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Abstract—The paper concentrates on the fundamental coordi-
nation problem that requires a network of agents to achieve a
specific but arbitrary formation shape. A new technique based on
complex Laplacian is introduced to address the problems of which
formation shapes specified by inter-agent relative positions can be
formed and how they can be achieved with distributed control
ensuring global stability. Concerning the first question, we show
that all similar formations subject to only shape constraints are
those that lie in the null space of a complex Laplacian satisfying
certain rank condition and that a formation shape can be realized
almost surely if and only if the graph modeling the inter-agent
specification of the formation shape is 2-rooted. Concerning the
second question, a distributed and linear control law is developed
based on the complex Laplacian specifying the target formation
shape, and provable existence conditions of stabilizing gains to as-
sign the eigenvalues of the closed-loop system at desired locations
are given. Moreover, we show how the formation shape control law
is extended to achieve a rigid formation if a subset of knowledgable
agents knowing the desired formation size scales the formation
while the rest agents do not need to re-design and change their
control laws.

Index Terms—Distributed control, formation, graph Laplacian,
multi-agent systems, stability.

I. INTRODUCTION

IN recent years, there has been a tremendous surge of interest
among researchers from various disciplines of engineering

and science in a variety of problems on networked multi-
agent systems. Modeling the interaction topology of distributed
agents as a graph, a main stream of research ([3], [23], [28],
[31], [35]) concentrates on understanding and designing the
mechanisms from the structure point of view on how collective
behaviors emerge from local interaction in absence of high-
level centralized supervision and global information exchange.
An interesting example and area of ongoing research is the
control of teams of autonomous mobile robots, unmanned aerial
vehicles (UAVs), and autonomous underwater vehicles (AUVs),

Manuscript received July 30, 2012; revised April 1, 2013, April 3, 2013, and
October 7, 2013; accepted February 20, 2014. Date of publication February
27, 2014; date of current version June 19, 2014. This work was supported
by the National Natural Science Foundation of China under Grant 61273113.
Recommended by Associate Editor J. Cortes.

Z. Lin and M. Fu are with the State Key Laboratory of Industrial Con-
trol Technology and College of Electrical Engineering, Zhejiang University,
Hangzhou 310027 P. R. China, and the School of Electrical Engineering and
Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
(e-mail: linz@zju.edu.cn).

L. Wang and Z. Han are with the State Key Laboratory of Industrial Con-
trol Technology and College of Electrical Engineering, Zhejiang University,
Hangzhou 31002,7 P. R. China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2014.2309031

so that they work cooperatively to accomplish a common goal
without centralized control and a global coordinate system.
As teams of agents working together in formation can be
found in various applications such as satellite formation flying,
source seeking and exploration, ocean data retrieval, and map
construction, much attention has been given to the control
of formations. Studies concerning this subject focus primarily
on the formation architecture as well as the stability of the
formation systems. The former mainly concentrates on defining
a formation using graph-theoretic rigidity [4], [16], [17], [22],
[33], [40], while the latter concerns stabilization to a formation
[7], [8], [10], [24], [32], [38], [39] and control of formation
shape in moving [3], [5], [12]–[14], [20].

With regard to rigid formations, there have been several
types of control strategies, e.g., affine feedback control laws
[1], [2], [10], [18], [25], [29], [34], nonlinear gradient control
laws [8], [13], [20], [24], [38], and very recently, angle-based
control algorithms [6], [21], [30]. The goal is to achieve a
formation with a determined size, which has only freedoms of
translations and rotations. On the other hand, [9] studies the
formation control problem with the objective of steering a team
of agents into a formation of variable size. By allowing the size
of the formation to change, the group can dynamically adapt to
changes in the environment such as unforseen obstacles, adapt
to changes in group objectives, or respond to threats.

In this paper, we concentrate on the fundamental coordina-
tion problem that requires the agents to achieve a specific but
arbitrary formation shape. By formation shape, we are referring
to the geometrical information that remains when location,
scale, and rotational effects are removed. Thus, formation shape
is invariant under the Euclidean similarity transformations of
translation, rotation and scaling. The formation shape control
problem is of its own interest if the agents do not have a
notion of the world coordinate system’s origin as well as unit
of length or if the goal is to just form a pattern such that the
agents can then agree on their respective roles in a subsequent,
coordinated action. Moreover, formation shape control also
serves as a basis for rigid formation control. As we show in
this paper, when formation shape control is possible, a task of
rigid formation control can be accomplished with a subset of
knowledgable agents knowing the desired formation size, for
which the advantage is that the rest agents do not need to re-
design and change their control laws in order to achieve the
desired formation scaled by the desired size.

In this context, the main research questions are which for-
mation shape specified by inter-agent relative positions can be
formed and how they can be achieved with distributed control
ensuring global stability. Concerning the first question, we
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introduce the notion of similar formation and show that all
similar formations subject to only shape constraints are those
that lie in the null space of a complex Laplacian satisfying
certain rank condition. Moreover, we prove that an equivalent
graphical condition such that a formation shape can be realized
is that the graph modeling the inter-agent specification of the
formation shape is 2-rooted. This is a kind of new connectivity
in graph theory, meaning that there exists a subset of two nodes
from which every other node is 2-reachable. Concerning the
second question, we develop a distributed and linear control
law that is based on the complex Laplacian specifying the
target formation shape and can be locally implemented by
onboard sensing using relative position measurements. It is
shown that for almost all complex Laplacians specifying the
target shape, stabilizing gains exist to ensure not only globally
asymptotic stability but also other performance specifications
such as robustness and fast convergence speed by assigning the
eigenvalues of the closed-loop system at desired locations. A
procedure is also provided on how to find stabilizing gains.
In addition, we show how the formation shape control law is
extended to achieve a rigid formation with the formation size
controlled by at least a pair of agents when they know the
desired formation size.

