: (5)

The switching index is updated by taking1

i(t) =
i(t� 1); if t > t0 andi(t� 1) 2 I(t)

any member ofI(t); otherwise.
(6)

One possible way to view the localization technique is to interpret it as
family set identification conducted on a finite set of elements.

Lemma 3.1 [9]: The localization algorithm given in (5) and (6) ap-
plied to an LTI plant (1) possesses the following properties: i)I(t) 6= ;;
8 t ii) There exists a switching indexj 2 I(t) for all t such that the
closed-loop system withu(t) = Kjx(t) is globally stable. The fol-
lowing theorem contains the main result for the LTI case.

Theorem 3.1:The localization algorithm given in (5) and (6) will
guarantee the following properties when� (i.e., the “size” of unmodeled
dynamics) is sufficiently small.

i) The closed-loop system is globally�-exponentially stable, i.e.,
there exists constantsM1 > 0; 0 < � < 1, and a function
M2(�) : RRR+ ! RRR+ with M2(0) = 0 such that

kx(t)k �M1�
(t�t )kx(t0)k+M2(�) (7)

holds for allt � t0 andx(t0).
ii) The switching sequencefi(t0); i(t0+1); � � �g is finitely conver-

gent.
Proof: By Lemma 3.1 and the index update rule (6), the

total number of switchings made by the controller is finite. Let
ft1; t2; � � � ; tlg be a finite set of switching instants. By virtue of
(1)–(4) the behavior of the closed-loop system between any two
consecutive instantsts; ts+1; 1 � s � l � 1; ts+1 � ts is described
by

x(t+ 1) = A(�) +B(�)Ki(t ) x(t) + E(�(t) + �(t))

= A �i(t ) +B �i(t ) Ki(t ) x(t) +E (t): (8)

Because no switching occurs betweents andts+1 we havej (t)j �
ri(t )k�(t)k+ � + �(t). We claim that due to the structure of the pa-
rameter dependent matricesA(�) andB(�), we can introduce fictitious
parameters��(t) and�̂(t) satisfying the relations

x(t+ 1) = A �i(t ) +��(t) +B �i(t ) +��(t) Ki(t )

� x(t) +E�̂(t) (9)

and��(t) : k��(t)k � ri(t ) and j�̂(t)j � � + �(t). Indeed, this
follows from the fact that the last equation in (8) can be rewritten as
y(t + 1) = �Ti(t )�(t) +  (t) and thatmaxk��k�1 k��

T�(t)k =
k�(t)k holds for any�(t). By Definition 3.1 and Condition C3) (9)
with �̂(t) � 0 andts being fixed is quadratically stable. This guaran-
tees the existence of a matrixHT

s = Hs > 0 such that

Ps = max
k��(t)k�r

A �i(t ) +��(t) +B �i(t ) +��(t)

� Ki(t ) H
< 1: (10)

Here kxkH = (xTHx)1=2 and for anyA 2 RRRn�n; kAkH =
maxkxk =1 kAxkH . Equation (9) along with the property of
quadratic stability guarantee that between any two consecutive

1In fact, there are “clever” ways of selectingi(t) wheni(t � 1) is falsified
(see [9] for details).
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switchings the closed-loop system behaves as an exponentially stable
LTI system subject to small parametric perturbations��(t) and
bounded disturbancê�(t). Further, this property holds regardless of
the evolution of the plant parameters. This is the key point making the
rest of the proof transparent. Let�(t) � 0, then it follows from (9)
and (10) that

kx(ts + 1)kH � Pskx(ts)kH + �̂t (11)

where�̂t = maxj�j��kE�kH .
Similarly

kx(ts + 2)kH � P 2
s kx(ts)kH + (Ps + 1)�̂t (12)

� � �

kx(ts + k)kH � P k
s kx(ts)kH + �̂

k

i=1

P i�1
s (13)

kx(ts + k)k � (�max(Hs)=�min(Hs))
1=2P k

s kx(ts)k

+ �̂t

k

i=1

P i�1
s �min(Hs)

1=2: (14)

Denote

M = max
1�i�L

(�max(Hi)=�min(Hi))
1=2

� = max
1�i�L

Pi < 1 (15)

M(�) = max
1�i�L

�̂i (�min(Hi))
1=2

1

j=1

P j�1
i <1: (16)

Since�i(t) 2 �(It ); Ki(t) 2 fKig
L
i=1 for all t 2 NNN; i(t) 2 It there

exist constants0 < M0 < 1; 
0 = maxj�j�� kE�k < 1 such that
kx(ts)k �M0kx(ts�1)k+
0 for any switching instantt1 � ts � tl.
Hence, combining the last inequality with (14)–(16) leads to

[t0; tl): kx(t1)k �M0kx(t1 � 1)k+ 
0

�M0M�t �t �1kx(t0)k+M0M(�) + 
0 (17)

kx(t2)k �M0kx(t2 � 1)k+ 
0

�M2
0M

2�t �t �2kx(t0)k+ M̂2(�) (18)

where

M̂2(�) = M0(M(M0M(�) + 
0) +M(�)) + 
0;

� � �

[tl;1): kx(t)k �M l
0M

l�t�t �lkx(t0)k+ M̂l(�): (19)

DenotingM1 = (M0M=�)l; M2(�) = M̂l(�) <1 we obtain (7). To
conclude the proof we note that due to the term�(t) in the algorithm of
localization (4)–(6) the process of localization cannot be disrupted by
the presence of small unmodeled dynamics. In view of A5), (11)–(19)
it is easy to show that for a sufficiently small�

