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a b s t r a c t

This paper studies system identification of ARMA models whose outputs are subject to finite-level
quantization and random packet dropouts. Using the maximum likelihood criterion, we propose a
recursive identification algorithm, which we show to be strongly consistent and asymptotically normal.
We also propose a simple adaptive quantization scheme, which asymptotically achieves the minimum
parameter estimation error covariance. The joint effect of finite-level quantization and random packet
dropouts on identification accuracy are exactly quantified. The theoretical results are verified by
simulations.
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1. Introduction

System identification of plants with quantized observations
is significant in understanding the modeling capacity for sys-
tems with limited sensor information, and the trade off between
communication resources and identification performance (Wang,
Zhang, & Yin, 2003). This work is concerned with the identification
of autoregressive moving average (ARMA) models whose quan-
tized outputsmust be communicated through a digital noisy chan-
nel. A motivating example is given by a sensor and an estimator
communicating over wireless channels with limited resources in
terms of bandwidth and transmission power. By modeling the
packet dropout process as an independent and identically dis-
tributed (i.i.d.) Bernoulli process, this paper aims to quantify the
joint effect of finite-level quantization and packet dropouts on
the identification accuracy of ARMA models. The key difference of
quantized identification from the classical identification problem
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is that the estimator is no longer able to access the original analog
amplitude (unquantized) observations. Especially under aggres-
sive quantization, the discrete-valued observations supply limited
information on system outputs, and hence introduce new chal-
lenges in system modeling, identification and control. In addition,
channel errors, e.g., packet dropouts, further induce information
loss that influences identification accuracy.

Recently, research on quantized identification/estimation con-
stitutes a vast body of literature, see e.g., Wang, Yin, Zhang, and
Zhao (2010); Xiao, Ribeiro, Luo, and Giannakis (2006) and refer-
ences therein. In Xiao et al. (2006) and the references therein,
various quantized estimation algorithms are developed in the con-
text of wireless sensor networks. In Wang et al. (2010), a compre-
hensive treatment on quantized system identification is presented
for single-input-single-output linear discrete time-invariant sta-
ble systems. Based on periodic inputs, they study the computa-
tional complexity and the impact of disturbances and unmodeled
dynamics on the identification accuracy. In the same spirit, various
models such as rationalmodels,Wiener systems andHammerstein
systems have been studied as well. Although their identification
algorithms are shown to be optimal in the sense of asymptoti-
cally achieving the Cramer–Rao lower bound (Wang et al., 2010),
the assumption on periodic inputs makes the identification algo-
rithm inappropriate for tracking control applications. Moreover,
input design is of essential importance in system identification to
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provide sufficient probing capacities to guarantee the existence of
a consistent estimator. The periodic input assumption is dropped
in Godoy, Goodwin, Aguero, Marelli, andWigren (2011), and an al-
gorithm has been proposed for identifying moving average (MA)
models using quantized output, under the maximum likelihood
criterion. The presentwork extends thework in Godoy et al. (2011)
in three ways: (1) We study the identification of ARMA models
using not only quantized but also intermittent output measure-
ments. A difficulty in treating ARMA models with lost measure-
ments is that, as opposed toMAmodels, it is not possible to simply
remove the corresponding output error equations from the iden-
tification recursions. Hence, in order to use standard estimation
algorithms, these missing measurements need to be properly es-
timated. By doing so, the problem can be stated in an iterative
weighted linear least squares form. (2)We carry out an asymptotic
stochastic analysis where we provide conditions for strong consis-
tency and asymptotic normality of the estimated parameters. As
in Godoy et al. (2011), we also drop the periodic assumption on
the input signal.We show that, to ensure consistency, input signals
are required to be persistently exciting (of a certain order) (Lennart,
1999). (3)We propose a simple adaptive quantization scheme that
asymptotically achieves the minimum parameter estimation er-
ror covariance. Notice that the quantizer design is not addressed
in Godoy et al. (2011), where it is assumed to be static and given as
a prior.

The fundamental problem of system identification with quan-
tized observations is the joint design of quantizer and the
corresponding estimation algorithm to minimize the estimation
error. The main challenge lies in the fact that the unknown param-
eters are inaccessible to the design of an optimal quantizer. For
example, to estimate θ under binary quantization of y = θ + v,
where v is a Gaussian random variable with zero mean, an op-
timal quantizer to minimize the mean square error (MSE) is to
simply place the quantizer threshold at θ (Ribeiro & Giannakis,
2006). However, such threshold selection is impractical since θ is
not available at the estimator side. It is known that the estima-
tion performance is very sensitive to the choice of the quantizer
threshold. Motivated by this, an interesting quantizer threshold
selection scheme is proposed in Papadopoulos, Wornell, and Op-
penheim (2002). It consists of periodically applying a set of thresh-
olds with equal frequencies, hoping that some thresholds are close
to the unknown parameter. To asymptotically approach the min-
imum MSE, Fang and Li (2008) constructs an adaptive quantiza-
tion involving delta modulation with variable stepsize. However,
the on-line optimal stepsize is obtained through a maximum like-
lihood estimation process lacking a recursive form. This paper pro-
poses a simple adaptive quantizer and the corresponding recursive
identification algorithm to asymptotically approach the minimum
parameter estimation error covariance. Our scheme exploits the
fact that quantizing innovations requires fewer bits than quantiz-
ing observations; see Fu and de Souza (2009); You, Xie, Sun, and
Xiao (2008).

Another detrimental factor impairing the identification perfor-
mance is the dropouts of quantized observations. To the best of
our knowledge, there is no work to date to quantify the joint ef-
fect of finite-level quantization and packet dropouts, on identifica-
tion performance. As in Sinopoli et al. (2004), wemodel the packet
dropout process by an i.i.d. process. Then, the basic problem is how
to dealwith the loss of a packet. For the state estimation of dynami-
cal systemswith intermittent un-quantized observations, it is well
understood that the optimality of the Kalman filter still holds (Si-
nopoli et al., 2004). Although some stability conditions are derived
for the corresponding estimation error covariancematrices (Sinop-
oli et al., 2004; You, Fu, & Xie, 2011), the performance degeneration
due to packet dropout is still unclear. Our framework is closely re-
lated to that of You and Xie (2010), which focuses on the stabi-
lizability problem by accounting for the joint effect of finite-level
quantization and packet dropouts. In this paper we develop an
asymptotically optimal algorithm for system identification, which
shows that the joint effect of finite-level quantization and packet
dropouts on the identification performance can be exactly quan-
tified by the packet dropout rate and the number of quantization
levels.

The rest of the paper is organized as follows. In Section 2
we describe the system identification problem. In Section 3 we
describe the proposed identification method, using the maximum
likelihood criterion. In Section 4 we provide conditions for
strong consistency and asymptotic normality of the estimated
parameter vector. In Section 5we study the optimum quantization
scheme thatminimizes the covariance of the parameter estimation
error, and we propose an adaptive quantization scheme that
asymptotically achieves this minimum covariance. In Section 6 we
present some simulation results. Concluding remarks are given in
Section 7.