The contributions of the paper are three-fold. First, the paper
presents a systematic approach based on complex Laplacian
for the formation shape control problem that is significant in
the field. The work is an extension of our conference paper
[37], including new developments on systematic construction
of complex Laplacian for a given target formation shape, on
finding stabilizing gains arbitrarily assigning the eigenvalues
of the closed-loop system, and on how a rigid formation can
be accomplished by controlling a subset of agents while the
remaining agents still implement the same formation shape
control law. Second, it provides a new way for rigid formation
control by imposing one edge length constraints. Compared
with globally rigid formation specified by interagent distances
and nonlinear gradient control laws, the approach requires
much less relative position measurements. Also, the approach
makes possible that a large number of agents achieve a rigid
formation almost globally by combining the nonlinear gradient
control laws for a small number of agents to attain the edge
length constraints, which are well studied with ensured almost
global stability properties ([7], [8], [15], [20], [38]), and the
simple linear formation shape control laws for the remaining
agents. The approach has an advantage that a group of agents
can easily change their formation size without a re-design of the
control laws for all the agents. This property is more desirable
in situations where the environment change is only observed
by a minority of agents in the group. Most importantly, due
to the use of linear control laws by most agents, it brings the
hope by extending the approach to solve those challenging
formation control problems in the setup of directed (time-
varying) topology and in higher dimensional spaces. Third,
the work provides an original analysis for understanding the
relationship between complex graph Laplacians and graphical
connectivity, which researchers from other disciplines may be
interested in. Though the paper mainly focuses on the formation
control problem of networked agents in the plane. The methods,

however, are general, and they have applicability beyond multi-
robot formations, e.g., distributed beamforming of communica-
tion systems and power networks where a pattern in the state is
an objective.

The organization of the paper is as followers. We review the
notations and some knowledge of graph theory in Section II.
In Section III necessary and sufficient (algebraic and graph-
ical) conditions are analyzed for similar formations. Global
stabilization and stability analysis of multi-agent formations are
presented in Section IV. Simulation and experiment results are
given in Section V. Section VI concludes our work and points
out several open problems along the path introduced in the
paper.

II. NOTATION AND GRAPH THEORY

A. Notation

We denote by C and R the set of complex and real num-
bers, respectively. ι =

√
−1 denotes the imaginary unit. For a

complex number p ∈ C, |p| represents its modulus. For a set E ,
|E| represents the cardinality. 1n represents the n-dimensional
vector of ones and In denotes the identity matrix of order n. A
block diagonal matrix, which has main diagonal block matrices
A1, . . . , An and off-diagonal blocks zero matrices, is denoted
as bd[A1, A2, . . . , An].

B. Graph Theory

An undirected graph G = (V, E) consists of a non-empty
node set V = {1, 2, . . . , n} and an edge set E ⊆ V × V where
an edge of G is a pair of un-ordered nodes. Undirected graphs
can be considered as a special class of directed graphs with the
edges consisting of pairs of ordered nodes, called bidirectional
graph, for which each edge is converted into two directed
edges, (i, j) and (j, i). In what follows we use the notion
of bidirectional graph (or simply a graph for short) because
the graph model we study is topologically equivalent to an
undirected graph but different weights are considered on the
edges of different order for the same pair of nodes. However,
the graphical representation of undirected graphs is still used
throughout the paper (i.e., we draw a line rather than two lines
with arrows in the graph as the edges). A walk in a graph G is
an alternating sequence p: v1e1v2e2 · · · ek−1vk of nodes vi and
edges ei such that ei = (vi, vi+1) for every i = 1, 2, . . . , k − 1.
We say that p is a walk from v1 to vk. If the nodes of a walk
p are distinct, p ia a path. v1 and vk are called terminal nodes
and other nodes are called internal nodes. A path is called a
Hamiltonian path if it visits every node in the graph exactly
once. Throughout the paper, we let Ni denote the neighbor set
of node i, i.e., Ni = {j : (j, i) ∈ E}. In the paper, we assume
that a bidirectional graph does not have self-loops, which means
i �∈ Ni for any node i.

Next, we introduce two concepts.
Definition 2.1: For a bidirectional graph G, a node v is said

to be 2-reachable from a non-singleton set U of nodes if there
exists a path from a node in U to v after removing any one node
except node v.

Definition 2.2: A bidirectional graph G is said to be 2-rooted
if there exists a subset of two nodes, from which every other



LIN et al.: DISTRIBUTED FORMATION CONTROL OF MULTI-AGENT SYSTEMS USING COMPLEX LAPLACIAN 1767

Fig. 1. Graphs that are 2-rooted and not 2-rooted.

node is 2-reachable. These two nodes are called roots in the
graph.

Consider for example the graphs in Fig. 1. In Fig. 1(a), let
U = {1, 2} and it can be checked that node 3 is 2-reachable
from U as after removing any one other node we are still able
to find a path from a node in U to node 3. Similarly, it is known
that node 4 and 5 are also 2-reachable from U in Fig. 1(a). Thus
the graph in Fig. 1(a) is 2-rooted with the two roots being nodes
1 and 2. In Fig. 1(b), the graph is 2-rooted as well and any two
nodes can be considered as roots in the graph. In Fig. 1(c), again
let U = {1, 2} and it is known that node 3 is not 2-reachable
from the set U as if we remove node 4, there is no path any
more from any node in U to node 3. Furthermore, it can be
verified that no matter how we select a subset of two nodes,
there always exists another node that is not 2-reachable from
the selected subset of nodes. Therefore, the graph in Fig. 1(c) is
not 2-rooted.

Finally, we introduce a complex Laplacian for a bidirectional
graph. The complex-valued Laplacian L of a bidirectional
graph G is defined as follows: The ijth entry

L(i, j) =

⎧⎪⎨
⎪⎩

−wij if i �= j and j ∈ Ni

0 if i �= j and j �∈ Ni∑
j∈Ni

wij if i = j

where wij ∈ C. Note that the graph is a bidirectional graph, so
the pattern of zero and nonzero entries of L is symmetric, but L
may not be symmetric due to possibly different weights on the
edges of the same pair of nodes but with different order.

The definition of complex Laplacian is nothing new from
real Laplacian except that the nonzero entries can be complex
numbers. Consequently, it is also true that a complex Laplacian
has at least one eigenvalue at the origin whose associated
eigenvector is 1n (namely, L1n = 0).

A permutation matrix is a square binary matrix that has
exactly one entry 1 in each row and each column and 0’s
elsewhere. Renumbering the nodes of a graph is equivalent to
apply a permutation transformation to the Laplacian. That is,
L′ = PLPT where L and L′ are the Laplacian before and after
renumbering the nodes, and P is the corresponding permutation
matrix.

III. NECESSARY AND SUFFICIENT CONDITIONS

FOR SIMILAR FORMATIONS

A. Overview of Rigid Frameworks With Distance Specifications

To introduce the notion of similar formation we will embed a
graph in the complex plane C as a framework. Let G = (V, E)
be a bidirectional graph with n nodes. We embed G into C by

Fig. 2. (a) Not rigid. (b) Rigid but not globally rigid. (c) Globally rigid.

assigning to each node i a location (complex number) ξi ∈ C

in a reference frame Σ. Define the n-dimensional composite
complex vector ξ = [ξ1, ξ2, . . . , ξn]

T ∈ C
n a formation config-

uration in the reference frame Σ. A framework is a pair (G, ξ).
Throughout the paper, we assume that ξi �= ξj if i �= j, meaning
that no two nodes are overlapping each other.

