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Kalman Filtering with Intermittent Observations: On
the Boundedness of the Expected Error Covariance

Eduardo Rath Rohr, Damián Marelli, and Minyue Fu

Abstract—This paper addresses the stability of a Kalman
filter when measurements are intermittently available due to
constraints in the communication channel between the sensor
and the estimator. We give a necessary condition and a sufficient
condition, with a trivial gap between them, for the boundedness
of the expected value of the estimation error covariance. These
conditions are more general than the existing ones in the sense
that they only require the state matrix of the system to be
diagonalizable and the sequence of packet losses to be a stationary
finite order Markov process. Hence, we extend the class of
systems for which these conditions are known in two directions,
namely, by including degenerate systems, and by considering
network models more general than i.i.d. and Gilbert-Elliott.
We show that these conditions recover known results from the
literature when evaluated for non-degenerate systems under the
assumption of i.i.d. or Gilbert-Elliott packet loss models.

I. INTRODUCTION

Characterizing the behavior of a Kalman filter when mea-
surements are intermittently available has attracted a great
interest in the recent years. This is partly due to the devel-
opment of communications technologies, which today permit
distributed control and monitoring in a broad range of appli-
cations. When measurements sent through a communication
channel are subject to random losses, the estimation accuracy
of a Kalman filter deteriorates. In [1], the authors estab-
lished the mathematical foundations for the basic problem and
pointed out that the covariance of the estimation error does not
reach a steady state. Since then, several authors have studied
different aspects of the problem, using different assumptions
on network models and protocols.

In a Kalman filter with intermittent observations (KFIO),
the error covariance (EC) matrix becomes random. A central
issue in the study of KFIO is the study the stochastic properties
of its EC. One of these properties, which has been recently
studied, is the asymptotic probability distribution of the EC
(APDEC). The APDEC provides a comprehensive description
of the performance of the KFIO, as it allows the system
designer to know the probability that the EC will lie inside
an acceptable range. In [2] the authors provide lower and
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upper bounds on the APDEC under the assumption that the
sensor is capable of sending either the state estimation (instead
of the raw measurements), or a packet containing a group
of measurements having enough information to produce a
bounded EC. This setting was relaxed in [3], where the
authors assumed that a sensor only sends one measurement
per sampling interval. Moreover, the bounds on the APDEC
presented in [3] can be made monotonically tighter at the
expense of increased computations.

Although previous works were concerned with finding
bounds on the APDEC, it was not until [4], [5] that the
existence of a unique and invariant APDEC was shown. In [4]
the authors consider the case where the measurements are
dropped according to a Bernoulli process, while [5] adopts the
Gilbert-Elliott network model. Other properties of the APDEC
are also studied in [6], [7].

Another stochastic property of the EC that has been subject
of study is the asymptotic expected EC (AEEC). There exists
a rich literature dedicated to finding the stability conditions of
the KFIO [1], [5], [8]–[23]. Most authors adopt the stability
criterion used in [1], namely, a KFIO is said to be stable if
its AEEC is finite [1], and unstable otherwise. Other authors,
adopt the concept of peak error covariance, introduced in [8].
More recently, the equivalence between the two notions of
stability has been studied in [5], [9]. The AEEC can in
principle be determined from the knowledge of its APDEC.
To this end, notice that the APDEC can still be evaluated
even if the KFIO is unstable [4]. However, determining the
stability of the KFIO from its APDEC is not the preferred
approach, as it is technically cumbersome and often leads
to separate necessary and sufficient conditions with a non-
trivial gap between them. In general, the study of stability
uses different approaches from those used for studying the
APDEC, and is important for its own sake, as it provides a
hard limit for the design of the components of the system, the
communication channel, and the estimator.

Despite the considerable effort in obtaining conditions for
the stability of the KFIO, a complete answer is not available
yet. Partial answers depend on the structure of the system
under consideration and on the given network model. The
latter can be classified according to the stochastic properties
of the packet dropouts. Two network models dominate the
literature on the topic. The first one considers the dropouts as
a sequence of independent and identically distributed (i.i.d.)
binary random variables. The second one is known as the
Gilbert-Elliott model [24], [25], and models the dropouts using
a first order Markov process. This model has been adopted by
many authors in an attempt to account for some communica-
tion channel phenomena, such as fading and congestion [8]–
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[11]. In many applications, particularly when the network
conditions change slowly in comparison with the sampling
time, the use of a stationary higher order Markov process (also
known as finite state Markov channel (FSMC) [26]) produces
a more accurate description of the packet dropouts. In the
context of KFIO, this network model has been studied in [6],
where the existence of a stationary APDEC was investigated.
Notice that the i.i.d. and the Gilbert-Elliott network models
are particular cases of the FSMC model.

Even when the simplest i.i.d. network model is used,
determining if a KFIO is stable is still an open problem.
In [1], the authors showed that there exists a critical value, such
that the AEEC is bounded if the arrival probability is strictly
greater than this value, and unbounded if the arrival probability
falls below the critical value. They also provided lower and
upper bounds on the critical measurement arrival probability.
The bounds are only tight for systems whose observation
matrix C is invertible. This condition was relaxed in [12] to
only requiring that the part of the matrix C corresponding to
the observable subspace is invertible. The set of systems for
which the necessary conditions for stability are also sufficient
was further extended in [13], where the authors studied the
case where the unstable eigenvalues of A have different
magnitudes.

The introduction of the Gilbert-Elliott network model in the
context of KFIO was done in [8], where sufficient conditions
for a slightly different notion of stability, namely, the peak
covariance stability, was derived. For scalar plants, the au-
thors showed that this sufficient condition is also necessary.
In [10], a new sufficient condition for the stability of the peak
covariance was established. In the particular case where the
observation matrix C has full column rank (FCR), the suffi-
cient condition for stability of the peak covariance matches
the necessary one presented in [14]. In [9], a necessary and
sufficient condition for the stability of the peak covariance
for second order systems was derived, while for higher order
systems, only a necessary condition was presented.

In [11] the authors derive a necessary and sufficient con-
dition for the stability of the KFIO for a class of systems
called non-degenerate. Although this paper presents several
novel ideas, we found a technical problem in the argument
of the proof of the main result. In Section II, we provide an
example that contradicts the claim in [11, Theorem 4].

Some interesting connections between the i.i.d. and the
Gilbert-Elliott channel models are presented in [5]. The author
showed that, under mild conditions, the notions of peak co-
variance stability and the usual AEEC stability are equivalent.
The author also showed that when the Gilbert-Elliott model
is adopted for systems in which the observation matrix C has
FCR, there exists a critical value on the recovery probability
(i.e., the probability to receive a measurement given that
the previous one was lost), for the stability of the AEEC.
Moreover, this critical value matches the critical probability
of the i.i.d. case. For general systems, this connection is not
straightforward and the necessary and sufficient conditions
presented have a non-trivial gap.

In this paper we study the stability conditions of the
KFIO. We extend in two directions the class of systems

for which the conditions for stability are known. Firstly, we
consider that the measurements are dropped according to a
FSMC model. This model is substantially more general than
the i.i.d. and the Gilbert-Elliott models studied so far, and
permits modeling more complex channels with memory and
fading [26]. Secondly, we also consider degenerate systems in
our analysis, making the only requirement on the system to
be that the dynamics matrix A is diagonalizable. Degenerate
systems represent an important class of systems, as it includes,
among others, all systems with scalar measurements whose
matrix A has repeated or complex-pairs eigenvalues.

We derive a necessary condition and a sufficient condition
for the stability of the KFIO that are tight up to a trivial
gap. The main result is cast in its most general form, i.e.,
in terms of the eigenvalues of A and the normalized asymp-
totic probability that the measurement loss pattern belongs
to certain classes (more details below). For non-degenerate
systems, this probability is simply the recovery rate of the
FSMC or the Gilbert-Elliott models and the packet dropping
rate when the i.i.d. channel model is considered. When the
system is degenerate, this asymptotic probability does not have
a straightforward interpretation. Nevertheless, we provide a
method to compute it. Since diagonalizable matrices form a
dense subset within the set of square matrices, we conjecture
that similar conditions also hold for systems that only admit
a Jordan form, but this is yet to be proved.

Necessary and sufficient conditions for the stability of
the KFIO are often derived by analyzing the system as a
whole [1], [8]–[12], [14]–[16], [20]. In contrast, we decompose
the system into a number of subsystems, which we call finite
multiplicative order (FMO) blocks. A key property of this
partition is that we are able to derive a quantity, which is
computed for each block, such that, if it is smaller than one
on each FMO block, then the KFIO is stable, and if it is greater
than one in at least one FMO block, then the KFIO is unstable
(see Theorem 7). This leads straightforwardly to the desired
necessary condition and sufficient condition (having a trivial
gap when some of these quantities equals to one). Thanks to
this property, we can carry out the stability analysis for each
FMO block separately.

The paper is organized as follows. Section II states the
problem and introduce our formal assumptions. The main
result is presented in Section III, as well as a discussion
on how other results from the literature follow from it. In
Section IV, we highlight a byproduct of our analysis, namely,
a necessary condition and a sufficient condition for the mea-
surement arrival patterns leading to a received observability
matrix (ROM) having FCR. The formal proof of our main
result is presented in Section V. We draw our conclusions in
Section VI. For ease of reading, some proofs are included in
the appendix.