2. Problem description

Consider the following ARMA model

x(t) =
B(q)
A(q)

u(t), y(t) = x(t) + w(t),

z(t) = γtQt [y(t)],

where the input u(t) is modeled by either a deterministic signal
or a random process and w(t) is a sequence of independent and
identically distributed (i.i.d.) samples with normal distribution
N (0, σ 2). The noisy output y(t) is quantized by a time-varying K -
level scalar quantizer Qt : R → {vt,1, . . . , vt,K }, t ∈ Z (which
accounts for non-stationary quantization schemes), defined by the
quantization intervals [bt,k−1, bt,k] = Q−1

t [vt,k], k = 1, . . . , K ,
with bt,0 = −∞ and bt,K = ∞, for all t ∈ Z. The quantized
values are then transmitted through an unreliable communication
network whose packet dropouts are modeled by a sequence γt of
i.i.d. Bernoulli random variables with parameter λ (i.e., P(γt =

1) = λ).
To simplify the notation, we combine the effects of quantization

and packet dropouts in a single quantizer Q̆t defined by
Q̆t [y] =


Qt [y], γt = 1;
0, γt = 0.

When a packet is lost, Q̆t can be interpreted as a quantizer with a
single quantization interval spanning [−∞, ∞], which is mapped
to zero. Denote UN = {u(t) : t = 1, . . . ,N}, ZN = {z(t) : t =

1, . . . ,N}, A(q) = 1+a1q−1
+· · ·+amq−m, B(q) = b0+· · ·+bnq−n

and θ⋆ = [b0, . . . , bn, a1, . . . , am]
T (the superscript T denotes

vector/matrix transpose). Let r = m + n + 1. For each θ ∈ Rr ,
we denote the parametric versions of A(q) and B(q) by A(q, θ) and
B(q, θ), respectively. Denote the probability density function (PDF)
of w(t) by fW (w) = (2πσ 2)−1/2 exp(− w2

2σ 2 ), and its cumulative
distribution function by FW (w) =

 w

−∞
fW (w̃) dw̃.

Our goal is to estimate θ⋆, given the knowledge of UN and ZN .
We do so using the maximum likelihood (ML) criterion.

3. Maximum likelihood estimation

Using the ML criterion, an estimate θ̂N up to sample time N is
obtained by2

θ̂N ∈ argmax
θ

pθ (ZN |UN) = argmax
θ

l(θ |UN , ZN), (1)

2 Notice that, for any function f (θ), the symbol argmaxθ f (θ) denotes a set
whose elements all maximize f (θ).
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where pθ denotes the probability distribution given θ , and

l(θ |UN , ZN) = log pθ (ZN |UN) (2)

is the log-likelihood function of θ , given the knowledge of UN and
ZN .

In Section 3.1 we propose an on-line algorithm for solving
(1), based on the expectation maximization (EM) method. The
advantage of this method is that we can derive an algorithmwhich
does not require an initialization. However, the EM method is
known to suffer from a slow convergence rate (Cappé, Moulines, &
Rydén, 2005, pp. 358–359). Toward this end, the estimate obtained
after a few EM iterations can be used to initialize a gradient search
method (Fletcher, 1987). Thus, we propose in Section 3.2 an on-
line algorithm based on the quasi-Newtonmethod. The purpose of
using the EM method is to provide a good initial estimate for the
quasi-Newton method.

Since the input signal UN is always known, we remove it from
the list of conditioning variables in expressions like (1) and (2) for
notational simplicity.

3.1. EM-based on-line estimation method

Before deriving the required method, we give a brief intu-
itive explanation for the EM method. For a detailed presentation
see McLachlan and Krishnan (2008). A drawback of (1) is that
log pθ (ZN) is difficult to maximize with respect to θ due to the in-
duction of a nonlinear quantizer. Suppose that the output YN =

{y(t) : t = 1, . . . ,N} before the quantizer was known. Note that
it would be much easier to maximize log pθ (YN). Since YN is un-
available,we replace log pθ (ZN) by the average of log pθ (ZN , YN) =

log pθ (ZN |YN)+ log pθ (YN) over all possible values of YN . To do this
average we use the conditional distribution pθ̂ (YN |ZN) of YN given
the observations ZN , and some previous estimate θ̂ of θ . This leads
to the EM method, which solves the ML problem (1) using the fol-
lowing iterative procedure:

θ̂
(i)
N ∈ argmax

θ

QN(θ, θ̂
(i−1)
N ), (3)

QN(θ, θ̂) =


log pθ (ZN , YN) pθ̂ (YN |ZN) dYN . (4)

The iterations (3)–(4) permit computing θ̂N , for a fixed N . To ob-
tain an on-line algorithm, we can compute one iteration for each
new available sample. Doing so we obtain the following iterative
algorithm:

θ̂N ∈ argmax
θ

QN(θ, θ̂N−1). (5)

Our next step is to find a closed-form expression for each iteration
in (5). To this end, we have the following result.

Lemma 1. The function QN(·, ·) in (4) is given by

QN(θ, θ̂) = −
N
2

log(2πσ 2) −
1

2σ 2

N
t=1

(ȳ(t, θ̂ ) − x(t, θ))2

−
1

2σ 2

N
t=1

(y2(t, θ̂ ) − ȳ2(t, θ̂ )),

where y2(t, θ) = Eθ


y2(t)|z(t)


and3

ȳ(t, θ) = Eθ {y(t)|z(t)} . (6)

3 If a and b are random variables, and f (·) is a function, the conditional
expectation Eθ {f (a)|b} of f (a) given b is defined by Eθ {f (a)|b} =


f (a)pθ (a|b)da.
Remark 2. Notice that (6) can be computed by

ȳ(t, θ) =


Q̆−1

t [z(t)]
y(t)pθ (y(t))dy(t)

=
1
2


erf

b(t) − x(t, θ)

√
2σ 2


− erf


a(t) − x(t, θ)

√
2σ 2


,

where erf(x) =
2

√
π

 x
0 e−t2dt denotes the error function and

[a(t), b(t)] = Q̆−1
t [z(t)] denotes the quantization cell correspond-

ing to z(t).

Combining (5) with Lemma 1, we obtain that

θ̂N ∈ argmin
θ

N
t=1

(ȳ(t, θ̂N−1) − x(t, θ))2. (7)

The procedure in (7) requires tuning the ARMA model parameters
θ to fit ȳ(t, θ̂N−1) at each iteration. For a fixed N , a number of
recursive formulas are available for doing so Pintelon, Guillaume,
Rolain, Schoukens, and Van hamme (1994). In order to obtain
an algorithm which does not require initialization, we use the
iterative weighted linear least squares algorithm (Pintelon et al.,
1994; Steiglitz & McBride, 1965). Again, to obtain an on-line
algorithmwe compute one iteration for eachnewavailable sample.
This results in the following iterations, which can be initialized by
choosing θ̂0 so that B(q, θ̂0) = A(q, θ̂0) = 1 and

θ̂N ∈ argmin
θ

N
t=1


A(q, θ)

ȳ(t, θ̂N−1)

A(q, θ̂N−1)
− B(q, θ)

u(t)

A(q, θ̂N−1)

2

.