In the following, we review a little bit about rigidity of
graphs using the distance specifications. The materials below
are taken from [24]. Associated with the framework (G, ξ),
define a function g : Cn → R

|E| by

g(ξ) :=
[
· · · |ξi − ξj |2 · · ·

]T
,

called a rigid function. The kth component of g(ξ), |ξi − ξj |2,
corresponds to the edge ek ∈ E , where nodes i and j are
connected by ek, and specifies a desired edge length dk. Let
d = [ · · · dk · · · ]T be the composite vector describing the
distance specifications on the edges in G. Then the notions of
rigidity and global rigidity can be stated as follows.

Definition 3.1: A framework (G, ξ) specified by g(ξ) = d is
rigid if there exists a neighborhood B ⊂ C

n of ξ such that

g−1(d) ∩ B =
{
c11n + eιθξ : c1 ∈ C and θ ∈ [0, 2π)

}
.

Definition 3.2: A framework (G, ξ) specified by g(ξ) = d is
globally rigid if

g−1(d) =
{
c11n + eιθξ : c1 ∈ C and θ ∈ [0, 2π)

}
.

The level set g−1(d) consists of all possible points that have the
same edge lengths as the framework (G, ξ). The set {c11n +
eιθξ : c1 ∈ C and θ ∈ [0, 2π)} consists of points related by
rotations θ and translations c1, i.e., rigid body motions, of
the framework (G, ξ). Therefore, a framework is rigid if the
level set g−1(d) in a neighborhood of ξ contains only points
corresponding to rotations and translations of the formation
configuration ξ. A framework is globally rigid if the level set
g−1(d) in C

n contains only points corresponding to rotations
and translations of the formation configuration ξ.

For example, consider the framework in Fig. 2(a). It is
possible to translate only nodes 1 and 2, while maintaining
the four edge lengths, to a formation that is not attained by
rigid body motions, so the framework specified by g(ξ) = d
is not rigid. If we add one more edge to obtain a framework
as in Fig. 2(b), the only motion to maintain the five edge
lengths in the neighborhood is a rigid body motion (rotations
and translations). As a result, the framework is rigid. But node 1
can have a flip along the edge connecting 2 and 4, while the
edge lengths are preserved, so it is not globally rigid. Fig. 2(c)
shows a globally rigid framework.
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Fig. 3. Illustration of a linear constraint for a framework.

B. Linear Constraints and Similar Formations

From the preceding subsection, it is clear that in order to
make a framework rigid (or globally rigid), each node in the
graph has to have at least two neighbors as otherwise if a node
has only one neighbor, this node can swing around its neighbor.
By observing this fact, we will then introduce a new linear
constraint for a framework rather than the distance constraints
on the edges of the graph. For each node i in the graph, since it
has at least two neighbors, we can define a linear constraint for
the framework as follows:

∑
j∈Ni

wij(ξj − ξi) = 0

for appropriate complex weights wij’s defined on the edges
linking to node i. The complex weights make the relative state
vectors rotated and scaled so that the summation becomes 0 for
a given framework, and thus provide a linear constraint. Take
Fig. 3 as an example. Node 3 has two neighbors (namely, 2
and 4). So the complex weights w32 and w34 rotate and scale
the relative states ξ2 − ξ3 and ξ4 − ξ3 respectively so that the
summation is zero as shown in Fig. 3. We should point out that
the choice of such complex weights is not unique.

Taking the linear constraint on every node, we derive a
composite constraint for the framework as follows:

Lξ = 0

where L is the complex Laplacian corresponding to the bidirec-
tional graph G whose nonzero off-diagonal entry is −wij , the
negative weight on edge (j, i). Now we are ready to introduce
the notion of similar formation.

Definition 3.3: A framework (G, ξ) specified by Lξ = 0 is
similar if

ker(L) = {c11n + c2ξ : c1, c2 ∈ C}.

Remark 3.1: Note that a complex number c2 can be written
in the polar coordinate form (namely, c2 = ρeιθ). So the solu-
tions to the linear constraint Lξ = 0 consist of points related
by translations c1, rotations θ, and scaling ρ (four degrees of
freedom). That is, the formations subject to the linear constraint
Lξ = 0 are scalable from the formation configuration ξ in
addition to rigid body motions (translations and rotations).
Therefore, one additional distance constraint on an edge will
make the framework become globally rigid.

Fig. 4. A path graph of n nodes with its terminal nodes labeled as 1 and 2.

C. Necessary and Sufficient Conditions

In this subsection we are going to explore the necessary
and sufficient algebraic and graphical conditions for similar
frameworks.

Theorem 3.1: A framework (G, ξ) specified by Lξ = 0 is
similar if and only if rank(L) = n− 2.

Proof: (Sufficiency) L has a zero eigenvalue with an
associated eigenvector ξ because Lξ = 0. Furthermore, since
L is a Laplacian matrix, so L1n = 0, meaning that 1n is
another eigenvector associated with the zero eigenvalue. The
two eigenvectors ξ and 1n are linearly independent because
ξi �= ξj . Moreover, by the assumption rank(L) = n− 2, we
know that L has only two zero eigenvalues. Thus the null space
of L is {c11n + c2ξ : c1, c2 ∈ C} and so the framework (G, ξ)
specified by Lξ = 0 is similar.

(Necessity) Suppose on the contrary that rank(L) �= n− 2.
Then rank(L) must be less than n− 2 since we already have
Lξ = 0 and L1n = 0. Thus, it follows that the null space of L
is of 3-dimension at least and ker(L) �= {c11n + c2ξ : c1, c2 ∈
C}, which contradicts to the condition that the framework
(G, ξ) specified by Lξ = 0 is similar. �

Theorem 3.1 presents an algebraic condition requiring
to check whether rank(L) = n− 2. We give a graphical
condition.

Theorem 3.2: A framework (G, ξ) specified by Lξ = 0 (for
almost all L satisfying Lξ = 0) is similar if and only if G is
2-rooted.