We adopt the following notational conventions. The sets
of natural, integer, rational, real and complex numbers are
denoted by N, Z, Q, R and C, respectively. Also denote
N0 = N ∪ {0}. For given T ∈ N, BT denotes the set of
binary sequences of length T . We denote the i-th element of
the sequence S ∈ BT by S [i], i = 1, · · · , T . A set with the
elements a, b and c is denoted by {a, b, c}, while a sequence
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with the same elements by (a, b, c). Also, (0)T denotes a
sequence of T zeros, and for P ∈ BT1 and S ∈ BT2 , (P, S)
denotes sequence concatenation. The length of the sequence
S ∈ BT is denoted by |S| = T . For symmetric matrices X,Y
of same dimensions, we use X > Y (X ≥ Y) to indicate that
X − Y is positive definite (resp. positive semi-definite). We
say that X � Y (X � Y) if all the entries of the matrix
X − Y are positive (resp. non-negative). For a matrix X,
X∗ denotes the transpose conjugate and X′ denotes transpose.
Also, ‖X‖ denotes the operator norm of X (i.e., the largest
singular value), ρ (X) denotes the spectral radius (i.e., the
absolute value of the largest eigenvalue), and Tr (X) denotes
the trace. We use ◦ to denotes the composition of functions
(i.e. f◦g(x) = f(g(x))). Also f (j)(x) denotes the composition
of f(·) j times. We use A for matrices, a for vectors, and A
for sets. We use A to denote the complement of the set A.

II. PROBLEM FORMULATION

Consider the discrete-time linear system{
xt+1 = Axt + wt

yt = Cxt + vt
(1)

where x ∈ Cn is the vector of states, y ∈ Rp is the vector
of measurements, w ∼ N(0,Q) with Q ≥ 0 is the process
noise, v ∼ N(0,R) with R ≥ 0 is the measurement noise,
A ∈ Cn×n is the dynamics matrix and C ∈ Cp×n is the
measurement matrix. The initial state is x0 ∼ N(0,P0),
with P0 ≥ 0. The measurements are sent to an estimator
through a network subject to random packet losses, but without
delays. We assume that an error correcting scheme is used
such that if an error is introduced during transmission, it can
be detected. If the transmission error cannot be corrected, then
the corresponding measurement is discarded. Let gt be a binary
random variable describing the arrival of a valid measurement
at time t. We denote gt = 1 when yt is available for the
estimator and gt = 0 otherwise.

We run a Kalman filter to obtain an estimate x̂t of the
state xt. The update equation of the EC matrix Pt (i.e., the
covariance of the error x̃t = xt − x̂t given the measurements
received up to time t− 1) can be written as follows [1]:

Pt =

{
Φ0(Pt−1) , gt−1 = 0,
Φ1(Pt−1) , gt−1 = 1,

(2)

with

Φ0(X) = AXA∗ + Q,

Φ1(X) = AXA∗ + Q−AXC∗ (CXC∗ + R)
−1

CXA∗.

Let Γt be the binary sequence indicating whether the mea-
surements yτ , τ = 0, · · · , t− 1 are available, i.e.,

Γt , (g0, · · · , gt−1). (3)

For a given matrix 0 ≤ X ∈ Rn×n and sequence S ∈ BT , we
define the map Ψ : Rn×n × BT → Rn×n, by

Ψ(X, S) = ΦS[T ] ◦ ΦS[T−1] ◦ . . .ΦS[1](X). (4)

Notice that the EC at time t only depends on the initial EC,
P0, and the sequence of available measurements up to time
t− 1, i.e.,

Pt = Ψ(P0,Γt) = Φgt−1 ◦ Φgt−2 ◦ . . .Φg0(P0). (5)

In this paper we derive a necessary condition and a sufficient
condition, with a trivial gap between them, for the bounded-
ness of the asymptotic value of the norm of the expected error
covariance, which we call the AEEC norm. The definition of
this quantity is given below.

Definition 1. For a given initial EC P0 ≥ 0, the AEEC norm
is defined as

G(P0) , lim sup
t→∞

Gt(P0), (6)

where

Gt(P0) , ‖E(Pt)‖

=

∥∥∥∥∥∑
S∈Bt

P(Γt = S)Ψ(P0, S)

∥∥∥∥∥ . (7)

Remark 2. Conditions to guarantee that

lim sup
t→∞

Gt(P0) = lim inf
t→∞

Gt(P0),

as well as the independence of this limit with the initial
covariance P0, are given in [6, Proposition 6] and [27, Th.
2.4]. We state our results in terms of lim supt→∞Gt(P0)
to make them valid even when these conditions cannot be
guaranteed.
Remark 3. Our criterion for stability of a KFIO is that the
AEEC norm G(P0) <∞. This choice can be roughly justified
as follows. Notice that, conditioned on a given packet arrival
sequence Γt, the estimation error x̃t has normal distribution.
For such a distribution, having an infinite covariance norm
implies that any state component, on the eigenspace associated
with the resulting infinite eigenvalues, is equally likely. This
in turn means that the Kalman filter provides no information
about the state on that eigenspace. Hence, the packet loss
condition under which the AEEC norm is finite is the condition
under which the Kalman filter, on average over the sequences
Γt, provides useful information about each component of the
state.

The results are obtained under the assumptions that the
matrix A is diagonal and that the measurements are dropped
according to a FSMC model. We formally introduce these
assumptions below. Notice that if A is diagonalizable, the
results in this paper still apply after a similarity transformation.

Assumption 1. The matrix A in (1) is diagonal.

Definition 4. Let gt, t ∈ Z, be a stationary random process.
Its Markov order ν is defined as the smallest non-negative
integer such that, for all µ ≥ 1, the following holds

P(gt = 1|gt−ν−µ, · · · , gt−1) (8)
=P(gt = 1|gt−ν , · · · , gt−1). (9)

We say that the communication channel follows the FSMC
model if the measurement drop process gt is a stationary
random process with a finite Markov order ν.
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Assumption 2. The packet dropout process gt is station-
ary, and its Markov order ν is finite. Also, 0 < P(gt =
1|gt−ν , · · · , gt−1) < 1, for any gt−ν , · · · , gt−1.

Remark 5. Notice that the i.i.d. network model is a special
case of the FSMC model with ν = 0. It is fully characterized
by the parameter P(gt = 1) , λ [1]. Similarly, a Gilbert-
Elliott model is obtained using the FSMC model with ν = 1
and is fully characterized by two parameters: the recovery rate
q = P(gt = 1|gt−1 = 0) and the failure rate p = P(gt =
0|gt−1 = 1) [8].
Remark 6. The general FSMC model has been widely used to
model wireless channels in a variety of applications (see [26]
for a survey of principles and applications). The problem of
channel modeling, i.e., how to obtain a model of the channel
based on its statistics, has been studied by several authors. For
instance, [28] and [29] presented methods to obtain a model
given a set of observations from a channel.

III. MAIN RESULTS

In this section we present our main results. In Section III-A
we state our stability conditions. These conditions require
splitting the system into blocks (i.e., sub-systems), and are
stated in terms of certain asymptotic probability associated to
each block. We classify these block in two kinds, namely, de-
generate and non-degenerate ones. In Section III-B we state an
analytical expression for the aforementioned probability, valid
for the case of non-degenerate blocks. In Section III-C we
point out the extra difficulty introduced by degenerate blocks,
which prevents us from stating an analytical expression for
this probbility. To cope with this, we provide in Section III-D
a numerical method to evaluate it. Finally, in Section III-E we
summarize the resulting procedure for testing stability.

A. Stability conditions
We first consider the structure of matrix A. Recall that A

is diagonal. We will partition the matrix A into sub-matrices
whose eigenvalues have the same modulus and rational phase
differences. Formally, consider the following partition:

A = diag(A1, · · · , AK), (10)

where the sub-matrices Ak ∈ CJk×Jk are chosen such that,
for any k, Ak has FMO up to a constant (i.e., there exists
Nk ∈ N and αk ∈ C such that ANk

k = αNkk I1), and for any
k and l with k 6= l, the matrix diag(Ak,Al) does not have
FMO up to any constant. Then, each sub-matrix Ak can be
written as

Ak = αkÃk (11)

Ãk = diag(exp(i2πθk,1), · · · , exp(i2πθk,Jk)), (12)

with αk ∈ C and θk,j ∈ Q for j = 1, · · · , Jk. Notice that,
for any k and l with k 6= l, αk/αl is not a root of unity,
i.e., (αk/αl)

m 6= 1 for any m ∈ N. We assume that the sub-
matrices Ak are ordered such that |α1| ≥ |α2| ≥ · · · ≥ |αK |.
We also do the partition

C = [C1 · · · CK ] , (13)

1Notice that Assumption 1 is required for this property to hold.

such that each Ck has the same number of columns as Ak.
We then call the pair (Ak,Ck) the k-th FMO block of the
system (1).

Consider a time interval [0, t− 1] and its associated mea-
surement arrival sequence Γt. Let ti, i = 1, · · · , s, be
all the time instants such that Γt [ti + 1] = 1 (notice that
Γt [ti + 1] = gt). Then, the available measurements can be
written in a vector zt as follows

zt =
[
y′t1 y′t2 · · · y′ts

]′
= O(Γt)x0 + f(Γt) (14)

where

O(Γt) ,
[
O1(Γt) O2(Γt) . . . OK(Γt)

]
, (15)

with

Ok (Γt) ,
[(

CkA
t1
k

)′ (
CkA

t2
k

)′ · · · (
CkA

ts
k

)′]′
.