Then, θ̂N can be computed as follows:

θ̂N =


N

t=1

φ̃(t, θ̂N−1)φ̃
T (t, θ̂N−1)

Ď

×


N

t=1

φ̃(t, θ̂N−1)ỹ(t, θ̂N−1)


, (8)

where the superscript Ď denotes the Moore–Penrose pseudoin-
verse (Ben-Israel & Greville, 2003), and

ỹ(t, θ) =
ȳ(t, θ)

A(q, θ)
, (9)

φ̃(t, θ) =
1

A(q, θ)
[u(t), . . . , u(t − n),

− ȳ(t − 1, θ), . . . , −ȳ(t − m, θ)]T . (10)

By following the steps in Lennart (1999, Sec. 11), (8) can be
written in a recursive form:

θ̂N = θ̂N−1 + LN

ỹ(N, θ̂N−1) − φ̃T (N, θ̂N−1)θ̂N−1


, (11)

with

LN =
PN−1φ̃(N, θ̂N−1)

1 + φ̃T (N, θ̂N−1)PN−1φ̃(N, θ̂N−1)
, (12)

PN = PN−1 −
PN−1φ̃(N, θ̂N−1)φ̃

T (N, θ̂N−1)PN−1

1 + φ̃T (N, θ̂N−1)PN−1φ̃(N, θ̂N−1)
. (13)

3.2. Quasi-Newton-based on-line estimation method

For a fixed N , the ML problem (1) can be solved using a gradient
search algorithm. For this purposewe use a quasi-Newtonmethod.
As above, to obtain an on-line algorithm we compute one quasi-
Newton iteration for each new available sample. This gives the
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following iterations:

θ̂N+1 = θ̂N − µNTNgN , (14)
where the scalar µN denotes the stepsize at iteration N , the matrix
TN denotes an approximation of the inverse of the Hessian of
l(θ |ZN) at θ̂N , and the vector gN denotes the gradient of l(θ |ZN) at
θ̂N , i.e.,

gN =
∂

∂θ
l(θ |ZN)


θ̂N

. (15)

We choose to compute TN using the Broyden–Fletcher–Goldfarb
–Shanno (BFGS) formula (Fletcher, 1987), which is initialized by
TN0 = I (N0 denotes the first sample after the EM iterations switch
to quasi-Newton iterations) and proceed as follows:

TN+1 = TN +


1 +

qTNTNqN
sTNqN


sN sTN
sTNqN

−
sNqTNTN + TNqN sTN

sTNqN
, (16)

with sN = θ̂N+1 − θ̂N and qN = gN+1 − gN .
Also, the stepsize parameter µN is obtained from a line search

algorithm. We use the backtracking algorithm described in Boyd
and Vandenberghe (2004), which is formed by sub-iterations of the
main iterations (14). Let α = 0.01 and β = 0.5. At sub-iteration
i, the stepsize is updated using µN,i = βµN,i−1, starting from the
initial value µN,1 = 1. The sub-iterations are stopped when

l(θ̂N − µN,iTNgN |ZN) < l(θ̂N |ZN) + αµN,igT
N sN . (17)

To implement the iterations (14), we need to provide expressions
for l(θ |ZN) and its gradient. Sincew(t) is a sequence of independent
random variables, we have that

l(θ |ZN) =

N
t=1

log pθ (z(t)) . (18)

Lemma 3. The gradient of the log-likelihood function l(θ |ZN) is given
by

∂

∂θ
l(θ |ZN) =

1
σ 2

N
t=1

(ȳ(t, θ) − x(t, θ)) ẋ(t, θ),

where

ẋ(t, θ) ,
∂

∂θ
x(t, θ) = φ(q, θ)u(t), (19)

φ(q, θ) =


ΩT

n (q)
A(q, θ)

,
q−1B(q, θ)ΩT

m−1(q)
A2(q, θ)

T

, (20)

and Ωn(q) = [1, q−1, . . . , q−n
]
T .

3.3. Summary of the identification algorithm

The identification algorithm described above can be summa-
rized in this subsection. Choose an initial estimate θ̂0 so that
B(q, θ̂0) = A(q, θ̂0) = 1, and choose a number N0 of samples
at which the on-line estimation algorithm switches from the EM-
basedmethod to the quasi-Newton-basedmethod. Then, at sample
time N , regardless of whether the sample z(N) is received or not,
if N < N0.
(1) Use (6) to compute ȳ(N, θ̂N−1);
(2) Use (9) and (10) to compute ỹ(N, θ̂N−1) and φ̃(N, θ̂N−1);
(3) Compute θ̂N using (11)–(13).
Otherwise, if N ≥ N0, set the initial value of the iterations (16) as
TN0 = I . Then do:
(1) Use (15) and Lemma 3 to compute the gradient gN ;
(2) Use (17) and (18) to compute the stepsize µN ;
(3) Compute θ̂N using (14);
(4) Compute TN using (16).
4. Asymptotic analysis

In this section we study the statistical properties of the
estimate θ̂N when the number N of samples tends to infinity.
Before presenting the results, we introduce the following technical
definitions.

Definition 4. For 1 ≤ p < ∞, the p-th (absolute) moment of the
random variable x is defined by ∥x∥p = E {|x|p}1/p. For p = ∞,
the infinite moment of x is defined by ∥x∥∞ = inf{M > 0 : x <
M,w.p.1}. A sequence x(t), t ∈ Z of random variables is said to
have uniformly bounded p-thmoments if there existsMx > 0 such
that ∥x(t)∥p ≤ Mx, for all t ∈ Z.

Definition 5. A time-varying quantizer Qt : R → {vt,1, . . . , vt,K },
t ∈ Z, (as defined in Section 2) is said to be bounded if there exists
MQ > 0, such that, for each t ∈ Z, there exists k ∈ {1, . . . , K − 1}
satisfying |bt,k| < MQ .

4.1. Strong consistency

In this subsection we provide conditions to guarantee that the
estimate θ̂N converges to the true parameter vector θ⋆, as the
number of samples tends to infinity.

Theorem 6. Let D ⊂ R be a compact set containing the true
parameter vector θ⋆, and such that, for all θ ∈ D , the roots of A(q, θ)
have magnitudes smaller than or equal to 1 − ϵ, for some ϵ > 0. Let
u(t) be bounded (i.e., there exists Mu > 0 such that |u(t)| < Mu, for
all t ∈ Z) and such that limN→∞

1
N

N
t=1 (x(t, θ) − x(t, θ⋆))

2
= 0

holds for θ, θ⋆ ∈ D if and only if θ = θ⋆. Let also Qt be bounded
and λ > 0. If for each N, θ̂N is constrained to belong to D , i.e., θ̂N ∈

argmaxθ∈D l(θ |ZN), then

lim
N→∞

θ̂N
w.p.1
= θ⋆.

Remark 7. A strong consistency result for system identification
without output quantization or packet dropouts can be found
in Lennart (1999, Th. 8.3). When applied to the setting described in
Section 2, this result states that consistency holds under the same
assumptions as those in Theorem 6 (except for the boundedness of
Qt and λ > 0). More precisely, our assumption on D is equivalent
to a condition called uniform stability in Lennart (1999). Also, in
view of Lennart (1999, Th. 13.1), our assumption on the input
signal is equivalent to the assumption called persistently exciting
of order r in Lennart (1999), which is in turn equivalent to the
condition called informative enough, required by Lennart (1999, Th.
8.3). Hence, Theorem 6 essentially states that placing a (bounded)
quantizer at the output does not alter strong consistency, provided
that a non-vanishing fraction of observations is received.