The proof requires a lemma.
Lemma 3.1: Consider a framework (G, ξ) where G is a path

graph of n nodes with its terminal nodes labeled as 1 and
2 (Fig. 4). If ξi �= ξj for i �= j, then there exists a complex
Laplacian

L =

[
A2×2 B2×(n−2)

C(n−2)×2 D(n−2)×(n−2)

]

such that Lξ = 0 and D is of rank n− 2.
Proof: If necessary, relabel the internal nodes of the path

graph G in an order from 3 to n as shown in Fig. 4. Under
this labelling scheme, it is then clear that D is tri-diagonal.
Denote the first row of D by dT1 and the remaining rows of
D by D̄. Moreover, note that node 1 has only one neighbor
(namely, node 3), so in the first column of C only the (1,1)-
entry is nonzero by the definition of L. Denote the (1,1)-entry
of C by c1. Then we can write C as

C =

[
c1 0
0 c̄2

]

where c̄2 ∈ C
(n−3). From the definition of Laplacian, it follows

that

c1 = −dT1 1, c̄2 = −D̄1. (1)

Suppose for an L satisfying Lξ = 0 that D is not of rank n−
2. Moreover, notice that the rows of D̄ are linearly independent.
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Fig. 5. Example of the relabeling procedure, where U0 = {1, 2}, U1 =
{3, 4, 5}, and so on.

So there must exist an (n− 3)-dimensional vector λ such that
dT1 = λT D̄. Moreover, using (1), we obtain that c1 = λT c̄2 �=
0. From Lξ = 0, thus we have

c1ξ1 + dT1 ξ
′ = 0 (2)

and

c̄2ξ2 + D̄ξ′ = 0 (3)

where ξ′ is the sub-vector formed by the last n− 2 entries of ξ.
Pre-multiplying λT to (3) and using c1 = λT c̄2 and dT1 = λT D̄
result in

c1ξ2 + dT1 ξ
′ = 0. (4)

Comparing (4) and (2) we obtain that ξ1 = ξ2, a contradiction.
Therefore, D is of rank n− 2. �

Proof of Theorem 3.2: (Sufficiency) If G is 2-rooted, then
from Definition 2.2, there is a subset of two nodes, from which
every other node is 2-reachable. Without loss of generality,
denote the subset by U0 and label the two nodes in U0 by 1
and 2. Select any node i not in U0 and then we can find two
disjoint paths (no common nodes in these two paths except i)
from 1 to i and from 2 to i since node i is 2-reachable from
U0. Denote the set of nodes in these two paths excluding the
nodes in U0 by U1 and denote n1 the total number of nodes in
U1. Relabel the nodes in U1 from 3 to n1 + 2. The next step
is then to select another node, say j, not in U0 ∪ U1. Also,
because node j is 2-reachable from U0, there must be two
disjoint paths from two different nodes in U0 ∪ U1 to node j,
for which only the two terminal nodes are in U0 ∪ U1. Denote
n2 the total number of nodes in these two paths excluding the
two terminal nodes in U0 ∪ U1 and relabel these nodes from
n1 + 3 to n1 + n2 + 2. Repeat the procedure until all the nodes
are included. An illustration is presented in Fig. 5. According
to the procedure, it is clear that

∑
i

ni + 2 = n.

Take the graph G′ with only edges included in the paths in
the procedure. It is a subgraph of G with the same node set.
Notice that if a node i in Um1

is also a terminal node of some
paths composed of nodes in Um2

for some m2 > m1, this node
has more than two neighbors as it already has two neighbors
in ∪k=0,...,m1

Uk. So we can select 0 for the complex weight

wij where i ∈ Um1
and j ∈ Um2

with m2 > m1. Thus, the
Laplacian L′ is of the following form:

L′ =

⎡
⎢⎣
L0 ∗ ∗ ∗
∗ L1 0 0
∗ ∗ L2 0
· · · · · · · · · · · ·

⎤
⎥⎦

where Li is the corresponding block to the the subgraph in-
duced by Ui in G′. By our construction, we know that the
subset Ui of nodes together with its two terminal nodes form
a path graph. Thus, by applying Lemma 3.1 it follows that
rank(Li) = ni. Considering the particular structure of L′, we
know that

rank(L′) ≥
∑

i=1,...,

rank(Li) =
∑

i=1,...,

ni = n− 2.

Notice that L′ can be considered as a Laplacian of the graph
G for a special choice of weights with some being 0. Thus,
by using the fact that either a polynomial is zero or it is not
zero almost everywhere, it follows that for almost all complex
weights satisfying Lξ = 0, there exists a non-zero principal
minor of (n− 2)th order. Therefore, rank(L) ≥ n− 2. On the
other hand, since ξ and 1n are two independent eigenvectors
of L corresponding to the zero eigenvalue, we have rank(L) =
n− 2. As a result of Theorem 3.1, the framework (G, ξ) speci-
fied by Lξ = 0 (for almost all L satisfying Lξ = 0) is similar.

(Necessity) We prove it in a contrapositive form. Suppose
that the graph G is not 2-rooted. As a result, we can not find
two nodes to be roots from which all the nodes are 2-reachable.
Since Lξ = 0 and L1 = 0, there must be two rows of L, say lq
and lp, which can be transformed to zero vectors by elementary
row operations. Choose the two nodes p and q corresponding to
the two rows as roots and after removing a node, some nodes
are not reachable from the subset of roots. Without loss of
generality, suppose after removing a node k there exist a subset
W consisting of k − 1 nodes which are not reachable from any
root and a set W̄ consisting of n− k nodes which are reachable
from one of the roots. Relabel the nodes in W as 1, . . . , k − 1
and relabel the nodes in W̄ as k + 1, . . . , n. Then it is certain
that the nodes in W are not reachable from any node in W̄ .
Equivalently, L(i, j) = 0 for i ∈ W and j ∈ W̄ . Thus L is of
the following form: [

Lw cw 0
∗ ∗ ∗

]

where Lw ∈ C
(k−1)×(k−1) and cw ∈ C

k−1. Denote the forma-
tion configuration ξ after relabelling by [ξTa , ξ

T
b ]

T
where ξa ∈

C
k and ξb ∈ C

(n−k). According to the definition of L, then we
have

[Lw cw]1k = 0 and [Lw cw]ξa = 0.

As 1k and ξa are linearly independent by assumption, then
rank([Lw cw]) ≤ k − 2. That is, there exists a row which can
be turned into the zero vector under elementary row operations.
Therefore, rank(L) ≤ n− 3, or equivalently by Theorem 3.1,
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Fig. 6. If a graph G is not 2-rooted then the framework (G, ξ) specified by the
distance constraint g(ξ) = d is not rigid.

Fig. 7. Frameworks (G, ξ) specified by the distance constraint g(ξ) = d are
not rigid, but they are similar when specified by the linear constraint Lξ = 0.

it is not true that the framework (G, ξ) specified by Lξ = 0 is
similar. �

Theorem 3.2 shows that 2-rooted connectivity is a necessary
and sufficient condition for a framework (G, ξ) specified by the
linear constraint Lξ = 0 to be similar for almost all complex
Laplacian L(G).