(16)

Also, f (Γt) = [f ′1, · · · , f ′s]
′, with f i =

ti−1∑
j=0

CAti−1−jwj +

vti , for i = 1, · · · , s. For k = 1, · · · ,K, let N t
k denote the

subset of sequences S in Bt such that Ok(S) does not have
FCR, i.e.,

N t
k , {S ∈ Bt : Ok(S) does not have FCR}. (17)

To simplify the notation, in the rest of the paper we will use
P(N t

k) to denote P(Γt ∈ N t
k). The main result is presented in

terms of the quantity lim supt→∞ P (N t
k)

1/t
. We will present

in Lemmas 11 and 15 a method to compute this quantity.
We now state the main result of the paper. The formal proof

is deferred to Section V.

Theorem 7. Consider the system (1) satisfying Assumptions 1
and 2. If

|αk|2 lim sup
t→∞

P
(
N t
k

)1/t
< 1, for all k ∈ {1, · · · ,K}, (18)

then the AEEC norm G(P0) is finite for any P0 ≥ 0, and if

|αk|2 lim sup
t→∞

P
(
N t
k

)1/t
> 1, for some k ∈ {1, · · · ,K},

(19)
then G(P0) is infinite for any P0 ≥ 0.

Notice that the result is valid for any initial condition
P0 ≥ 0, so we will omit the argument of G(·) in the
rest of the paper. Also, there is a trivial gap between (18)
and (19), i.e., we do not state whether G is finite or not when
|αk|2 lim supt→∞ P (N t

k)
1/t

= 1. This type of gap is common
in the literature, see e.g., [1], [11].

Remark 8. Notice that the result in Theorem 7 permits carrying
out the stability analysis in each FMO block independently.
This allows splitting the problem into smaller sub-problems
that are easier to analyze. This is a key property of our
decomposition of the system into FMO blocks.

Contrary to most results available in the literature, where
the conditions for the AEEC to be finite are cast in terms
of the parameters of the network model, we state our result
in terms of the quantity lim supt→∞ P (N t

k)
1/t. This permits

stating the result for the general FSMC network model. We
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now address the issue of how to evaluate this quantity. To this
end, we use the following definition.

Definition 9. The k-th FMO block (Ak,Ck) is said to be
degenerate if Ck does not have FCR, and non-degenerate
otherwise. Also, the system (1) is said to be degenerate if at
least one of its FMO blocks is degenerate, and non-degenerate
otherwise.

Remark 10. Our system decomposition into FMO blocks is
somehow related to the partition used in [11]. Although for a
different purpose, the authors of [11], decomposed the system
into subsystems such that all eigenvalues of a subsystem have
the same magnitude. In our decomposition, we further require
that the phase differences of the complex eigenvalues in a
subsystem are rational numbers. In both cases, the system is
said to be degenerate if the corresponding observation matrix
Ck of at least one subsystem fails to have FCR. Notice that
according to these definitions, some systems classified as de-
generate according to the definition in [11] are non-degenerate
according to our definition. While in [11] the authors use this
decomposition mainly for providing a sufficient condition for
the ROM (of the whole system) to have FCR, we use the
decomposition to split the stability analysis into sub-problems.

We treat degenerate and non-degenerate FMO blocks sepa-
rately. In both cases, the results are first derived for the general
FSMC network, and then used to state those for the i.i.d. and
the Gilbert-Elliott networks. For non-degenerate FMO blocks,
we show in Lemma 11 that lim supt→∞ P (N t

k)
1/t is simply

the recovery rate of the network, i.e., the probability to receive
a measurement after a long sequence of lost ones. This result,
together with Theorem 7, extends the class of communication
channels for which the stability conditions of the KFIO are
known. It also recovers most known results in the literature.

B. Non-Degenerate FMO blocks

The lemma below shows that for non-degenerate FMO
blocks, the quantity lim supt→∞ P (N t

k)
1/t is simply the re-

covery rate of the network, i.e., the probability to receive a
measurement after a long sequence of dropped ones.

Lemma 11. Let (Ak,Ck) be a non-degenerate FMO block,
and suppose that Assumption 2 holds. Then,

lim sup
t→∞

P
(
N t
k

)1/t
= P (gt = 0|gt−ν = 0, · · · , gt−1 = 0) .

(20)

Proof: To simplify the notation, suppose A = A1 so
we can omit the subscript k. Since the FMO block is non-
degenerate, the matrix C has FCR. Hence, if at least one
measurement in the sequence Γt is available, then O(Γt) has
FCR. That is, the only sequence that produces a matrix O(Γt)
that does not have FCR, occurs when all t measurements
are lost, i.e., Γt [1] = · · · = Γt [t] = 0. Let S0 = (S1, S2)
be a sequence composed of t zeros, with S1 = (0)ν and
S2 = (0)t−ν . We have

P
(
N t
)

=P (Γt = S0)

=P (Γν = S1)P (Γt = S0|Γν = S1)

=P (Γν = S1)

t−1∏
τ=ν

P (gτ = 0|g0, · · · , gτ−1 = 0)

=P (Γν = S1)P (gτ = 0|gτ−ν = 0, · · · , gτ−1 = 0)
t−ν

=
P (Γν = S1)P (gτ = 0|gτ−ν = 0, · · · , gτ−1 = 0)

t

P (gτ = 0|gτ−ν = 0, · · · , gτ−1 = 0)
ν ,

and the result follows immediately since

lim sup
t→∞

(
P (Γν = S1)

P (gτ = 0|gτ−ν = 0, · · · , gτ−1 = 0)
ν

)1/t

= 1.

Combining Theorem 7 and Lemma 11 we obtain the fol-
lowing corollary.

Corollary 12. For an i.i.d. network with P(gt = 1) = λ, the
AEEC norm G is finite if

|α1|2(1− λ) < 1, (21)

and is infinite if
|α1|2(1− λ) > 1. (22)

Also, for a Gilbert-Elliott network model with recovery rate
P(gt = 1|gt−1 = 0) = q, G is finite if

|α1|2(1− q) < 1, (23)

and is infinite if
|α1|2(1− q) > 1. (24)

Remark 13. To this date, the most general necessary and
sufficient conditions for the boundedness of the AEEC are
due to [11], where a non-degenerate system and a Gilbert-
Elliott network model are considered. Although we show in
Example 19 below, that there is a flaw in their proof, the
above corollary states that their main result [11, Theorem 8]
still holds.

C. Degenerate FMO blocks

When the matrix Ck does not have FCR for some k, then
more than one measurement in the sequence Γt must be
available in order for Ok (Γt) to have FCR. Moreover, the time
when the measurement is received is important to determine
how many measurements are needed. We show this with the
following example:

Example 14. Consider the FMO block (A,C), with

A = α diag(1,−1) C = [1 1]. (25)

If all the available measurements are from even time instants,
i.e., Γt = (1, 0, 1, 0, 1, 0, · · · ), then the matrix O(Γt) does not
have FCR:

O ((1, 0, 1, 0, 1, 0)) =

[
1 α2 α4

1 α2 α4

]′
.

More generally, since there exists a positive integer N such
that AN = αNI, if the measurement yt is available, the
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measurements yt+jN , for j ∈ N, will not increase the rank
of O.

It is clear from the previous example that the probability to
observe a sequence of measurements Γt such that O (Γt) has
FCR depends on the structure of the system under analysis
as well as on the parameters of the communication channel.
Lemma 15 below states a numerical method to evaluate
lim supt→∞ P (N t)

1/t for general degenerate systems using
the FSMC channel model. Furthermore, we show in Corol-
lary 17 that this method results in a closed-form expression
when the packet loss model is i.i.d..

D. Computation of lim supt→∞ P (N t
k)

1/t

We now address the issue of computing the quantity
lim supt→∞ P (N t

k)
1/t. Our strategy to do so is as follows. For

a given block, whose index k is omitted from the notation, we
first arrange the packet arrival (binary) sequences into certain
groups (which we denote below by Lni,m). We then build
different probability transition matrices (Di) between different
sets of groups. These transitions are those which occur when
a new sub-sequence is concatenated to the current one. Then,
we express the quantity lim supt→∞ P (N t

k)
1/t in terms of the

spectral radii of these transition matrices.
We start with some necessary definitions. Fix k ∈

{1, · · · ,K}. For convenience of notation we omit the subscript
k, i.e., we assume that A = A1. Let N ∈ N be the smallest
positive integer greater than or equal to ν (the order of the
packet drop model) such that AN = αNI. Since, for all
n, l ∈ N0, CAn and CAn+lN are linearly dependent, we
can restrict our characterization to sequences of length N . To
do so, for each t ∈ N, we define the map ψ : Bt → BN such
that, for all n = 1, · · · , N , the n-th element of ψ(S) is given
by

ψ(S) [n] ,


1, S [n+ lN ] = 1 for some l ∈ N0

and 1 ≤ n+ lN ≤ t,
0, otherwise,

(26)

i.e., ψ maps a sequence S ∈ Bt of arbitrary length t, to a
sequence ψ(S) ∈ BN of length N , such that rank (O (S)) =
rank (O (ψ (S))). Recall the definition of NN in (17) (with
the subscript k omitted). Let I be the number of sequences
in NN and Fi ∈ BN , i = 1, · · · , I be the elements of NN

i.e., NN = {F1, · · · , FI}. Let the elements Fi be enumerated
such that, for all t ∈ N and S ∈ Bt, if ψ ((Fi, S)) = Fj ,
then j ≥ i (notice that such enumeration is not unique in
general). A possible way to obtain this enumeration is as
follows. Partition the set NN into subsets Fj , j = 1, · · · , J ,
such that the sequences in Fj have j nonzero elements. The
enumeration is then done such that, all the sequences in Fj
have smaller indexes than those in Fj+1. Notice that, after
doing so, F1 = (0, · · · , 0). Now partition

NnN = Ln1 ∪ · · · ∪ LnI
with Lni being the set of sequences S of length nN such that
its associated sequence ψ (S) equals Fi, i.e.,

Lni , {S ∈ BnN : ψ(S) = Fi}. (27)

For any S ∈ Bt with t ≥ ν, denote its tail sequence

δ (S) , (S [t− ν + 1] , · · · , S [t]) . (28)

For every i = 1, · · · , I , it is clear that the set of all δ(S)
with S ∈ Lni and n ∈ N is a finite set. Denote this set by
{Hi,1, · · · , Hi,Mi

}. Then, for each n ∈ N, further partition

Lni = Lni,1 ∪ . . . ∪ Lni,Mi

with
Lni,m , {S ∈ Lni : δ(S) = Hi,m} . (29)

Notice that L2
i,m is not an empty set, since

(Fi, (0)N−ν , Hi,m) ∈ L2
i,m. Now construct the Mi × Mi

probability transition matrix Di, whose (r, c)-th entry equals
the probability that Γ(n+1)N ∈ L

(n+1)
i,r given that ΓnN ∈ Lni,c

for n ≥ 2, i.e.,

[Di]r,c , P
(
Γ3N ∈ L3

i,r|Γ2N ∈ L2
i,c

)
. (30)

By Assumption 2, Di has a finite dimension and is indepen-
dent of n.