4.2. Asymptotic normality

In this section we state conditions under which the random
vector θ̂N − θ⋆ converges in distribution to a multivariate normal
vector. The main result of this section is stated in Theorem 10
below.

Lemma 8. Let F = limN→∞
1
N FN , where FN = Eθ⋆


∂
∂θ

l(θ |ZN)

θ⋆

∂

∂θT
l(θ |ZN)|θ⋆


denotes the Fisher information matrix. Then F =

λ

σ 2 Φµ, where

Φµ = lim
N→∞

1
N

N
t=1

µ(t)ẋ(t, θ⋆)ẋT (t, θ⋆), (21)

with µ(t) =
σ̄ 2(t)
σ 2 , σ̄ 2(t) = Eθ⋆


y̌(t, θ⋆) − x(t, θ⋆)

2 and

y̌(t, θ) = Eθ {y(t)|Qt [y(t)]}. Also, F is strictly positive-definite.
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Remark 9. Notice that y̌(t, θ) in Lemma 8 denotes the conditional
mean of y(t) given the knowledge of its quantized value, regardless
of whether this value was received or not. Hence µ(t) accounts
only for the effect of quantization and does not depend on packet
dropouts.

Theorem 10. If the conditions in Theorem 6 hold, and θ⋆ lies in the
interior of D , then
√
N

θ̂N − θ⋆


in dist.
→ N (0, C) , (22)

where
in dist.
→ denotes convergence in distribution and

C = F−1
=

σ 2

λ
Φ−1

µ . (23)

Remark 11. A result similar to that in Theorem 10, but for system
identificationwithout output quantization or packet dropouts, and
with the estimate obtained using the prediction (quadratic) error
criterion, is given in Lennart (1999, Theorem 9.1). This criterion
is shown to be equivalent to the ML criterion when the noise
has normal distribution (Lennart, 1999, Theorem 9.1). Notice that
the asymptotic covariance (23) reduces to their result if λ =

1 (i.e., without packet dropouts) and µ(t) = 1 (i.e., without
quantization).

The result in Theorem 10 states that one of the conditions required
for

√
N

θ̂N − θ⋆


to converge to a normal distribution, is that

the (deterministic) input u(t) is bounded. Hence, the asymptotic
covariance C depends on the particular input u(t), viaΦµ. If instead
of a deterministic signal, the input u(t) is a bounded random
process, the result still holds, and the value of C is given in the next
corollary.

Corollary 12. If the conditions in Theorem 10 hold, u(t) is the
realization of a wide-sense stationary and ergodic4 random process
with uniformly bounded ∞-th moment, and Qt is built as a time-
invariant function of u(τ ), τ ≤ t, then the result of Theorem 10 holds
with

Φµ
w.p.1
= Eu


µ(t)ẋ(t, θ⋆)ẋT (t, θ⋆)


, (24)

where Eu{·} is the expectation taken with respect to u(t).

Remark 13. Corollary 12 requires u(t) to be ergodic (Klenke,
2008). This is a technical condition that is satisfied by any signal
composed of i.i.d. samples. By Birkhoff’s ergodic theorem (Klenke,
2008), the ergodic property continues to hold for the output of a
linear time-invariant stable filter with any ergodic sequence as its
input.

5. Optimum quantizer design

5.1. Optimum time-varying quantization scheme

The result in Theorem10 can be used to choose the quantization
thresholds bt,k, k = 0, . . . , K of the quantizer Qt [·] to minimize
the asymptotic error covariance C . This is equivalent to choosing
the thresholds so that σ̄ 2(t) is maximized. We have that

σ̄ 2(t) = E


Q̄t [y(t, θ⋆)] − x(t, θ⋆)
2

= E


Q̃t,x(t,θ⋆) [w(t)]
2

, (25)

4 An ergodic process here refers to a random process such that all events which
are invariant under time-shifts have probability either one or zero (Gray&Davisson,
2010, Section 6.14).
Table 1
Coefficient µ for different number K of quantization levels, when w(t) has normal
distribution.

K 2 3 4 5 6 7 8

µ 0.6366 0.8089 0.8825 0.9201 0.9420 0.9560 0.9655

(notice that the expectation operations above are independent of
θ⋆, hence the subindex θ⋆ is omitted to simplify the notation) with
Q̄t and Q̃t,x being the quantizers defined by

Q̄t [y] = E {y|y ∈ [bk−1, bk]} , if y ∈ [bk−1, bk]; (26)

Q̃t,x [w] = Q̄t [x + w] − x. (27)

Hence, σ̄ 2(t) can be interpreted as the power of the quantized
version of the noisew(t) obtained from the time-varying quantizer
Q̃t,x(t,θ⋆). Then, the quantization thresholds bt,k, k = 0, . . . , K need
to be chosen so that the quantizer Q̃t,x(t,θ⋆) maximizes σ̄ 2(t). This is
equivalent to minimizing the power E{w2

e (t)} of the quantization
error we(t) = w(t) − Q̃t,x(t,θ⋆)[w(t)], since from Gersho and Gray
(1991, Eq. (6.2.14)), we have that

σ̄ 2(t) = σ 2
− E{w2

e (t)}. (28)

Hence, the optimal choice for the quantization thresholds of
Q̃t,x(t,θ⋆) is given by those of a Lloyd–Max quantizer (Max, 1960)
which is designed using the PDF of w(t). From (27), and since the
quantization thresholds of Q̄t equal those ofQt , we have that σ̄ 2(t)
is maximized by choosing, for each k = 0, . . . , K ,

bt,k = b̃k + x(t, θ⋆) (29)

with b̃k =
w̃k−1+w̃k

2 and w̃k = E

w(t)|w(t) ∈ [b̃k−1, b̃k]


.

Using this quantizer design, the following corollary of Theo-
rem 10, which we state without proof, immediately follows.

Corollary 14. If the conditions in Theorem 10 hold, and the
quantization thresholds bk, k = 0, . . . , K of Qt are chosen according
to (29), then

C =
σ 2

λµ
Φ−1, (30)

where

Φ = lim
N→∞

1
N

N
t=1

ẋ(t, θ⋆)ẋT (t, θ⋆), (31)

with µ = σ̄ 2/σ 2, σ̄ 2
= E


Q̃2 [w(t)]


, and Q̃ being a Lloyd–Max

quantizer designed in an off-line manner using the PDF of w(t).

Remark 15. Notice that Eq. (30) differs from the classical result
of system identification Lennart (1999, Eq. (9.17)) in the factor
1/µλ, where µ accounts for the effect of the quantizer and λ
accounts for that of the packet dropouts. The coefficient µ states
the (inverse of the) relationship between the power of the noise
w(t), and the power of the signal obtained after quantizing w(t)
using an optimum Lloyd–Max quantizer. Hence, µ tends to 1 as
the number of quantization levels K tends to infinity. This can be
seen in Table 1, which shows the dependence of µ on K , for the
case when w(t) has normal distribution.