Remark 3.2: It is worth to point out that a graph G (of
n ≥ 3 nodes) for a rigid framework (G, ξ) using the distance
constraint g(ξ) = d must also be 2-rooted. This can be seen
by the following fact. If G is not 2-rooted, then for any subset
of two nodes, there always exists another node that is not 2-
reachable from the subset. That is, after removing a node, the
graph can be divided into at least two subgraphs that are not
connected to each other. An example is given in Fig. 6, for
which after removing node 3, it results in three subgraphs
that are not connected. This means, in addition to rigid body
motions, another motion exists while preserving the distance
constraint g(ξ) = d [see for example Fig. 6(a) and 6(b)].

However, the reverse is not true. In other words, to make a
framework (G, ξ) specified by the distance constraint g(ξ) =
d rigid, the graph G requires more links than just 2-rooted
connectivity. From the well-known result by Laman in 1970
[26], the minimal requirement for a framework specified by
g(ξ) = d to be rigid is that the graph should have at least 2n− 3
edges where n is the number of nodes. From our analysis we
can know that the minimally 2-rooted graph requires only n− 1
edges, which corresponds to the path graph. So it requires much
less links when specifying a similar framework in terms of the
linear constraint Lξ = 0.

In Fig. 7, both (a) and (b) are not rigid if the framework is
specified by the distance constraint g(ξ) = d, while they are
similar if the framework is specified by the linear constraint
Lξ = 0. Fig. 7(b) is a minimally 2-rooted graph that has only
n− 1 edges.

D. A Systematic Approach for the Construction of L

In the following, we present a systematic approach for the
construction of L from the individual viewpoint. That is, for a

Fig. 8. Example of weight selection for a node having two neighbors.

Fig. 9. Example of weight selection for a node having more than two
neighbors.

given 2-rooted graph G and a formation configuration ξ, each
agent i finds the weights wij’s for j ∈ Ni such that Lξ = 0.

As we discussed above, every node of a 2-rooted graph has
at least two neighbors. In the following, we consider two cases.

First, consider the case that node i has exactly two neighbors.
Suppose without loss of generality, its two neighbors are j
and k. Then the weights wij and wik can be parameterized as
follows:

[wij wik ] = p1i [ ξk − ξi ξi − ξj ]

where p1i is a nonzero complex number and can be chosen
randomly. That is, [wij wik] is in the linear span of [ξk − ξi ξi −
ξj ] that solely depends on the formation configuration ξ. An
example is given in Fig. 8.

Second, consider the case that node i has more than two
neighbors. Say without loss of generality that it has totally
m (m > 2) neighbors, labeled by i1, . . . , im. Select any two
neighbors, denoted by ij and ik, from the m neighbors, and
define an m-dimensional vector ζh with the ij th entry being
ξik − ξi, the ikth entry being ξi − ξij , and the others being
zero. Note that there are totally C2

m (the binomial coefficient)
selections of two neighbors out of m neighbors. Thus, the
weights wii1 , . . . , wiim can be parameterized as follows:

[wii1 · · · wiim ] =

C2
m∑

h=1

phi ζh (5)

where phi , h = 1, . . . , C2
m, is a nonzero complex number and

can be chosen randomly. An illustrative example is given
Fig. 9(a) for which node 1 has three neighbors. So it has
three choices of selecting any two neighbors as shown in
Fig. 9(b)–(d). Then the weight vector is a linear combination
according to (5).
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IV. FORMATION CONTROL OF MULTI-AGENT SYSTEMS

A. Stabilization Problem of Multi-Agent Formations

We consider a group of n agents (for example, mobile robots)
in the plane. The positions of n agents are denoted by complex
numbers z1, . . . , zn ∈ C. Each agent i is assumed to have an
onboard sensor allowing it to measure the relative positions
of some of the other agents, that is, zj − zi when agent j is
a neighbor of agent i. We consider that each agent i has a point
kinematic model given by the single integrator

żi = ui (6)

where ui ∈ C represents the velocity control input. Define the
aggregate state z = [z1 · · · zn]T , as a complex vector in C

n.
The target formation is described by a framework (G, ξ)

where G is a bidirectional graph whose nodes represent the
agents, and ξ ∈ C

n is a formation configuration defined in a
reference frame. We refer to G as the formation graph. The
agents achieve the formation shape when z is in {c11n + c2ξ :
c1, c2 ∈ C}, i.e., it reaches a formation that is a translated,
rotated, and scaled version of ξ.

Associated with the formation shape control problem is also
a sensor graph that describes the sensor data seen by each agent
in the closed-loop system. We assume here the sensor graph is
the same as the formation graph. That is, it is also a bidirectional
graph with each node i representing an agent, and each edge
(j, i) representing a relative state measurement (i.e., (zj − zi)
available to agent i). For this, no global knowledge such as
a common reference frame and a common unit of length is
needed, and no communication is required.

The problem is then given as follows. Consider the system
(6) and a target formation described by a framework (G, ξ)
specified by Lξ = 0, which is similar. Design a distributed
control law ui based on the sensed relative state information
such that (i) every point z∗ in {c11n + c2ξ : c1, c2 ∈ C} is a
stable equilibrium of the closed-loop system and (ii) for every
initial condition z(0), the closed-loop trajectory approaches to a
unique equilibrium in {c11n + c2ξ : c1, c2 ∈ C}. The problem
is referred as a global stabilization problem of multi-agent
formations.

B. A Local Control Law for Shape Control

In this subsection, we propose a distributed control law to
solve the global stabilization problem of multi-agent forma-
tions. We consider the following control law

ui = ki
∑
j∈Ni

wij(zj − zi), i = 1, . . . , n (7)

where ki ∈ C is a control parameter to be designed, and wij is
the complex weight on the corresponding edge in the formation
graph that defines L such that Lξ = 0. The selection of wij is
shown in Section III-D and can be done by agents themselves
in a distributed manner.

The control law (7) can be locally implemented by onboard
sensors without requiring all the agents to have a common
sense of direction and scale unit. However, a common notion of

Fig. 10. Illustration of the locally implementable control law.

clockwise rotation should be shared by all the agents. Consider
for example that agent i has two neighbors j and k. With the
onboard sensor (e.g., camera) on agent i, it can measure the
relative states zj − zi and zk − zi in its local frame with the
x-axis coincident to the optical axis. Then it rotates the two
vectors in its local frame and takes the sum to get the velocity
control input as shown in Fig. 10. A more detailed discus-
sion on how to locally implement a control law on a point-
mass robot using relative position measurements refers to [27,
pp. 141–143].