Recall that Di is associated to the FMO block k. In general,
for k = 1, · · · ,K define

σk ,

(
max
1≤i≤I

ρ(Di)

)1/N

. (31)

We can now state our result for numerically evaluating
lim supt→∞ P(N t

k)1/t (The proof is deferred to the Ap-
pendix).

Lemma 15. Let σk be as defined in (31). We have

lim sup
t→∞

P
(
N t
k

)1/t
= σk. (32)

Example 16. Consider the FMO block in Example 14 sub-
ject to random measurement losses according to the Gilbert-
Elliott model with recovery rate q and failure rate p. We
have that N = 2 and NN = {F1, F2, F3}, with F1 =
(0, 0), F2 = (0, 1), and F3 = (1, 0). We have D1 =
P
(
Γ3N = (0)6|Γ2N = (0)4

)
= (1 − q)2. For i = 2, we have

H2,1 = (0) and H2,2 = (1). Then,

[D2]1,1 = P (Γ3N = (0, 1, 0, 0, 0, 0)|Γ2N = (0, 1, 0, 0))

[D2]1,2 = P (Γ3N = (0, 1, 0, 1, 0, 0)|Γ2N = (0, 1, 0, 1))

[D2]2,1 = P (Γ3N = (0, 1, 0, 0, 0, 1)|Γ2N = (0, 1, 0, 0))

[D2]2,2 = P (Γ3N = (0, 1, 0, 1, 0, 1)|Γ2N = (0, 1, 0, 1))

D2 =

[
(1− q)2 p(1− q)
q(1− q) pq

]
,

and max eig(D2) = (1−q)2 +pq. For i = 3, we have H3,1 =
(0). Then,

D3 =P (Γ3N = (1, 0, 0, 0, x, 0)|Γ2N = (1, 0, 0, 0))

=(1− q)2 + q(1− q) = 1− q,

where x can be either 0 or 1. Hence,

lim sup
t→∞

P
(
N t
)1/t

= (max{(1− q), (1− q)2 + pq})1/2

=

{
(1− q)1/2, p ≤ 1− q(
(1− q)2 + pq

)1/2
, p > 1− q.
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For the i.i.d. packet loss model, the corollary below explic-
itly expresses lim supt→∞ P (N t

k)
1/t.

Corollary 17. To simplify the notation, suppose that A = A1,
so we can omit the subindex k. Consider an i.i.d. network
model with packet receiving probability λ. Let Fi ∈ BN , i =

1, · · · , I such that
I⋃
i=1

Fi = NN . Let ζi be the number of

zeros in the sequence Fi ∈ NN . Then,

lim sup
t→∞

P
(
N t
)1/t

= max
i

(1− λ)ζi/N . (33)

Proof: For a given i, let zj , 1 ≤ j ≤ ζi, be all the integers
such that Fi[zj ] = 0. Using the i.i.d. assumption, we have

Di = P(Γ3N ∈ L3
i |Γ2N ∈ L2

i )

= P(g2N+z1−1 = 0 ∩ · · · ∩ g2N+zζi−1 = 0)

= (1− λ)ζi .

The result then follows from Lemma 15.

Example 18. Consider the system in Example 14 with an
i.i.d. network model with packet receiving probability λ. We
have that N = 2, ζ1 = 2, ζ2 = ζ3 = 1, D1 = (1 − λ)2,
D2 = D3 = (1− λ). Then, from Corollary 17, we have

lim sup
t→∞

P
(
N t
)1/t

= (1− λ)1/2. (34)

Using Theorem 7, the critical probability to receive a mea-
surement λc can be obtained by solving |α|2(1− λc)1/2 = 1,
hence, λc = 1 − |α|−4. That is, if λ < λc, then G = ∞ and
if λ > λc, then the AEEC is bounded. Note that this critical
value matches the result reported in [22, Theorem 4].

E. Procedure for stability test

We now present a procedure that summarizes how the main
results of the paper can be used to determine if the KFIO
corresponding to a given system and communication channel
is stable.

1) Obtain the FSMC model of the communication channel.
The FSMC model is determined by the probabilities

P (gν = 1|Γν = S) for all S ∈ Bν , (35)

where ν is the order of the FSMC model. There are several
methods to obtain these probabilities from a set of channel
observations, see e.g., [28] and [29].

2) Partition the system into FMO blocks (Ak,Ck), k =
1, · · · ,K, according to (10)-(13). Recall that each FMO block
has an associated scalar αk which equals the magnitude of all
the eigenvalues of Ak.

3) Determine whether the system is degenerate or non-
degenerate using to Definition 9.

1) If the system is non-degenerate: the associated KFIO is
stable if

|α1|2P (gt = 0|gt−ν = 0, · · · , gt−1 = 0) < 1 (36)

and unstable if

|α1|2P (gt = 0|gt−ν = 0, · · · , gt−1 = 0) > 1. (37)

2) If the system is degenerate:
a) For each k = 1, · · ·K, compute σk. This in turn

requires:
i) Enumerate the sequences Fi ∈ BN , i =

1, · · · , I , such that NN
k = {F1, · · · , FI} .

ii) For each i = 1, · · · , I , enumerate all the
possible tails Hi,m ∈ Bν m = 1, · · · ,Mi,
such that, for any n ∈ N and S ∈ BnN , if
ψ(S) = Fi, then δ(S) = Hi,m, for some m.

iii) For 1 ≤ r, c ≤Mi, compute each entry [Di]r,c
using (30) and (35).

iv) Compute σk using (31).
b) The associated KFIO is stable if

|αk|2σk < 1, for all k ∈ {1, · · · ,K}, (38)

and unstable if

|αk|2σk > 1, for some k ∈ {1, · · · ,K}. (39)

IV. CHARACTERIZATION OF MEASUREMENT ARRIVAL
PATTERNS

In a standard Kalman filter, where all past measure-
ments are available at the estimator, a sufficient condition
for stability of the filter is that the observability matrix[
C′ (CA)

′ · · ·
(
CAι−1)′]′ has FCR, where ι is the observ-

ability index [30, pp. 157]. When measurements are only in-
termittently available, the probability to receive measurements
such that O (Γt) has FCR plays a major role in the study
of the stability of KFIO. Identifying the sequences S such
that O(S) has FCR has been a challenge and a source of
the gap between necessary and sufficient conditions for the
stability of the KFIO for general systems. In this section we
summarize results which provide answers to this question in
some particular cases, and point out how a byproduct of our
analysis (i.e., Corollary 27) gives an answer to the general
case considered in this work.

In the particular case when C has FCR, the question
becomes trivial, since if S [τ ] = 1 for some 0 ≤ τ ≤ t − 1,
i.e., at least one measurement is received, then O(S) has FCR.
This property was used in [1], [8], [10], [12]. For second-order
systems which are non-degenerate, [9] showed that any two
measurements are enough. Other than these cases, a precise
characterization is not available, and only sufficient conditions
on the loss patterns have been considered. This leads to
conservative sufficient conditions on the stability of the KFIO,
and is the source of the gap between necessary and sufficient
conditions in some works. For example, a sufficient condition
to obtain a ROM with FCR is to receive a sequence of at
least ι (the observability index) consecutive measurements.
This idea was exploited in [8], [10], [14]. In [13], the authors
showed that for systems whose unstable eigenvalues have
distinct magnitudes, if the time interval between received
measurements is large enough, then the ROM has FCR when
the number of measurements received matches the number of
unstable eigenvalues. This idea was also used in [9]. In [11],
the authors claimed that for non-degenerate systems, if the
number of available measurements is the same as the number
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of subsystems with unstable eigenvalues, then the ROM has
FCR. However, there is a flaw in their argument. We show
below that this claim is not true in general.