Remark 16. Notice that if λ = 1, θ is a scalar, x(t, θ) = θ and Qt
is a one-bit quantizer defined by Qt = 1 if y > τ and 0 otherwise,
for all t ∈ N, then as shown in Appendix C, (23) reduces to

C =
FW (τ − θ⋆)(1 − FW (τ − θ⋆))

f 2W (τ − θ⋆)
. (32)
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This is in agreement with the result derived in Ribeiro and Gian-
nakis (2006). It is clear that the optimal quantizer that minimizes
C is obtained by choosing τ = θ⋆, in which case C = πσ 2/2. This is
in agreementwith (29). However, they fail to give a practical quan-
tizer to asymptotically approach this minimum error covariance.
Actually, the best of our knowledge suggests that there is no simple
quantizer in the literature to asymptotically approach the mini-
mum error covariance. It is worth mentioning that the asymptoti-
cally optimal quantizer given in Fang and Li (2008) requires solving
a maximum likelihood estimation at each time step.

5.2. Adaptive quantization scheme for system identification

Unfortunately, the optimal quantizer (29) in Section 5.1
requires the knowledge of the unknown true parameter vector
θ⋆. A practical workaround is to replace θ⋆ by the estimate θ̂t−1
obtained at the previous sample-time t − 1. Assuming that the
arrival of each packet is acknowledged by the receiver, θ̂t−1 is
known at both ends. A question that naturally arises then is
whether theminimum C can still be achieved in this case. Precisely,
whether Corollary 14 holds if (29) is replaced by

bt,k = b̃k + x(t, θ̂t−1). (33)
The answer is positive and is stated in the following corollary.

Corollary 17. If the conditions in Theorem 10 hold, and the
quantization thresholds bt,k, k = 0, . . . , K of Qt are chosen according
to (33), then the asymptotic error covariancematrix C is given by (30).

6. Simulations

6.1. Comparison with the prediction error criterion

The identification method derived in Section 3 uses the
maximum likelihood (ML) criterion to account for the presence
of the output quantizer and packet dropouts. In this section
we compare the performance of this method, with that of the
prediction (quadratic) error (PE) method, described in Lennart
(1999, Sec. 7.2). We assume that λ = 1, so that no packet is
lost. Then, the PE method ignores the presence of the quantizer
and estimates the parameters θ to minimize the power of the
difference between the quantized samples z(t) and their value
predicted using the input signal u(t) and θ . To do so we use
the iterative weighted linear least squares algorithm (Pintelon
et al., 1994; Steiglitz & McBride, 1965) to obtain an initial set of
parameters, which is then used to initialize a quasi-Newton search
method (Fletcher, 1987). Since the PEmethod is not able to identify
the system’s gain when using a one-bit quantization scheme, we
normalize the identified systems for doing the comparison.

We generate the input signal u(t) using an i.i.d. randomprocess.
The distribution of each sample u(t) is obtained from a N (0, ν2)
distribution, by truncating it to the interval [−4ν2, 4ν2

], and ν2 is
computed so that the power of x(t) equals unity. We use a time-
invariant (i.e., Qt = Q, for each t ∈ N) quantizer, designed
using the Lloyd–Max algorithmapplied to the distributionN (0, 1).
The noise power is σ 2

= 0.1, and the true system is given by
B(q)/A(q) = 1/(1 − 1.764q−1

+ 0.81q−2).
In Fig. 1 we compare the trace Tr{CN/N} of the covariance CN/N

of

θ̂N − θ⋆


, for different values of N , and for one- and two-bits

quantization schemes (i.e., K = 2 and K = 4). For each N , we
compute Tr{CN/N} using 1000 Monte Carlo runs. We see that the
proposed ML method outperforms the PE method, specially for a
one-bit quantization scheme.

6.2. Convergence comparison for different quantizers

Wenow evaluate how the choice of the output quantizer affects
the evolution of the trace Tr{CN/N} of the covariance CN/N of
Fig. 1. Comparisonbetween theproposedML identificationmethod, and the classic
PE method.

Fig. 2. Comparison of convergence rates for different output quantizers.
θ̂N − θ⋆


. To this end, we choose the input signal, the true system

and the noise power σ 2 as in Section 6.1, and set λ = 0.9. We
consider three different two-bit quantizers (i.e., K = 4). The
first quantizer Qs is stationary and is designed as described in
Section 6.1. The second quantizerQo is the optimal quantizer given
by (29), and the third Qa is the adaptive (asymptotically optimal)
quantizer given by (33). Normalization, as done in the experiment
in Section 6.1, is not done in this comparison.

As in Section 6.1, for each quantization scheme we compute
Tr{CN/N} using 1000 Monte Carlo runs. The result is shown in
Fig. 2, which also shows the theoretical asymptotic values Tr{Cs/N}

and Tr{Co/N} (obtained using (23) and (24)), corresponding to
Qs and Qo, respectively. We see how the use of Qo leads to an
asymptotic value of Tr{CN/N}which is about 8 dB smaller than the
one resulting from Qs. Also, the adaptive quantizer Qa approaches
the optimal value Tr{Co/N} in the limit.

7. Conclusion

In this paper we have studied the problem of system identifi-
cation for ARMA models subject to noisy digital communication
constraints. We have proposed a simple adaptive quantizer, and
the corresponding recursive identification algorithm, to address
the joint effect of finite-level quantization and packet dropouts on
the identification accuracy. The proposed algorithm is shown to
be optimal in the sense of asymptotically achieving the minimum
parameter estimation error covariance. Simulation results are in-
cluded to validate the identification algorithm.

Appendix A. Proofs of results in Section 3

Proof of Lemma 1. Since the samples w(t) are statistically inde-
pendent, we have log pθ (ZN , YN) =

N
t=1 log pθ (z(t), y(t)|θ).
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Also, pθ̂ (YN |ZN) =
N

t=1 pθ̂ (y(t)|z(t)). Then, since (y(t), z(t)) and
(y(s), z(s)) are statistically independent whenever t ≠ s, we have

QN(θ, θ̂) =

 N
t=1

log pθ (z(t), y(t))
N

s=1

pθ̂ (y(s)|z(s))dYN

=

N
t=1


log pθ (z(t), y(t))pθ̂ (y(t)|z(t))dy(t).

Now, pθ (z(t), y(t)) = pθ (z(t)|y(t))pθ (y(t)), with pθ (z(t)|y(t)) =

1 if y ∈ Q̆−1
t [z(t)] and zero otherwise. Hence, pθ (z(t), y(t)) =

0 if and only if pθ̂ (y(t)|z(t)) = 0. From the convention 0 ×

∞ = 0, it follows that

log pθ (z(t), y(t))pθ̂ (y(t)|z(t))dy(t) =

log pθ (y(t))pθ̂ (y(t)|z(t))dy(t). Hence, since pθ (y(t)) ∼ N (x(t,
θ), σ 2), it follows that

QN(θ, θ̂) =

N
t=1


log pθ (y(t))pθ̂ (y(t)|z(t))dy(t)

= −
N
2

log(2πσ 2) −
1

2σ 2

N
t=1


(y(t) − x(t, θ))2

× pθ̂ (y(t)|z(t))dy(t).