Under the distributed control law (7), the overall closed-loop
dynamics of n agents becomes

ż = −KLz (8)

where K = diag{k1, . . . , kn} is an n-by-n diagonal complex
matrix.

It is clear that if ki �= 0 for i = 1, . . . , n and the target
framework (G, ξ) specified by Lξ = 0 is a similar framework,
then the equilibrium set of system (8) is E = {c11n + c2ξ :
c1, c2 ∈ C}. Then the next issue is how to ensure that every
trajectory asymptotically converges to an equilibrium in E.

C. Existence of a Stabilizing Matrix

Note that the closed-loop system (8) is a linear time-invariant
system. So the asymptotic stability can be veryfied by checking
the eigenvalues of KL. Unlike real Laplacian matrices that
always have all eigenvalues in the right complex plane, a
complex Laplacian may have eigenvalues in the left complex
plane. Consider for example the following complex Laplacian:

L =

⎡
⎣−1− ι 2 −1 + ι

1 + ι −2 1− ι
1 + ι −2 1− ι

⎤
⎦ .

In addition to two eigenvalues at the origin, it has an eigenvalue
at −2− 2ι, that lies in the open left complex plane. Therefore,
it is important to design a proper K such that the eigenvalues of
KL lie in the right complex plane. We refer to K as a stabilizing
matrix if it is able to shift the eigenvalues of −KL to the open
left complex plane in addition to two fixed eigenvalues at the
origin.

Theorem 4.1: Given a 2-rooted graph G and a formation con-
figuration ξ, for almost all Laplacians L of G satisfying Lξ = 0,
a stabilizing matrix K exists and can assign the eigenvalues of
−KL at any desired locations in addition to the two fixed zero
eigenvalues.
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The proof requires a result related to the multiplicative
inverse eigenvalue problem by Friedland in 1975.

Theorem 4.2 ([19]): Let A be an n× n complex-valued
matrix. Let σ = {λ1, . . . , λn} be an arbitrary set of n complex
numbers. If all principal minors of A are distinct from zero, then
there exists a diagonal complex valued matrix M , such that the
spectrum of MA is the set σ. Moreover, the number of different
matrices M is at most n!.

Proof of Theorem 4.1: Given a 2-rooted graph G, there are
two nodes called roots, from which every other node is 2-
reachable. If necessary, relabel the two roots by n− 1 and
n, and relabel other nodes accordingly. Let L be a complex
Laplacian of the graph G after relabeling and satisfy Lξ = 0.
Then L has the following form

L =

[
B1 B2

B3 B4

]

in which B1 ∈ C
(n−2)×(n−2), B2 ∈ C

(n−2)×2, B3 ∈ C
2×(n−2)

and B4 ∈ C
2×2.

Next we show that all principal minors of B1 are distinct
from zero for almost all choices of L that is a Laplacian of a
2-rooted graph G and satisfies Lξ = 0.

Since the graph G is 2-rooted, it is clear that each node other
than the roots has at least two neighbors. So by the definition
of Laplacian matrix, we know that the diagonal entries of B1

are nonzero for almost all L’s, which means all the 1st order
principal minors of B1 are distinct from zero. Suppose now
all the principal minors of B1 up to the (m− 1)-th order are
distinct from zero. We will show that all the m-th (m ≤ n− 2)
order principal minors of B1 are distinct from zero as well.
Consider a subset of any m nodes that are not roots and denote
it as W = {i1, . . . , im}. Correspondingly, denote W the m-by-
m matrix formed from the entries of B1 by selecting the rows
and columns with indices in W . We discuss two cases. First,
if the subgraph induced by the node set W has a Hamiltonian
path, then the Hamiltonian path together with two nodes outside
of W forms a path graph. Thus by Lemma 3.1, it follows that
W is of full rank. So the determinant of W is nonzero for a
choice of L. Second, if the subgraph induced by the node set
W does not have a Hamiltonian path, then we can find a subset
of nodes, denoted as W1, belonging to a path S connecting two
nodes outside of W and a subset of remaining nodes, denoted
as W2, that might or might not connect to the path. Note that
every node i in W1 has two neighbors on the path S . So we can
select 0 for the complex weight wij where i ∈ W1 and j ∈ W2,
while satisfying Lξ = 0. Thus, via an appropriate permutation
transformation Q, W for this special choice of weights is of the
following form:

QWQT =

[
W1 0
∗ W2

]
.

By our assumption that all the principal minors of B1 up to the
(m− 1)-th order are distinct from zero (namely, the determi-
nants of both W1 and W2 are nonzero). Thus the determinant
of W is nonzero for this special choice of weights. For both
cases, applying the fact that either a polynomial is zero or is

not zero almost everywhere, we can conclude that for almost
all complex weights satisfying Lξ = 0, the determinant of W
is nonzero, or equivalently, any m-th order principal minor of
B1 is distinct from zero.

By induction, we just showed that all principal minors of
B1 are distinct from zero for almost all L satisfying Lξ = 0.
Therefore, by Theorem 4.2, there exists a diagonal complex
matrix M1 arbitrarily assigning the eigenvalues of M1B1,
which implies, a stabilizing matrix K exists and the eigenvalues
of KL can be assigned at any locations in addition to the two
fixed zero eigenvalues. �

Remark 4.1: With the help of Theorem 4.1, we can know that
by randomly choosing the parameters phi to construct L as dis-
cussed in Section III-D, the obtained L has its principal minors
up to the (n− 2)th order distinct from zero in probability one.
Thus, we can select ki so that the eigenvalues of the closed-loop
system (8) lie at any desired locations. For only the purpose of
asymptotic stability, it is sufficient to have the eigenvalues of
the closed-loop system at the open left half complex plane. For
some additional performance requirements such as robustness,
it may be desirable to have the eigenvalues of the closed-loop
system far away from the imaginary axis.

Remark 4.2: In the formation control literature [36], [39],
the design of a stabilizing matrix is also studied. It is proven that
choosing stabilizing gains is possible if a certain sub-matrix of
the rigidity matrix has all leading principal minors nonzero and
is shown that this condition holds for all minimally persistent
leader-remote-follower and co-leader formations with generic
agent positions. In Theorem 4.1 we show that not only leading
principal minors but also all principal minors are nonzero
for generic Laplacian L satisfying Lξ = 0, which ensures the
existence of a stabilizing matrix that can assign the eigenvalues
not only in the left complex plane but also at any desired
locations in the left complex plane in addition to the fixed zero
eigenvalues.