Example 19. Let A = diag (2, 3,−5), C =
[
1 1 1

]
, Q =

I, and R = 1. Notice that the system is observable. According
to [11, Definitions 1-5], the system is non-degenerate and has
3 quasi-equiblocks. Let Γt =

(
(0)

t−4
, 1, 1, 0, 1

)
. Note that

rank (O (Γt)) = rank

 CAt−4

CAt−3

CAt−1

 = 2,

i.e., even if the number of measurements available matches the
number of quasi-equiblocks, O(Γt) can fail to have FCR. In
[11, eq. (35)], the matrix U plays a similar role as our ROM
O(Γt). We believe that there is a misprint in the definition of
U in [11]: the powers ij should be replaced by kj−k. In any
case, using this example, the matrix U is singular, causing
[11, Theorem 4] not to hold. Adopting the notation used in
[11], Γt =

(
(0)

t−4
, 1, 1, 0, 1

)
is equivalent to i1 = 1, i2 =

2, i3 = 1, i4 = t− 4. For some σ > 0, we have

hi1 ◦ g ◦ hi2−1 ◦ g ◦ · · · ◦ hil−1 ◦ g ◦ hil+1−1(Σ)

≥ h ◦ g ◦ h ◦ g ◦ g ◦ ht−5(σI). (40)

Also,

ht−5(σI) = A2(t−5)σ +

t−6∑
j=0

A2j ≥ σI,

where σ can be made arbitrarily large by increasing t. Hence,

h ◦ g ◦ h ◦ g ◦ g ◦ ht−5(σI) ≥ h ◦ g ◦ h ◦ g ◦ g(σI).

After some algebra, we obtain

trace(h ◦ g ◦ h ◦ g ◦ g(σI))

=
136× 109σ3 + 793× 109σ2 + 10.3× 109σ + 300× 106

4021888σ2 + 870238σ + 29497
≥σ.

We conclude that the EC cannot be bounded by a function of
i1, i2, i3, contradicting the claim of [11, Theorem 4].

Characterizing the sequences of received measurements that
produce a bounded EC is important not only for stability
analysis, but also for designing encoders, communication pro-
tocols, and efficient power transmission control strategies, that
guarantee stability in a stochastic sense. As Example 19 above
shows, [11, Theorem 4] does not hold in general, and therefore
cannot be used to determine the number of measurements
required to guarantee stability. On the other hand, this number
can be obtained using Corollary 27 in Section V-C. As shown
in Example 19, this number is not necessarily the number of
quasi-equiblocks of the system.

V. PROOF OF THE MAIN RESULT

In this section we prove the claims in Section III. Before
presenting the formal proofs, we give a brief overview of the
ideas in the proofs.

To prove the necessary condition in (19) we use the fact
stated in Lemma 21, which says that if Γt ∈ N t

k, then the
EC grows at rate at least |αk|2t. When this is used in the
definition of G in (7), the necessary condition thus depends
on the convergence of the series∑

S∈N tk

Ψ (P0, S)P(Γt = S)

for each k when t→∞.
The proof of the sufficient condition (18) is technically

more involved. There are two main steps in the proof. In
the first step, we present an alternative sufficient condition
in Lemma 23. To prove Lemma 23, we use the fact that the
location of the kernel of O (Γt) can be used to bound the
growth rate of the EC (Lemma 20). We then study a condition
(Lemma 25) on the received measurements that guarantees the
desired kernel location. In the second step, we show that this
condition is equivalent to the one given in Lemma 23. We do
so in Lemma 24, showing that the asymptotic probability of
the condition in Lemma 23 matches the one in (18).

A. Bounds on the Growth Rate of ‖Pt‖
We will first provide lower and upper bounds on the growth

rate of ‖Pt‖. It turns out that the growth rate of ‖Pt‖ is
determined by the location of the kernel of O (Γt). Recall
from (14) that

zt = O(Γt)x0 + f(Γt) (41)
xt = Atx0 + qt, (42)

where qt =
∑t
j=1 At−jwj−1. To simplify the notation, in

this section we will omit the argument (Γt) when it is clear
from the context. From [31, Ch. 5, Theorem 2.1], we have

Pt = Σx −Σx,zΣ
†
zΣ
∗
x,z (43)

with

Σx = AtP0A
∗t + E (qtq

∗
t ) ,

Σz = OtP0O
∗
t + E (ftf

∗
t ) ,

Σx,z = AtP0O
∗
t + E (qtf

∗
t ) .

Let ek,j be the column vector with a 1 in one entry and zeros
otherwise such that e′k,jAek,j equals the j-th diagonal entry
of the k-th block Ak of A. Let also Ek = {ek,1, · · · , ek,Jk}.
The following lemma states an upper bound on the growth
rate of ‖Pt‖.

Lemma 20. If ker (O) ⊆ span ({Ek, · · · , EK}) for some 1 ≤
k ≤ K, then there exists lt > 0, independent of P0, such that,
for all t ∈ N,

‖Pt‖ ≤ |αk|2t‖P0‖+ lt. (44)

Also, if ker (O) = 0, then

‖Pt‖ ≤ lt. (45)

Proof: From (41)-(42), we have that

zt = OA−txt + f −OA−tqt. (46)
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Consider the following sub-optimal estimator

x̂t =
(
OA−t

)†
zt. (47)

Using (46) and (42) in the above we have

x̂t =
(
OA−t

)†
OA−txt +

(
OA−t

)†
f −

(
OA−t

)†
OA−tqt

=
(
OA−t

)†
OA−tAtx0 +

(
OA−t

)†
f .

Then, the error x̃t = xt − x̂t is given by

x̃t =
(
I−

(
OA−t

)†
OA−t

)
Atx0 + qt −

(
OA−t

)†
f

=
(
I−

(
OA−t

)†
OA−t

)
Atx0 + U,

with U = qt−
(
OA−t

)†
f . Since Pt comes from the optimal

estimator, we have

Pt ≤E (x̃tx̃
∗
t ) (48)

=
(
I−

(
OA−t

)†
OA−t

)
AtP0A

∗t (49)

×
(
I−

(
OA−t

)†
OA−t

)
+ E (UU∗) . (50)

Since
(
I−

(
OA−t

)†
OA−t

)
is the projection onto the kernel

of OA−t, (45) follows by making

lt = max
S∈Bt

‖E (UU∗)‖ . (51)

Now, ker (O) ⊆ span ({Ek, · · · , EK}) for some 1 ≤ k ≤ K
implies that ker

(
OA−t

)
⊆ span ({Ek, · · · , EK}). So

I−
(
OA−t

)†
OA−t = diag(01, · · · ,0k−1,X), (52)

where X is a non-zero matrix with appropriate dimensions,
and 0j is a square matrix of zeros with the same dimension
of Aj . Let Ã = diag (0, · · · ,0,Ak, · · · ,AK). From (52),

A∗t
(
I−

(
OA−t

)†
OA−t

)
=

= Ã∗t
(
I−

(
OA−t

)†
OA−t

)
. (53)

From (50) and (51) we have

‖Pt‖ ≤
∥∥∥(P

1/2
0 A∗t

(
I−

(
OA−t

)†
OA−t

))∗
×

×P
1/2
0 A∗t

(
I−

(
OA−t

)†
OA−t

)∥∥∥+ lt

=
∥∥∥P1/2

0 A∗t
(
I−

(
OA−t

)†
OA−t

)∥∥∥2 + lt

≤‖P0‖
∥∥∥A∗t (I−

(
OA−t

)†
OA−t

)∥∥∥2 + lt

(a)
= ‖P0‖

∥∥∥Ã∗t (I−
(
OA−t

)†
OA−t

)∥∥∥2 + lt

≤‖P0‖
∥∥∥Ã∗t∥∥∥2 ∥∥∥(I−

(
OA−t

)†
OA−t

)∥∥∥2 + lt

(b)
=|αk|2t ‖P0‖+ lt,

where (a) follows from (53) and (b) follows since I −(
OA−t

)†
OA−t is a projection (and therefore has unit norm).

This concludes the proof.
Next, we give a lower bound on the growth rate of ‖Pt‖.

Lemma 21. If ker (O)∩ span (Ek) 6= 0 for some k, then, for
all t ∈ N,

‖Pt‖ ≥ |αk|2t
∥∥P−10

∥∥−1 .
Proof: A lower bound for Pt can be obtained by making

Q = 0, R = 0, and P0 = λI, where λ =
∥∥P−10

∥∥−1 is the
smallest eigenvalue of P0. Then, from (43), we have

Pt ≥λ
(
AtA∗t −AtO∗ (OO∗)

†
OA∗t

)
=λAt

(
I−O∗ (OO∗)

†
O
)

A∗t

=λAt
(
I−O†O

)
A∗t.

Since
(
I−O†O

)
is a projection, we have

(
I−O†O

)2
= I−

O†O, thus ‖Pt‖ ≥ λ
∥∥At

(
I−O†O

)∥∥2 . Now, let x 6= 0 ∈
ker (O)∩span (Ek). Notice that Ox = 0 and

(
I−O†O

)
x =

x. Also, Ax = diag (01, · · · ,0k−1,Akx̃,0k+1, · · · ,0K),
where 0j is a zero matrix with the same dimensions of Aj

and x̃ is a non-zero vector. We have∥∥At
(
I−O†O

)
x
∥∥ =

∥∥Atx
∥∥ = |αk|t ‖x‖ .

Hence,
∥∥At

(
I−O†O

)∥∥ ≥ |αk|t. Then, ‖Pt‖ ≥ λ|αk|2t =

|αk|2t
∥∥P−10

∥∥−1 .
B. Proof of the Necessary Condition in Theorem 7

Recall that P0 ∈ Rn×n. From (7) we have

Gt =

∥∥∥∥∥∑
S∈Bt

P (Γt = S) Ψ(P0, S)

∥∥∥∥∥
≥ 1

n
Tr

(∑
S∈Bt

P (Γt = S) Ψ(P0, S)

)

=
1

n

∑
S∈Bt

P (Γt = S) Tr (Ψ(P0, S))

≥ 1

n

∑
S∈Bt

P (Γt = S) ‖Ψ(P0, S)‖

≥ max
1≤k≤K

1

n

∑
S∈N tk

P (Γt = S) ‖Ψ(P0, S)‖ ,

Notice from (17) that if S ∈ N t
k then ker (O)∩span (Ek) 6= 0.