Then, the result follows since
(y(t) − x(t, θ))2pθ̂ (y(t)|z(t))dy(t)

=


y2(t)pθ̂ (y(t)|z(t))dy(t)

− 2x(t, θ)


y(t)pθ̂ (y(t)|z(t))dy(t) + x2(t, θ)

= y2(t, θ̂ ) − 2x(t, θ)ȳ(t, θ̂ ) + x2(t, θ)

= y2(t, θ̂ ) − ȳ2(t, θ̂ ) + (ȳ(t, θ̂ ) − x(t, θ))2. �

Lemma 18. The following equality holds

∂

∂θ
log pθ (z(t)) =

1
σ 2 (ȳ(t, θ) − x(t, θ)) ẋ(t, θ). (A.1)

Proof. Suppose that γs = 1 if s = t and 0 otherwise. Then
QN(θ̃ , θ) = log pθ (z(t)). From Lemma 1 we have

∂

∂θ̃
QN(θ̃ , θ)


θ

=
1
σ 2 (ȳ(t, θ) − x(t, θ)) ẋ(t, θ).

Now, since the roots of a polynomial depend continuously on
its coefficients (Tyrtyshnikov, 1997, Th. 3.9.1), x(t, θ) and ẋ(t, θ)
are continuous functions of θ . From this, it is straightforward to
verify that pθ (z(t)), ȳ(t, θ) and QN(θ̃ , θ) are continuous in θ . Thus,
we can apply Proposition 10.1.4 in Cappé et al. (2005) to obtain
∂
∂θ

log pθ (z(t)) =
∂

∂θ̃
QN(θ̃ , θ)


θ

, and the result follows. �

Proof of Lemma 3. It follows immediately from (18) and
Lemma 18.

Appendix B. Proofs of results in Section 4

In this appendix we express the problem (1) as

θ̂N = argmax
θ∈D

NΞN(θ) with ΞN(θ) =
1
N

log pθ (ZN) .

Since the samples z(t), t ∈ N are independent, we have

ΞN(θ) =
1
N

N
t=1

ξ(t, θ), (B.1)
where

ξ(t, θ) = log pθ (z(t)). (B.2)

Define Ξ(θ) = limN→∞ Eθ⋆ {ΞN(θ)} and

Ξ̇N(θ) =
∂

∂θ
ΞN(θ), Ξ̇(θ) = lim

N→∞

Eθ⋆


Ξ̇N(θ)


,

Ξ̈N(θ) =
∂2

∂θ∂θ ′
ΞN(θ), Ξ̈(θ) = lim

N→∞

Eθ⋆


Ξ̈N(θ)


.

We also define ξ̇ (t, θ) =
∂
∂θ

ξ(t, θ) and ξ̈ (t, θ) =
∂2

∂θ∂θ ′ ξ(t, θ).

Lemma 19. Let 0 ≤ pk ≤ 1, for k = 1, . . . , K. Then
K

k=1 pk log
2

pk ≤ Ke−2.

Proof. Let V =
K

k=1 pk log
2 pk. Then, ∂V

∂pk
= log2 pk + 2 log pk, for

each k = 1, . . . , K . These derivatives equal zero whenever pk =

e−2. Also, ∂2V
∂p2k


e−2

< 0. Hence, the result follows by considering

pk = e−2 for all k = 1, . . . , K . �

Lemma 20. Under the assumptions of Theorem 6, x(t, θ) is uni-
formly bounded (i.e., there exists M > 0 such that |x(t, θ)| < M, for
all t ∈ N and θ ∈ D), and so is ẋ(t, θ). Also ∥ξ(t, θ)∥2,

ξ̇ (t, θ)

2

and
ξ̈ (t, θ)


2 are uniformly bounded, as well as

 ∂
∂θi

ξ̈ (t, θ)


∞

, for

all i = 1, . . . , r.5

Proof. The uniform boundedness of x(t, θ) and ẋ(t, θ) follow from
the boundedness of u(t) and the assumption on the roots of
A(q, θ). Also, the uniform boundedness of ∥ξ(t, θ)∥2 follows from
Lemma 19

∥ξ(t, θ)∥2
2 = Eθ⋆


log2 pθ (z(t))


= λ

K
k=1

pθ (vt,k) log2 pθ (vt,k) ≤ λKe−2.

From Gersho and Gray (1991, Eq. (6.2.14)) we obtain that

∥ȳ(t, θ)∥2
2 ≤ ∥y(t, θ)∥2

2 ≤ σ 2 sup
t,θ

|x(t, θ)|.

Hence, the uniform boundedness of
ξ̇ (t, θ)


2 follows from (B.2)

and Lemma 18. Now,

ȳ(t, θ) = x(t, θ) +

 b−x(t,θ)

a−x(t,θ)
wfW (w) dw b−x(t,θ)

a−x(t,θ)
fW (w) dw

= x(t, θ) +
GW (b − x(t, θ)) − GW (a − x(t, θ))

FW (b − x(t, θ)) − FW (a − x(t, θ))
, (B.3)

where [a, b] = Q̆t [z(t)] and GW (w) denote the anti-derivative
of wfW (w). Although technically tedious, it is straightforward to
verify from (B.3) that the first two derivatives of ȳ(t, θ) with
respect to θ have uniformly bounded absolute values. Hence,
the uniform boundedness of

ξ̈ (t, θ)

2 and

 ∂
∂θi

ξ̈ (t, θ)


∞

, i =

1, . . . , r , follow from (B.2) and Lemma 18. �

Lemma 21. Under the assumptions of Theorem 6, for all N ∈

N, the functions ΞN(θ), Ξ̇N(θ) and Ξ̈N(θ) are continuous on D .
Also, ΞN(θ) → Ξ̄(θ), Ξ̇N(θ) →

¯̇Ξ(θ) and Ξ̈N(θ) →
¯̈Ξ(θ)

with probability one and uniformly on θ ∈ D (strong uniform
convergence).

5 For a random variable x, ∥x∥2 = Eθ⋆


x2
1/2 and ∥x∥∞ = inf{c ≥ 0 :

|x| ≤ c w.p.1}.
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Proof. We split the proof into three steps:
(Step 1). From Lemma 20, the third derivative of ξ(t, θ) with

respect to θ is uniformly bounded. Hence,

sup
t∈N

sup
θ,φ∈D

ξ̈ (t, θ) − ξ̈ (t, φ)
 ∥θ − φ∥

−1 < ∞.

In view of (B.1), we have that

sup
N∈N

sup
θ,φ∈D

Ξ̈N(θ) − Ξ̈N(φ)
 ∥θ − φ∥

−1 < ∞. (B.4)

This in turn implies that Ξ̈N(θ) is continuous, and so areΞN(θ) and
Ξ̇N(θ).

(Step 2). From Lemma 20, ∥ξ(t, θ)∥2,
ξ̇ (t, θ)


2 and

ξ̈ (t, θ)

2

are uniformly bounded. Since these variables are also statistically
independent, Rajchman’s strong law of large numbers (Chung,

2001, Theorem 5.1.2) asserts that, for all θ ∈ D , ΞN(θ)
w.p.1
→ Ξ(θ),

Ξ̇N(θ)
w.p.1
→ Ξ̇(θ) and Ξ̈N(θ)

w.p.1
→ Ξ̈(θ).