Theorem 4.3: Given a 2-rooted graph G and a formation
configuration ξ, if K assigns the eigenvalues of KL in the
open right complex plane in addition to the two fixed zero
eigenvalues, then a network of agents under the distributed con-
trol law (7) globally asymptotically converges to a formation
c11n + c2ξ with c1, c2 ∈ C.

Proof: If K assigns the eigenvalues of KL in the open
right complex plane in addition to the two fixed zero eigenval-
ues with associated linearly independent eigenvectors 1n and
ξ, then there is a similarity transformation V with its first two
columns being 1n and ξ such that

−V −1KLV =

⎡
⎣ 0 0 0
0 0 0
0 0 Λ

⎤
⎦

where Λ ∈ C
(n−2)×(n−2) has all its eigenvalues in the open left

complex plane. Thus, by the coordinate transformation⎡
⎣ y1
y2
ȳ

⎤
⎦ = V −1z (9)
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the system (8) is transformed to⎡
⎣ ẏ1
ẏ2
˙̄y

⎤
⎦ =

⎡
⎣ 0 0 0
0 0 0
0 0 Λ

⎤
⎦
⎡
⎣ y1
y2
ȳ

⎤
⎦ . (10)

Then from (10), it follows that y1(t) = y1(0), y2(t) = y2(0),
and ȳ(t) globally asymptotically converges to 0 as t → ∞.
Therefore, by the coordinate transformation (9), it is ob-
tained that z(t) globally asymptotically converges to y1(0)1n +
y2(0)ξ, which completes the proof. �

Remark 4.3: Let vT1 and vT2 be the first two rows of V −1

(that is, they are the left eigenvectors of KL associated to the
zero eigenvalues). Then it is clear from (9) that y2(0) �= 0 if
vT2 z(0) �= 0. In other words, for almost all initial conditions
z(0), they are not orthogonal to the vector v2 and convergence
does not occur to a formation where all agents are coincident.

D. Design of Stabilizing Matrix

Theorem 4.1 shows the existence of a stabilizing matrix K
such that the closed-loop trajectory globally asymptomatically
converges to an equilibrium formation. Next we are going to
present an algorithm on how to design a stabilizing matrix
K such that the eigenvalues of the closed-loop system (8) lie
exactly at σ = {λ1, . . . , λn−2, 0, 0}. The desired eigenvalues
λ1, . . . , λn−2 can be chosen according to additional perfor-
mance requirements.

Since L has rank n− 2, it then follows that L can be fac-
torized into L = UV where U ∈ C

n×(n−2) and V ∈ C
(n−2)×n

satisfy rank(U) = rank(V ) = n− 2. Notice that

det(sI +KL) = det(sI +KUV ) = s2 det(sI + V KU).

The problem of designing ki (i = 1, . . . , n) such that the spec-
trum of −KL is the set σ is equivalent to the problem of finding
ki (i = 1, . . . , n) such that V KU has eigenvalues at

{−λ1, . . . ,−λn−2}.

Theorem 4.1 ensures the existence of K, but in a generic sense
there are infinite number of solutions for the above problem.
So we could arbitrarily assign two values to two ki’s. Without
loss of generality, select kn−1 and kn and set kn−1 = kn = 1.
Denote k̄ = (k1, k2, . . . , kn−2) and denote A(k̄) = V KU with
kn−1 = kn = 1. Generically, there are (n− 2)! solutions of k̄
to assign the eigenvalues of A(k̄) at

{−λ1, . . . ,−λn−2}.

In the following, we consider a Newton iteration method to
solve k̄. Define

F (k̄) =

⎡
⎢⎣

det
(
A(k̄) + λ1I

)
...

det
(
A(k̄) + λn−2I

)
⎤
⎥⎦ =

⎡
⎢⎣

F1(k̄)
...

Fn−2(k̄)

⎤
⎥⎦ (11)

where det(·) represents the determinant of a matrix. Clearly, k̄
is a solution of the eigenvalue assignment problem if and only
if F (k̄) = 0.

To apply the Newton iteration method, we need to calculate
the derivative of F (k̄) with respect to k̄. Denote

gij =
∂Fi(k̄)

∂kj
, i, j = 1, . . . , n− 2 and G(k̄) = [gij ].

For the function F (k̄) defined in (11), we know from the
Trace Theorem of Dacidenko [11] that

gij =tr

(
adj

(
A(k̄) + λiI

)
·
∂
(
A(k̄) + λiI

)
∂kj

)

=tr
(
adj

(
A(k̄) + λiI

)
· V (:, j) · U(j, :)

)
and if Fi(k̄) �= 0

gij = Fi(k̄) · tr
((

A(k̄) + λiI
)−1 · V (:, j) · U(j, :)

)
where adj(·) and tr(·) mean adjugate and trace respectively,
and V (:, j) and U(j, :) represent the j-th column of V and the
j-th row of U , respectively.

The Newton iteration method then provides us a solution for
a given initial estimate k̄(0)

k̄(m+ 1) = k̄(m)−G
(
(k̄(m)

)−1
F
(
k̄(m)

)
.

For different initial estimate k̄(0), it may reach different solu-
tions for k̄ as the problem has (n− 2)! solutions generically.

E. Extension to Rigid Formation Control

The control law (7) achieves a scalable formation with the lo-
cation, orientation and scale dependent on the initial condition.
However, with at least one pair of agents attaining the desired
distance between them, a rigid formation can also be achieved,
which means that the formation scale can be controlled by a
minority of knowledgeable agents. So it is more convenient in
applications where variation of the formation scale is required
in responding to the change of environments, such as passing
through a narrow area.

Consider any two agents who are roots of a 2-rooted graph
G. Without loss of generality, label them by n− 1 and n, and
suppose that they know the desired distance d̄ between them.
Then the two agents, called leaders, take the following con-
trol law.[

żn−1

żn

]
=

[
α(zn − zn−1)

(
‖zn − zn−1‖2 − d̄2

)
α(zn−1 − zn)

(
‖zn−1 − zn‖2 − d̄2

)] (12)

where α ∈ R
+ is a scalar parameter.

The other agents still take the control law

żi = ki
∑
j∈Ni

wij(zj − zi), i = 1, . . . , n− 2 (13)

with the selection of wij discussed in Section III-D and the
selection of ki discussed in the preceding subsection.

Denote by f(zl) the right-hand side of (12), where zl =
[zn−1, zn]

T represents the aggregate state of the two leaders.
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Fig. 11. Target formation is described by the framework (G, ξ).