Using Lemma 21, we have

Gt ≥ max
1≤k≤K

1

n

∑
S∈N tk

P (Γt = S) |αk|2t
∥∥P−10

∥∥−1
= max

1≤k≤K

1

n
|αk|2t

∥∥P−10

∥∥−1 P (N t
k

)
= max

1≤k≤K

(
|αk|2P

(
N t
k

)1/t)t ∥∥P−10

∥∥−1
n

.

Hence, if

lim sup
t→∞

|αk|2P
(
N t
k

)1/t
> 1

for some 1 ≤ k ≤ K, then limt→∞Gt =∞.
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C. Proof of the Sufficient Condition in Theorem 7

In this section we first introduce an alternative sufficient
condition for the norm of the AEEC G to be bounded. We
then show that this alternative condition is equivalent to the
sufficient condition in Theorem 7. We start with the following
definition.

Definition 22. A matrix M is said to have full column rank
with strength Q ∈ N0, denoted by FCR(Q), if the matrix
obtained after removing any Q rows from M still has FCR.

For k = 1, · · · ,K, let

N t
k,Q , {S ∈ Bt : Ok(S) does not have FCR(Q)}. (54)

Notice that N t
k,0 = N t

k. We now present an alternative
sufficient condition for the asymptotic norm of the AEEC to
be bounded.

Lemma 23. There exists Q ∈ N0 such that, if

|αk|2 lim sup
t→∞

P
(
N t
k,Q

)1/t
< 1 for all k = 1, · · · ,K, (55)

then G <∞.

The sufficient condition stated in Lemma 23 seems stronger
than the one in Theorem 7. We show now that, under Assump-
tion 2 they are indeed equivalent.

Lemma 24. If Assumption 2 holds, then, for any Q ∈ N,

lim sup
t→∞

P
(
N t
k

)1/t
= lim sup

t→∞
P
(
N t
k,Q

)1/t
. (56)

The proof of Lemma 24 is given in the appendix. Before
proving Lemma 23, we introduce some technical results. The
next lemma provides a sufficient condition on the sequences
S ∈ Bt to guarantee a certain convenient location of the kernel
of O(S). This result is required to show the decoupling prop-
erty of our system decomposition, as mentioned in Remark 8.

Lemma 25. Let A be a diagonal matrix and Ok be as defined
in (16). There exists Q ∈ N0 such that, for any 1 ≤ k ≤ K,
if Ok has FCR(Q), then ker (O) ⊥ span (Ek).

The proof of Lemma 25 uses the following result.

Lemma 26 (Immediate consequence of [32], Theorem 1.1).
Let α1, · · · , αK ∈ C with αk 6= 0, k = 1, · · · ,K and
(αk/αj)

t 6= 1 for all k 6= j and all t ∈ N. Let a1, · · · , aK ∈ C
with ak 6= 0 for some 1 ≤ k ≤ K. Then, there exists at most
a finite number L of non-negative integers t such that

a1α
t
1 + a2α

t
2 + · · ·+ aKα

t
K = 0. (57)

Proof of Lemma 25: Let O(S)v = 0, with v =
[v′1 · · · v′K ]

′. To show the result is enough to show that, if
Ok(S) has FCR(Q), then vk = 0. We do so by contradiction.
Let a = [a1 a2 . . . aK ]. Suppose vk 6= 0. From Lemma 26,
there exists at most L values of t ∈ N such that (57) holds for
some a 6= 0. Recall from (12) that for each Ãk there exists
integers Nk such that ÃNk

k = I. Let Q̃ = NL + 1, where
N ∈ N is such that diag(Ã1, · · · , ÃK)N = I. Let Q = pQ̃
and recall that p is the dimension of yt. Also, for j = 1, · · · p,
let Ck,j be the j-th row of Ck. Then, Ok(S) having FCR(Q)

implies that there exists j and tm, m = 1, · · · , Q̃, such that
S [tm] = 1 and Ck,jÃ

tm
k vk 6= 0. This in turn implies that

there exists some r ∈ {0, · · · , N − 1} for which the set
Tr(S) , {t : S [t] = 1,Ck,jÃ

t
kvk 6= 0 and t mod N = r}

has at least L + 1 elements. Let t ∈ Tr(S) and define
ak = Ck,jÃ

t
kvk, for k = 1, · · · ,K. Then, a 6= 0 since

ak 6= 0. Hence, from Lemma 26, (57) can hold for at most L
values of t, and therefore cannot hold for all t ∈ Tr(S). Thus,
O(S)v = 0 cannot hold, which implies that vk must be 0.

The following corollary is a byproduct of Lemmas 21, 20
and 25, which characterizes the growth rate of the EC accord-
ing to the sequence of available measurements.

Corollary 27. Let A and C be partitioned as in (10)-(13).
The following holds true.

1. If Ok (Γt) does not have FCR, then

‖Pt‖ ≥ |αk|2t
∥∥P−10

∥∥−1 . (58)

2. There exists Q ∈ N such that if Oj (Γt) has FCR(Q),
for j = 1, · · · , k − 1, then

‖Pt‖ ≤ |αk|2t ‖P0‖+ lt, (59)

where lt > 0 is a constant independent of P0.

Proof: 1. If Ok (Γt) does not have FCR, then
ker (O (Γt)) ∩ span (Ek) 6= 0 and (58) follows from
Lemma 21.

2. If Oj (Γt) has FCR (Q) for j = 1, · · · , k− 1, then from
Lemma 25, we have ker (O (Γt)) ⊥ span (Ej) , j = 1, · · · , k−
1, or equivalently, ker (O (Γt)) ⊆ span (ξk, · · · , ξK).
Then (59) follows from Lemma 20.
Remark 28. Corollary 27 states the relationship between
the sequence of received measurements Γt and the growth
rate of the norm ‖Pt‖ of the EC. This is an important
byproduct of our result, as this relationship can be used in
a number of problems, such as devising control strategies
for the transmission power used in wireless sensor networks,
while maintaining a desired performance [33], [34], sensor
placement algorithms [35]–[37], and network communication
protocols for state estimation and control [20], [38], [39], etc.

The next two lemmas are used to obtain an upper bound
on the AEEC. Recall from Assumption 2 that the Markov
chain that describes the packet loss process is irreducible and
has a stationary distribution. Also, from the time reversal
property [40, Theorem 1.9.1], we have that, for all µ ≥ 1,
P (gt = 1|gt+1, · · · , gt+ν+µ) = P (gt = 1|gt+1, · · · , gt+ν) .
Define ∆t = (gt, · · · , gt+ν−1), i.e., ∆t is the set of ν samples,
immediately following Γt. Also, for S ∈ Bt, with t ≥ ν, define
φ(S) to be the first ν samples from S, i.e.,

φ(S) , (S [1] , · · · , S [ν]).

Define the mapping

ξT (x) = max
Y ∈Bν

Tr

(∑
S∈BT

P (ΓT = S |∆T = Y ) Ψ(xI, S)

)
.

(60)
Notice that for T = 1 with the i.i.d. packet loss model, x ≥
ξT (x) is a scalar version of the ARE studied in [1].
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In Lemma 30, we show that if there exists x > 0 ∈ R such
that x ≥ ξT (x) for some T , then the norm of the AEEC is
bounded. The next lemma is required to show that result.

Lemma 29. For T,N ∈ N and x ≥ 0, we have

ξT+V (x) ≤ ξV ◦ ξT (x). (61)

Proof: Let S ∈ BT and U ∈ BV . We have

ξT+V (x) = max
Y ∈Bν

Tr

 ∑
(S,U)∈BT+V

Ψ (xI, (S,U)) (62)

×P (ΓT+V = (S,U) |∆T+V = Y )] . (63)

Notice that

P (ΓT+V = (S,U) |∆T+V = Y )

= P (ΓT = S |∆T = φ ((U, Y )) )×
× P (gT , · · · , gT+V−1 = U |∆T+V = Y ) . (64)

Since the Markov process describing the measurement losses
is stationary, we have

P (gT , · · · , gT+V−1 = U |∆T+V = Y ) =

P (ΓV = U |∆V = Y ) . (65)

From (63)-(65), we have

ξT+V (x)

= max
Y ∈Bν

Tr

(∑
S∈BT

∑
U∈BV

P (ΓT = S |∆T = φ ((U, Y )) ) ×

× P (ΓV = U |∆V = Y ) Ψ (Ψ (xI, S) , U)) .

Using the concavity of Ψ(·, U) [1, Lemma 1e], we have

ξT+V (x) ≤ max
Y ∈Bν

Tr

( ∑
U∈BV

P (ΓV = U |∆V = Y )×

×Ψ (ΞT (x), U))

with ΞT (x) =
∑
S∈BT P (ΓT = S |∆T = φ((U, Y )) ) Ψ(xI, S).

Now, since Ψ(xI, S) ≥ 0,

ΞT (x)

≤
∑
S∈BT

P (ΓT = S |∆T = φ((U, Y )) ) Tr (Ψ(xI, S)) I

≤ max
W∈Bν

Tr

(∑
S∈BT

P (ΓT = S |∆T = W ) Ψ(xI, S)

)
I

=ξT (x)I.