(Step 3). Fix i, j ∈ {1, . . . , p} and define fN(θ) = [Ξ̈N(θ) −

Ξ̈(θ)]i,j, where [·]i,j denotes the i, j-th entry of a matrix. For all
θ, φ ∈ D ,

|fN(θ) − fN(φ)| ≤

Ξ̈N(θ) − Ξ̈N(φ)

i,j


+

Ξ̈(θ) − Ξ̈(φ)

i,j

 . (B.5)

Consider the event (i.e., the set in the underlying probability space)

where Ξ̈N(θ)
w.p.1
→ Ξ̈(θ) and Ξ̈N(φ)

w.p.1
→ Ξ̈(φ). On this event, we

have that

sup
θ,φ∈D

Ξ̈(θ) − Ξ̈(φ)

 ∥θ − φ∥
−1

= sup
θ,φ∈D

lim
N→∞

Ξ̈N(θ) − Ξ̈N(φ)
 ∥θ − φ∥

−1

≤ sup
N∈N

sup
θ,φ∈D

Ξ̈N(θ) − Ξ̈N(φ)
 ∥θ − φ∥

−1 < ∞, (B.6)

where the last inequality follows from (B.4). Putting (B.4) and (B.6)
into (B.5), we have that there exists M > 0 such that
|fN(θ) − fN(φ)| ≤ M ∥θ − φ∥. Hence, from Davidson (1994, Theo-
rem 21.10), fN(θ) is strongly stochastically equi-continuous. Then,

from Davidson (1994, Theorem 21.8), [Ξ̈N(θ)]i,j
w.p.1
→ [Ξ̈(θ)]i,j, uni-

formly in θ , which shows the strong uniform convergence of
Ξ̈N(θ). The strong uniform convergence of ΞN(θ) and Ξ̇N(θ) then
follows from Rudin (1976, Theorem 7.17) and (Step 3). �

Lemma 22. Under the assumptions of Theorem 6, we have that

argmax
θ∈D

Ξ(θ) = {θ⋆}, (B.7)

i.e., Ξ(θ) is maximized only at θ⋆. Also, Ξ̈(θ⋆) is non-singular.

Proof. We split the proof into four steps:
(Step 1). Since the PDF of z(t) depends on θ only via x(t, θ), we

define p̃(z(t)|x) such that pθ (z(t)) = p̃(z(t)|x(t, θ)). Let

ft(d) = DKL

p̃(z(t)|x(t, θ⋆)) ∥ p̃(z(t)|x(t, θ⋆) + d)


= Eθ⋆


log

p̃(z(t)|x(t, θ⋆))

p̃(z(t)|x(t, θ⋆) + d)


where DKL(p ∥ q) denotes the Kullback–Leibler distance between
the probability distributions p and q (Cover & Thomas, 1999). Then
we have

argmax
θ∈D

Ξ(θ) = argmin
θ∈D

H(θ). (B.8)
where

H(θ) = lim
N→∞

Eθ⋆ {ΞN(θ⋆) − ΞN(θ)}

= lim
N→∞

1
N

N
t=1

ft (x(t, θ) − x(t, θ⋆)) . (B.9)

From the positivity ofDKL(·∥·), it follows that theminimumofH(θ)

equals zero, and is attained when θ = θ⋆. It remains to show that
H(θ) = 0 if and only if θ = θ⋆.

(Step 2). For −∞ < α < β < ∞, define

g(α, β) =


fW (β) − fW (α)

FW (β) − FW (α)

2

−
f ′

W (β) − f ′

W (α)

FW (β) − FW (α)
.

From numerical evaluationwe can verify that, for each A > 0 there
exists B > 0 such that g(α, β) ≥ B, whenever either |α| ≤ A or
|β| ≤ B.

(Step 3). It is straightforward to verify that,

∂2

∂d2
ft(d) = λ

K
k=1

pθ⋆(z(t) = vt,k)g(bt,k−1 + d, bt,k + d).

Now, from Lemma 20 we have that |x(t, θ) − x(t, θ⋆)| is bounded.
Since the quantizer is bounded, and λ > 0, from Step 2 it follows

that there exists ϵ > 0 such that ∂2

∂d2
ft(d)


d=x(t,θ)−x(t,θ⋆)

> ϵ, for all

t . Hence, ft (x(t, θ) − x(t, θ⋆)) > ϵ (x(t, θ) − x(t, θ⋆))
2, for all t .

Then, (B.7) follows from our assumption on u(t), (B.8) and (B.9).
(Step 4). For the second part, consider the event (i.e., the set

in the underlying probability space), where Ξ̇N(θ) and Ξ̈N(θ)

converge uniformly on θ . Then, on this event, we have that

Ξ̈(θ⋆) = lim
N→∞

Eθ⋆


Ξ̈N(θ⋆)


= lim

N→∞

Ξ̈N(θ⋆)

(a)
=

∂2

∂θ∂θ ′
lim

N→∞

ΞN(θ)


θ=θ⋆

=
¨Ξ(θ⋆)

(b)
< 0,

where (a) follows from two applications of Rudin (1976, Theorem
7.17), and (b) follows from (B.7). �

Proof of Theorem 6. From Lemma 21 we have that, for each N ∈

N, ΞN(θ) is a continuous function of θ , and with probability one,
ΞN(θ) → Ξ̄(θ) uniformly. Also, from Lemma 22, Ξ̄(θ) attains
its maximum at θ⋆ only. This, together with the compactness of D
gives the conditions for strong convergence stated in Gourieroux
and Monfort (1996, Property 24.2). �

Proof of Lemma 8. We split the proof in two steps:
(Step 1). From (6), it can be readily verified that

Eθ⋆ {ȳ(t, θ⋆)} = Eθ⋆ {y(t, θ⋆)} = x(t, θ⋆). (B.10)

Hence, from (A.1), we have that Eθ⋆


ξ̇ (t, θ⋆)


= 0, for all t . Since

the random variables ξ̇ (t, θ⋆) are also statistically independent, it
follows from Lemma 3 that

FN = N2Eθ⋆


Ξ̇N(θ⋆)Ξ̇

T
N (θ⋆)


=

N
t=1

Eθ⋆


ξ̇ (t, θ⋆)ξ̇

T (t, θ⋆)


=
1
σ 4

N
t=1

Eθ⋆


(ȳ(t, θ⋆) − x(t, θ⋆))

2 ẋ(t, θ⋆)ẋT (t, θ⋆). (B.11)
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Now, if γt = 0, we have that ȳ(t, θ⋆) = x(t, θ⋆). Hence, ȳ(t, θ⋆) −

x(t, θ⋆) = γt

y̌(t, θ⋆) − x(t, θ⋆)


. The expression of F follows from

that FN =
λ

σ 4

N
t=1 Eθ⋆{(y̌(t, θ⋆) − x(t, θ⋆))

2
}ẋ(t, θ⋆)ẋT (s, θ⋆).

(Step 2). From Gourieroux andMonfort (1995, Property 3.8) we
have that

Ξ̈(θ⋆) = lim
N→∞

1
N

Eθ⋆


Ξ̈N(θ⋆)


= − lim

N→∞

1
N
FN = −F .

Then, F > 0 follows from Lemmas 8 and 22. �

Lemma 23. From the assumptions of Theorem 10, we have that
√
NΞ̇N(θ⋆)

in dist.
→ N (0, F−1).