Then the overall closed-loop dynamics is given as below

ż = −KLz +

[
0

f(zl)

]
(14)

where L is a complex Laplacian of the following form:

L =

[
Lf Ll

02×(n−2) 02×2

]
.

Then we present a main result of rigid formation with its
scale controlled by two leaders.

Theorem 4.4: Given a 2-rooted graph G with two roots
(namely, n− 1 and n) and a formation configuration ξ, if
K assigns the eigenvalues of KL in the open right complex
plane in addition to the two fixed zero eigenvalues, then for
any initial state satisfying zn−1(0) �= zn(0), the agents under
the dynamics (14) asymptotically achieve a rigid formation
c11n + c2ξ, where c1 ∈ C and c2 = [d̄/|ξn−1 − ξn|]eιφ with
φ ∈ [0, 2π).

Proof: Denote by zf the aggregate state of the agents
1, . . . , n− 2 and denote by Kf the sub-matrix of K by deleting
the rows and columns of indices n− 1 and n. Then the system
(14) can be re-written as{

żf = −KfLfz
f −KfLlz

l,
żl = f(zl).

Note that Lf is nonsingular. We make a coordinate transforma-
tion x = zf + L−1

f Llz
l to the above system and obtain

ẋ = −KfLfx+ L−1
f Llż

l, (15)

żl = f(zl). (16)

Since x → 0 is equivalent to [zf , zl]
T → c11+ c2ξ for some

c1 and c2 in C, and moreover |c2| → (d̄/|ξn−1 − ξn|) when
|zn−1 − zn| approaches d̄, it remains to show that x(t) in (15)
asymptotically converges to 0 and |zn−1 − zn| asymptotically
converges to d̄ under the dynamics (16). By Theorem 1 in [20],

Fig. 12. Eighteen agents converge to a desired formation shape.

it is known that for the dynamic system (16) with any initial
state satisfying zn−1(0) �= zn(0), we have |zn−1 − zn| → d̄,
żn−1 → 0, and żn → 0 exponentially as t → ∞. Also, note
that (15) is a linear system with −KfLf Hurwitz since K
assigns the eigenvalues of KL in the open right complex plane
in addition to the two fixed zero eigenvalues. So the observation
that żl exponential converges to zero implies the solution x(t)
in (15) asymptotically converges to 0. Thus, the conclusion
follows. �

V. SIMULATION AND EXPERIMENT RESULTS

In this section, we present a simulation and an experiment
result based on Rovio mobile robots.

First, we consider an example of 18 agents. The target forma-
tion is described by the framework (G, ξ) in Fig. 11 where the
formation configuration ξ = [−2 + 2ι, 2 + 2ι,−1 + 3ι, 4ι, 1 +
3ι,−2,−1+ι,2ι, 1 + ι, 2,−1− ι,−2ι, 1−ι,−2− 2ι,−1− 3ι,
−4ι, 1− 3ι, 2− 2ι]T . In the graph, nodes 1 and 2 can be
treated as the two roots and all other nodes are 2-reachable
from them. So the graph is 2-rooted. A simulation result under
the distributed control law (7) is presented in Fig. 12 with two
different initial conditions showing the globally asymptotic
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Fig. 13. Eighteen agents converge to a rigid formation with determined scales.
(a) d̄ = 60. (b) d̄ = 120.

stability. For the same graph G, when agents 1 and 2 know the
desired distance between them for the target formation, they
are used to control the formation size by taking the control law
(12). The simulation result is plotted in Fig. 13 with d̄ = 60 in
Fig. 13(a) and d̄ = 120 in Fig. 13(b). As expected, the team
achieves a rigid formation with the desired scales.

Second, we show an experiment result with our proposed
distributed control strategy implemented on six Rovio mobile
robots. Rovio robots are equipped with three Omni-directional
wheels and thus can move freely in the plane like point masses.
Moreover, every Rovio robot includes a true-track beacon,
with which it can localize itself based on the indoor North-
Star Localization System. In the experiment, we use a central
computer to get all the locations of Rovio robots in the plane
in real time, but only utilize the relative position information to
control the movement of each one for the purpose of mimicking
distributed and local implementation of the algorithm. The

Fig. 14. Target formation is described by the framework (G, ξ).

Fig. 15. Snapshot of final formation achieved in the experiment.

Fig. 16. Closed-loop trajectories recorded in the experiment.

moving direction and moving speed are quantized from the
continuous control signal calculated from our proposed control
law. The target formation is described by the framework (G, ξ)
in Fig. 14. A snapshot of the final formation achieved in the
experiment under the distributed control law (7) is given in
Fig. 15, and the experimental trajectories are recorded in Fig. 16
from the indoor North-Star Localization System. It can be seen
from Fig. 15 and 16 that the experimental results also validate
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our proposed control scheme though there exist localization
errors and quantization errors in the experiment.

VI. CONCLUSION AND FUTURE WORK

In the paper, we introduce a novel approach for the study of
multi-agent formations in the plane. Mainly, a linear constraint
is used to describe a similar formation, which relates to the
complex Laplacian of the formation graph. A necessary and
sufficient algebraic and graphical condition is obtained, show-
ing that a framework specified by the linear constraint is similar
if and only if the graph is 2-rooted, a new type of connectivity
requiring much less edges compared with the rigid framework
specified by a distance constraint. According to the new idea
for the representation of a similar formation, a distributed
control law is also provided using relative state measurements
described by a sensor graph which is the same as the formation
graph. It is shown that a linear stabilizer exists almost surely to
ensure the globally asymptotic stability provided that the graph
is 2-rooted. A procedure is developed as well for the design of
control parameters to assign the eigenvalues of the closed-loop
system at any desired locations and to meet other performance
specifications. Besides, we also show that a rigid formation can
be achieved if at least a pair of nodes can apply a control law to
control their distance.

In the paper, we focus on the formation control problem of
networked mobile robots in the plane. The methods, however,
are general, and they have applicability beyond multi-robot
formations, e.g., distributed beamforming of communication
systems and power networks where consensus is not an objec-
tive but achieving a pattern is a goal. The work in the paper
is mainly limited to the setup of bidirectional topology, but
this work serves as a starting point for many problems in this
framework. It can be explored from many directions. For ex-
ample, the topology can be directed, and/or even time-varying,
or stochastic; The dynamics of agents can be more complicated
and more realistic such as double integrators, unicycles, or non-
linear systems; The sensing information allows measurement
errors or even measurement loss; And the formation pattern can
be in 3-dimensional or higher dimensional spaces. Moreover,
it is also desired to develop a distributed approach for the
controller design without knowing global information of the
whole network.
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