Then, using the monotonicity of Ψ(·, U) [1, Lemma 1c],

ξT+V (x)

≤ max
Y ∈Bν

Tr

( ∑
U∈BV

P (ΓV = U |∆V = Y ) Ψ (ξT (x)I, U)

)
=ξV (ξT (x)) = ξV ◦ ξT (x) .

Lemma 30. If there exists T ∈ N and x > 0 such that x >
ξT (x), then there exists x0 > 0 and l ∈ R such that G ≤
x0|α1|2(T−1) + l.

Proof: From the concavity of Ψ(·, S) [1, Lemma 1e],
it follows that ξT (·) is concave. Hence, for all y > x, we
have y > ξT (y). Also, from the monotonicity of Ψ(·, S) [1,
Lemma 1c], ξT (·) is monotonic. Then, for j ∈ N we have
y > ξ

(j)
T (y) ≥ ξ

(j+1)
T (y) where ξ(j)T denotes the composition

of ξT j times. Also, for j ∈ N, we have 0 < ξ
(j)
T (0) ≤

ξ
(j+1)
T (0) < y. Since the sequence ξ(j)T (0) is monotonic and

bounded, it must converge to a fixed point x0, i.e.

lim
j→∞

ξ
(j)
T (z) = x0 = ξT (x0). (66)

Recall from (7) that GT (P0) =∥∥∑
S∈BT P(ΓT = S)Ψ (P0, S)

∥∥ . Using the monotonicity of
Ψ(·, S), we have that for all Z ∈ N

GZ(P0) ≤

∥∥∥∥∥ ∑
S∈BZ

P(ΓZ = S)Ψ (‖P0‖I, S)

∥∥∥∥∥
≤Tr

(∑
S∈BZ

P(ΓZ = S)Ψ (‖P0‖I, S)

)
=
∑
Y ∈Bν

P(∆Z = Y )× (67)

× Tr

(∑
S∈BZ

P(ΓZ = S|∆Z = Y )Ψ (‖P0‖I, S)

)
≤ξZ(‖P0‖). (68)

Using (68), (61), and (66) we obtain

lim sup
j→∞

GTj(P0) ≤ lim sup
j→∞

ξTj(‖P0‖)

≤ lim sup
j→∞

ξ
(j)
T (‖P0‖) = x0. (69)

Now, from Lemma 20, for each i = 0, · · · , T − 1 and
j = 1, 2, · · · , we have GTj+i ≤ x0|α1|2i + li, where li
is a constant independent of P0. Hence, lim supt→∞Gt ≤
sup0≤i<T x0|α1|2i + li, and the result follows by making
l = sup0≤i<T li.

We are now ready to prove Lemma 23.
Proof of Lemma 23: The proof is divided in five steps.

1) In view of Lemma 25, there exists Q such that if Ok

has FCR(Q), for k = 1, · · · ,K, then O has FCR. Recall
from (54) that N t

k,Q is the set of binary sequences S ∈ Bt
such that Ok(S) does not have FCR with strength Q. Define

Gtk ,


N t

1,Q , k = 1

N t
k,Q ∩

k−1⋂
j=1

N t

j,Q , k = 2, · · · ,K, (70)

i.e., Gtk is the set of binary sequences S ∈ Bt such that
Oj(S) has FCR(Q) for 1 ≤ j ≤ k − 1 and Ok(S) does not
have FCR(Q).

Recall that N t is the set of sequences S ∈ Bt such that
O(S) does not have FCR. From Lemma 25, we have Bt =

N t ∪
K⋃
k=1

Gtk. That is, for any sequence S ∈ Bt, either O (S)
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has FCR, or Ok (S) does not have FCR(Q) for some 1 ≤ k ≤
K, or both conditions are satisfied. Recall that Ψ(xI, S) is a
symmetric, positive-definite matrix with dimension n. Hence
Tr (Ψ(xI, S)) ≤ n ‖Ψ(xI, S)‖ . From (60) and the above, we
have

ξt(x) ≤n max
Y ∈Bν

∥∥∥∥∥∑
S∈Bt

P (Γt = S |∆t = Y ) Ψ (xI, S)

∥∥∥∥∥ (71)

≤n

∥∥∥∥∥∥
∑
S∈N t

Ψ (xI, S)P (Γt = S|∆t = Y ?)

∥∥∥∥∥∥+

+n

K∑
k=1

∥∥∥∥∥∥
∑
S∈Gtk

Ψ (xI, S)P (Γt = S|∆t = Y ?)

∥∥∥∥∥∥ , (72)

where Y ? is the argument that maximizes (71).
2) From Lemma 20, we have that

S ∈ N t
=⇒ ‖Ψ(xI, S)‖ ≤ lt (73)

S ∈ Gtk =⇒ ‖Ψ(xI, S)‖ ≤ |αk|2tx+ lt. (74)

Also, from (70), we have that P(Gk) ≤ P(Nk,Q).
3) From (72) and the above, we have

ξt(x) ≤n
∑
S∈N t

ltP(Γt = S|∆t = Y ?)+

+ n

K∑
k=1

∑
S∈Gk

(
|αk|2tx+ lt

)
P(Γt = S|∆t = Y ?)

≤nltP
(
N t|∆t = Y ?

)
+

+ n

K∑
k=1

(
|αk|2tx+ lt

)
P
(
N t
k,Q|∆t = Y ?

)
=n

K∑
k=1

(
|αk|2P

(
N t
k,Q|∆t = Y ?

)1/t)t
x+

+ nlt

(
P
(
N t|∆t = Y ?

)
+

K∑
k=1

P
(
N t
k,Q|∆t = Y ?

))
=βtx+ γt,

with βt = n
∑K
k=1

(
|αk|2P

(
N t
k,Q|∆t = Y ?

)1/t)t
and

γt = nlt

(
P
(
N t|∆t = Y ?

)
+

K∑
k=1

P
(
N t
k,Q|∆t = Y ?

))
.

4) Let t > ν. Then,

P
(
N t
k,Q|∆t = Y ?

)
=

∑
S∈N tk,Q

P (Γt = S|∆t = Y ?)

=
∑

S∈N tk,Q

P (Γt = S)
P (∆t = Y ?|Γt = S)

P (∆t = Y ?)

≤
∑

S∈N tk,Q

P (Γt = S) max
S∈N tk,Q

P (∆t = Y ?|Γt = S)

P (∆t = Y ?)

Taking δ (·) as defined in (28), we get

P
(
N t
k,Q|∆t = Y ?

)
=

∑
S∈N tk,Q

P (Γt = S) max
S∈N tk,Q

P (∆t = Y ?|δ(Γt) = δ(S))

P (∆t = Y ?)

=ζP
(
N t
k,Q

)
,

where

ζ = max
S∈N tk,Q

P (∆t = Y ?|δ(Γt) = δ(S))

P (∆t = Y ?)
> 0.

Then,

lim sup
t→∞

P
(
N t
k,Q|∆t = Y ?

)1/t
= lim sup

t→∞
ζ1/tP

(
N t
k,Q

)1/t
= lim sup

t→∞
P
(
N t
k,Q

)1/t
. (75)

5) From (55) and (75), there exists t0 ∈ N such that, for all
t > t0, βt < 1. Then, for all t > t0, there exists x > 0 such
that x = βtx+ γt, and therefore, x > ξt(x). Then, the result
follows from Lemma 30.

The sufficient condition in Theorem 7, i.e., (19) follows
from Lemmas 23 and 24.

VI. CONCLUSION

We have derived a necessary condition and a sufficient
condition, having only a trivial gap, for the boundedness of the
expected value of the estimation error covariance of a Kalman
filter subject to random measurement losses. The results were
obtained for a general finite state Markov channel (FSMC)
packet loss model and assuming that the system’s state matrix
is diagonalizable. The existing literature usually adopts either
i.i.d. or Gilbert-Elliott packet loss model and assumes non-
degenerate systems or special cases of degenerate systems.
In these cases, our conditions retrieve the known results for
the boundedness of the asymptotic expected error covariance.
When the more general FSMC packet loss model and non-
degenerate systems are adopted, we extend the known results
by providing a closed-form expression to determine the critical
parameter that determines the boundedness of the asymptotic
expected error covariance. Finally, when degenerate systems
and an FSMC packet loss model are considered, we provide a
numerical method to assess whether the asymptotic expected
error covariance is bounded or not.

A key byproduct of our work is a novel characterization of
the received measurement patterns leading to a ROM having
FCR. Ensuring a ROM with FCR leads to an estimation
error with bounded covariance, in a number of estimation
methods based on the MMSE criterion (including Kalman
filtering). Our result in Lemma 25 states that if the ROM
is decomposed in horizontally concatenated sub-matrices, and
each of these sub-matrices has FCR of order Q, for a given
integer Q, then the ROM has FCR. This result can find
applications in, for example, the problem of distributed sensor
scheduling [41]–[43]. This problem can be considered as dual
to the problem studied in this paper, since it consists in
selecting which sensors should send their measurements at
each time instant in order to maximize estimation accuracy
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and/or minimize energy/bandwidth utilization. Hence, each
sub-matrix component of the ROM is generated from the
measurements transmitted from each sensor. It then follows
from our result that, if the local scheduling strategy is such
that each sensor sends enough measurements to ensure that
its corresponding sub-matrix component has FCR of order Q,
then the estimation error covariance is bounded.

APPENDIX

To simplify the notation we suppose A = A1, so we can
omit the subscript k.