[tl;1): kx(t)k �M l
0M

l�t�t �lkx(t0)k

+ M̂l(�) +M��kx(t0)k (20)

with M� being a positive constant independent ofx(t0). Therefore,
kx(t)k � (M1�

t�t +M��)kx(t0)k+ M̂l(�) is valid for all t0 2 NNN;
t � tl. From the last inequality and A5) exponential stability of the
closed-loop system is easily established. }

IV. L OCALIZATION TECHNIQUE FORLTV PLANTS

For the LTV plants, the general structure of the switching controller
is similar to the LTI case except that the localization algorithm needs
some modification. More specifically, at eacht > t0, the setÎ(t) is
computed as above withrj being replaced by(rj + q), that is

Î(t) = j : �Tj �(t� 1)� y(t) � (rj + q)k�(t� 1)k

+ � + �(t� 1); j = 1; � � � ; L : (21)

By doing this we make the decomposition of the uncertainty set

slightly redundant. This avoids rapid switching of the controller caused
by the parameters drifting slowly along the boundary of neighboring
subsets. The localization setI(t) is updated by

I(t) =
I(t� 1) \ Î(t); if I(t� 1) \ Î(t) 6= ;

Î(t); otherwise.
(22)

Once (or if) the algorithm of localization has falsified all the indexes it
simply disregards all the past measurements except for the most recent
one and the process of localization continues. This forgetting scheme
eliminates the need for persistency of excitation required in many adap-
tive control schemes.

Theorem 4.1:The localization scheme described above guaran-
tees the following properties when� (i.e., the “size” of unmodeled
dynamics) is sufficiently small.

i) The closed-loop system is globally�-exponentially stable if
M

(1+[(N�=q)])l
1 �N < 1 whereM1 and� are constants in (7),�;

N are constants used in Assumption A6),q is given in Condition
C3), andl denotes the maximum number of switchings for the
LTI plant.

ii) The switching sequencefi(t0); i(t0+1); � � �g is finitely conver-
gent if the plant is LTI.

Proof: Relying on the proof of Theorem 3.1 it suffices to
show that the sufficiently low “average frequency” of the controller
switching implies global stability. Consider the behavior of the
closed-loop system overT = [t; t + �N ] with �; t 2 NNN being
arbitrary constants. Lets denote the number of switchings made by the
controller overT . Following the proof of Theorem 3.1 we establish
that (provided that�(t) � 0)

kx(t+ �N)k � (M0M=�)s��Nkx(t)k+ M̂s(�) (23)

lim
�!0

M̂s(�) = 0; 0 < � < 1: (24)

We recall thatl denotes an upper bound on the total number of switch-
ings made by the controller applied to the LTI plant (1). It is straight-
forward to verify that

s � l� +1+(1+ [�N=(q=�)])l = (1+ [N�=q])l� +(l+1): (25)

Therefore, (23) is transformed into

kx(t+ �N)k � M1+[N�=q])l�N
�

M (l+1)kx(t)k+ M̂s(�) (26)
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whereM = M0M=�. Requiring(M (1+[N�=q])l�N )�M (l+1) < 1 we
have

M (1+[N�=q])l�N �M�(l+1)=� : (27)

Since the term M�(l+1)=� is increasing in � and
lim�!1M�(l+1)=� = 1 the inequalityM (1+[N�=q])l�N < 1
being true for a sufficiently largeN and a sufficiently small�
guarantees the existence of a finite� such that (27) holds. Hence,
kx(t + �N)k � �kx(t)k + M̂s(�) holds for some0 < � < 1
and anyt 2 NNN . Now we need to show that the last inequality
being true for allt 2 NNN implies exponential stability in the sense
of Definition 2.1. Since

kx(t0 + k�N)k

� �kkx(t0)k+

k

i=1

�i�1M̂s(�); 8 k 2 NNN (28)

kx(t0 + k�N + i)k

� G1kx(t0 + k�N)k+G2; 8 i 2 [1; N � 1]

8 k 2 NNN (29)

for some positive constantsG1; G2, and k
i=1 �

i�1 < 1; 8 k 2 NNN
the exponential stability is proved in a straightforward way. Using the
same arguments as in the proof of Theorem 3.1 the result above is easily
extended to the case�(t) 6= 0. }

Remark 4.1: The conditionM (1+[(N�=q)])l
1 �N < 1 in i) of The-

orem 4.1 automatically holds for LTI plants becauseN ! 1 and
� = 0 in this case.

V. SIMULATION EXAMPLE

Consider the following family of unstable and pointwise nonmini-
mumphase LTV plants:

y(t) = 1:2y(t� 1)� 1:22y(t� 2) + b1(t)u(t� 1)

+ b2(t)u(t� 2) + �(t) (30)

with the exogenous disturbance�(t) being uniformly distributed on
the interval [�0:1; 0:1]. The a priori uncertainty bounds are given
by b1(t) 2 [�1:6;�0:15] [ [0:15; 1:6]; b2(t) 2 [�2;�1] [ [1; 2].
The results of localization on the finite setf�ig600i=1 are presented in
Fig. 1(a)–(e). A pole placement technique was used to compute the
gainsfKig

600
i=1 with the poles of the nominal closed-loop system being

(0; 0:07; 0:1). The interesting features of the localization technique
observed in simulations include a low sensitivity of the speed of
localization to the total number of fixed controllers and the switching
index update rule.

VI. CONCLUSION

The switching adaptive control approach presented in this paper is
based on a localization method which is conceptually different from the
existing switching adaptive schemes. The unique feature of localization
based switching adaptive control is its rapid falsification capabilities.
For further details and more advanced applications of the localization
method, see [9].

Fig. 1. Example of localization: Parameters jump every seven steps.
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