Proof. We split the proof into four steps:
(Step 1). Let ϑ(t) = ξ̇ (t, θ⋆). For each y ∈ Rr , define ϑy(t) =

yTϑ(t) and Py,N =
1
N

N
t=1 E


ϑy(t)ϑT

y (t)


= yTPNy, where PN =

1
N

N
t=1 E{ϑ(t)ϑ(t)}.

(Step 2). Let δ > 0, and define

Ly = lim
N→∞


NPy,N

−1−δ/2


1
N

N
t=1

E{|ϑy(t)|2+δ
}


.

From Lemma 20, we have that there exists M > 0 such that
∥ϑ(t)∥2+δ < M for all t . Hence, from Minkowsky’s inequal-
ity (Rudin, 2006),

ϑy(t)

2+δ

≤

r
i=1

|yi| ∥ϑ(t)∥2+δ ≤ M ∥y∥1 . (B.12)

Moreover,

Py,N = yTPNy ≥ eig(PN) ∥y∥2
2 , (B.13)

where eig(PN) denotes the smallest eigenvalue of PN . In view
of (B.11) we have that PN =

1
N FN . Hence, limN→∞ PN = F > 0.

In addition, it follows from Tyrtyshnikov (1997, Th. 3.9.1) that the
eigenvalues of a matrix depend continuously on its entries. Then,
we have that

lim
N→∞

eig(PN) = eig( lim
N→∞

PN) = eig(F) > 0. (B.14)

By (B.12)–(B.14), it follows that Ly = 0.
(Step 3). From (B.2), (A.1) and (B.3), we have that E {ϑ(t)} = 0,

hence E

ϑy(t)


= 0. Since Ly = 0, for each y, the sequence

ϑy(t), t ∈ N, satisfies the Lyapunov condition (Klenke,
2008, Definition 15.40). By the Lindeberg–Feller central limit the-
orem (Klenke, 2008, Theorem 15.43), it follows that 1√

NPN,y

N
t=1

ϑy(t)
in dist.
→ N (0, 1).

(Step 4). Since limN→∞ PN,y = limN→∞ yTPNy = yT Fy, we have

that, 1
√
N

N
t=1 ϑy(t)

in dist.
→ N (0, yT Fy). From (B.1), we can write

√
NΞ̇N(θ⋆) =

1
√
N

N
t=1 ϑ(t). Then, the result follows from David-

son (1994, Eq. (25.28)). �

Proof of Theorem 10. From Lemma 21we have that, for each N ∈

N, Ξ̈N(θ) is a continuous function of θ , and with probability one,
Ξ̈N(θ) →

¯̈Ξ(θ) uniformly. Also, from Lemma 22, Ξ̈(θ⋆) is non-
singular. This, together with Lemma 23, the compactness of D
and θ⋆ being in the interior of D , gives the conditions for strong
convergence stated in Gourieroux and Monfort (1996, Property
24.16). �

Proof of Corollary 12. From (28) we have that
σ̄ 2(t)


∞

≤ σ 2

(notice that now σ̄ 2(t) is a random variable because u(t) is a
random process). Also, from Lemma 20, there exists M such that
|ẋi(t, θ⋆)| < M , for all t and all i. Hence, we have thatµ(t)ẋi(t, θ⋆)ẋj(t, θ⋆)


1 ≤ M2 < ∞.

Then, since u(t) is ergodic and wide-sense stationary, and Qt is
obtained as a time-invariant function of u(t), the result follows by
applying Birkhoff’s ergodic theorem (Klenke, 2008) to (21). �

Appendix C. Proofs of results in Section 5

Proof of (32). The proof consists of two steps:
(Step 1). Since x(t, θ) = θ , we have

σ̄ 2(t) = p(y(t) ≤ τ) (E {y(t)|y(t) ≤ τ } − θ⋆)
2

+ p(y(t) > τ) (E {y(t)|y(t) > τ } − θ⋆)
2

=

(1 − FW (τ − θ⋆))
 τ−θ⋆

−∞
wfW (w)dw

2
FW (τ − θ⋆)(1 − FW (τ − θ⋆))

+

FW (τ − θ⋆)


∞

τ−θ⋆
wfW (w)dw

2
FW (τ − θ⋆)(1 − FW (τ − θ⋆))

.

Now, since


∞

−∞
wfW (w)d(w) = E{w(t)} = 0, we have that

∞

τ−θ⋆
wfW (w)d(w) = −

 τ−θ⋆
−∞

wfW (w)d(w) = σ 2fW (τ − θ⋆).
Hence,

σ̄ 2(t) =
σ 4f 2W (τ − θ⋆)

FW (τ − θ⋆)(1 − FW (τ − θ⋆))
. (C.1)

(Step 2). Since x(t, θ) = θ , we have that ẋ(t, θ) = 1. Then,
from (21) and (C.1),

Φµ = lim
N→∞

1
N

N
t=1

σ̄ 2(t)
σ 2

=
σ 2f 2W (τ − θ⋆)

FW (τ − θ⋆)(1 − FW (τ − θ⋆))
. (C.2)

Finally, the result follows by putting (C.2) into (23)with λ = 1. �

Proof of Corollary 17. The proof consists of three steps:
(Step 1). From (33) we have that Q̃t,x(t,θ̂t ) = Q0, for all t ∈ Z,

where Q0 is a Lloyd–Max quantizer adapted to the PDF of w(t).
Then, from (27) we have that Q̄t [y] = Q0


y − x(t, θ̂t−1)


+

x(t, θ̂t−1), and Theorem 10 holds with

σ̄ 2(t) = E

(ȳ(t, θ⋆) − x(t, θ⋆))

2
= E


Q̄t [x(t, θ⋆) + w(t)] − x(t, θ⋆)

2
= E


Q0


w(t) − x̃(t, θ̂t−1)


+ x̃(t, θ̂t−1)

2
= E


Q̌x̃(t,θ̂t−1)

[w(t)]
2

,

where x̃(t, θ̂t−1) = x(t, θ̂t−1) − x(t, θ⋆) and Q̌x [w] = Q0 [w − x]
+ x.

(Step 2). From Theorem 10, we have that θ̂t → θ⋆

with probability one. Hence, from Chung (2001, Theorem 4.1.2)
θ̂t → θ⋆ in probability. Now, our assumption on the roots of
A(q, θ) assures that x̃(t, θ) is a continuous function of θ . Then,

from Lehmann (2010, Theorem 2.1.4), x̃(t, θ̂t)
in pr.
→ 0, where

in pr.
→

denotes convergence in probability. Now it is easy to check that
x → E


Q̌x [w(t)]

2
is a continuous function of x ∈ R. Hence,

Ew(t)


Q̌x̃(t,θ̂t−1)

[w(t)]
2 in pr.

→ Ew(t)

(Q0 [w(t)])2


(C.3)
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(notice that the left-hand side of (C.3) is a function of the random
variable x̃(t, θ̂t−1), which is independent of w(t)). Then,

σ̄ 2(t) = Eθ̂t−1


Ew(t)


Q̌x̃(t,θ̂t−1)

[w(t)]
2

→ Ew(t)

(Q0 [w(t)])2


= σ̄ 2. (C.4)

Hence, Φµ =
σ̄ 2

σ 2 Φ = µΦ, and the result follows. �
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