Before proving Lemma 24 we present some technical lem-
mas. Recall the notation introduced before Lemma 15. In
particular, N ∈ N is such that AN = αNI. We split a sequence
S ∈ Bt into L sub-sequences of length multiple of N with
the property that the first L−1 sub-sequences U are such that
O (U) has FCR. Formally, for t ∈ N and S ∈ Bt, put S0 = S,
and consider the following recursions,

tl , min
{
t : (Sl−1 [1] , · · · , Sl−1 [tN ]) ∈ N tN

}
,

Sl , (Sl−1 [tlN + 1] , · · · , Sl−1 [|Sl−1|]) ,

where |S| denotes the length of the sequence S. The recurrence
is stopped at l = L, where L is such that SL ∈ N |SL|. Then,
we define the maps η and τ by

η(S) , L− 1, τ(S) , SL,

i.e., η(S) is denotes the maximum number of contiguous sub-
blocks of S which are in N tlN , l = 1, · · · , L, and τ(S)
denotes the remaining sub-block of S. We allow τ (S) to
be an empty sequence, denoted by (). Recall the sequences
Fi, i = 1, · · · , I and Hi,m, i = 1, · · · , I and m = 1, · · · ,Mi,
defined in Section III-C. Let M̃1 = 2ν , and for i = 2, · · · , I ,
M̃i = Mi. Also, define H̃i,m, i = 1, · · · , I , m = 1, · · · , M̃i

such that H̃i,m = Hi,m, for i > 1, and H̃1,m, m = 1, · · · , M̃1

are all sequences in Bν . Then, for any i = 1, · · · , I , m =
1, · · · , M̃i, and Q ∈ N0, we define

Lni,m,Q ,
{
S ∈ BnN : ψ (τ(S)) = Fi,

δ(S) = H̃i,m, η(S) = Q
}
. (76)

In (76) we have used H̃1,m (i.e., all sequences in Bν) instead
of H1,m. The reason for this is that, when τ(S) = (), then
ψ (τ(S)) = F1 = (0)N . In this case M1 = 1 and the only
possibility for H1,m is H1,1 = (0, · · · , 0). However, notice
that in (76), when τ(S) = (), δ(S) can be any sequence of
length ν. Hence, H̃1,m is used.

Lemma 31. For any Q, l ∈ N0,

P
(
N lN
Q

)
≤ u′bB

lzb, (77)

with equality holding when Q = 0. In the above, B ∈ Rb×b,
with b = (Q+ 1)d and d =

∑I
i=1 M̃i, is given by

B =


D 0 · · · 0

N D
. . .

...

0
. . .

. . . 0
0 0 N D

 , (78)

with D ∈ Rd×d and N ∈ Rd×d

D =

 D1,1 0 0
...

. . . 0
DI,1 · · · DI,I

 , N =

[
N1 · · · NI

0 · · · 0

]
.

(79)
The sub-matrix Di1,i2 ∈ RM̃i1

×M̃i2 is given by2

[Di1,i2 ]j1,j2 = P
(
L3
i1,j1,1

∣∣L2
i2,j2,1

)
. (80)

Also, Ni ∈ RM̃1×M̃i is given by

[Ni]j1,j2 = P
(
L3
1,j1,2

∣∣L2
i,j2,1

)
, (81)

Finally, ub = [1 · · · 1]′ ∈ Rb and zb = [z′ 0 · · · 0]′ ∈ Rb,
where z = [z1 · · · z2ν ]

′, with zm = P (Γν = H1,m), m =
1, · · · , 2ν , i.e., z is the probability distribution of Γν .

Proof: For l ∈ N let m(l) =
[
m′0(l) · · · m′Q(l)

]′
,

with mq(l) =
[
m′q,1(l) · · · m′q,I(l)

]′
, and

mq,i(l) =
[
P
(
Lli,1,q

)
· · · P

(
Ll
i,M̃i,q

) ]′
. (82)

Let also m(0) =
[
m′0,1(0) 0 · · ·0

]′ ∈ Rb, with

m0,1(0) =


P
(

(g−ν , · · · , g−1) = H̃1,1

)
...

P
(

(g−ν , · · · , g−1) = H̃1,M̃1

)
 . (83)

It is easy to see that m(l) = Bm(l − 1), for all l ∈ N, and
{S : η(S) ≤ Q} =

⋃
i,j,q

Lli,j,q . Hence,

P (η(S) ≤ Q) = u′bm(l) = u′bB
lm(0). (84)

From the stationarity of the Markov process we have that
m(0) = zb. Substituting into (84), we have P (η(S) ≤ Q) =
u′bB

lzb. Then, (77) follows since, for all S ∈ BlN , η(S) >

Q =⇒ S ∈ N lN

Q . Finally, the equality holds when Q = 0,
since in this case, η(S) > 0 ⇐⇒ S ∈ N lN

.

Lemma 32. Let ub and zb be as defined in Lemma 31. Then

lim sup
t→∞

(u′bB
tzb)

1/t = max
i
ρ (Di,i) , (85)

where ρ(X) denotes the spectral radius of the matrix X.

Proof: We split the proof in two steps:
1) Let β = maxi ρ (Di,i). Since B is block triangular, its

eigenvalues are those of D. Since D is also block triangular,
its set of eigenvalues is the union of those of each submatrix
Di,i, i = 1, · · · , I . Hence,

lim sup
t→∞

(u′bB
tzb)

1/t ≤ β. (86)

2) Let βi = ρ (Di,i). Since N � 0, we have that u′bB
tzb ≥

u′dD
tzd. Also, since D is block triangular, we have

u′dD
tzd ≥ max

1≤i≤I
u′
M̃i

Di,1D
t−1
i,i zM̃1

= max
1≤i≤I

ũiD
t−1
i,i zM̃1

,

2Notice that Assumption 2 is required so that the matrices Di1,i2 have
finite dimension.
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where ũi = u′
M̃i

Di,1. Hence,

lim sup
t→∞

(u′bB
tzb)

1/t ≥ lim sup
t→∞

(
max
1≤i≤I

ũ′iD
t
i,izM̃1

)1/t

.

(87)

For i = 1, we have that lim supt→∞(ũ′1D
t
1,1zM̃1

)1/t = β1.
Now, for i > 1 and from Assumption 2, we have that Di,i � 0
and from Perron’s Theorem [44, Theorem 8.2.11], we have
that βi is an eigenvalue of Di,i with multiplicity one, and its
associated left l and right r eigenvectors are positive. Then we
have

lim
t→∞

(ũ′iD
t
i,izM̃1

)1/t = lim
t→∞

(
ũ′i

(
Di,i

βi

)t
zM̃1

)1/t

βi

(a)
= lim
t→∞

(
ũ′irl

′zM̃1

l′r

)1/t

βi = βi, (88)

where (a) follows from Perron’s theorem. Putting (88) into (87)
we have lim supt→∞(u′bB

tzb)
1/t ≥ β, and the result follows

from (86).

Lemma 33. For any Q ∈ N0,

lim sup
t→∞

P
(
N t
Q

)1/t ≤ max
i
ρ (Di,i)

1/N
,

with equality holding when Q = 0.

Proof: Let k(t) = max{k ∈ N : kN ≤ t}. Then,

P
(
N t
Q

)1/t ≤ P
(
N k(t)N
Q

)1/t
≤ P

(
N k(t)N
Q

)1/(k(t)+1)N

.

Then,

lim sup
t→∞

P
(
N t
Q

)1/t
≤ lim sup

t→∞
P
(
N k(t)N
Q

)1/(k(t)+1)N

= lim sup
k→∞

P
(
N kN
Q

)1/(k+1)N

=

(
lim sup
k→∞

P
(
N kN
Q

)1/k (P (N kN
Q

)1/k)−1/(k+1)
)1/N

.

Notice that lim supk→∞

(
P
(
N kN
Q

)1/k)−1/(k+1)

= 1. Using
Lemmas 31 and 32, we have

lim sup
t→∞

P
(
N t
Q

)1/t ≤ (
lim sup
k→∞

P
(
N kN
Q

)1/k)1/N

≤
(

lim sup
k→∞

(
u′bB

kzb
)1/k)1/N

= max
i
ρ (Di,i)

1/N
. (89)

To show the result for Q = 0, notice that

lim sup
t→∞

P
(
N t
)1/t

≥ lim sup
t→∞

P
(
N k(t)N

) 1
(k(t)−1)N

= lim sup
k→∞

P
(
N kN

) 1
(k−1)N

=

(
lim sup
k→∞

P
(
N kN

)1/k (P (N kN
)1/k) 1

k−1

)1/N

. (90)

Similarly, we have that lim supk→∞

(
P
(
N kN

)1/k)1/(k−1)
=

1. Hence,

lim sup
t→∞

P
(
N t
)1/t ≥(lim sup

k→∞

(
u′bB

kzb
)1/k)1/N

= max
i
ρ(Di,i)

1/N . (91)

Then, the result follows from (89) and (91).
We are now ready to prove Lemma 15 and Lemma 24.

Proof of Lemma 15: It follows from Lemma 33 since
D1 = [D1,1]1,1 and for i > 1, Di = Di,i.

Proof of Lemma 24: From Lemma 33 and Lemma 15,
we have

lim sup
t→∞

P
(
N t
Q

)1/t ≤ max
i
ρ(Di)

1/N = lim sup
t→∞

P
(
N t
)1/t

.

(92)
Now, notice that N t ⊆ N t

Q, with equality holding only for
Q = 0. Hence, P (N t) ≤ P

(
N t
Q

)
and

lim sup
t→∞

P
(
N t
)1/t ≤ lim sup

t→∞
P
(
N t
Q

)1/t
. (93)

The result then follows from (92) and (93).
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