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Linear Quadratic Regulation and Stabilization of
Discrete-Time Systems With Delay and

Multiplicative Noise
Huanshui Zhang, Senior Member, IEEE, Lin Li, Juanjuan Xu, and Minyue Fu, Fellow, IEEE

Abstract—This paper is concerned with the long-standing
problems of linear quadratic regulation (LQR) control and sta-
bilization for a class of discrete-time stochastic systems involv-
ing multiplicative noises and input delay. These fundamental
problems have attracted resurgent interests due to development
of networked control systems. An explicit analytical expression
is given for the optimal LQR controller. More specifically, the
optimal LQR controller is shown to be a linear function of the
conditional expectation of the state, with the feedback gain based
on a Riccati-ZXL difference equation. It is also shown that the
system is stabilizable in the mean-square sense if and only if an
algebraic Riccati-ZXL equation has a particular solution. These
results are based on a new technical tool, which establishes a
non-homogeneous relationship between the state and the costate
of this class of systems, and the introduction of a new Lyapunov
function for the finite-horizon optimal control design.

Index Terms—LQR control, multiplicative noise, networked
control, stabilization, stochastic system.

I. INTRODUCTION

THE stochastic optimal linear quadratic regulation (LQR)
problem, pioneered by Wonham [1], has received

paramount attention since 1960’s; see [2]–[9] and references
therein. For stochastic linear systems without time delay, the
LQR theory is well established [7]. However, when time delays
in the control input and/or the state are present, the stochastic
LQR problem becomes very complicated and remains challeng-
ing, despite the fact that a huge amount of research has been
devoted to it since 1970’s; see [10] and [11].

Different from the stochastic LQR problem, the deterministic
LQR problem with input delay has been extensively studied
since 1970’s for both the single-delay case [12], [13] and the
multiple-delay case [14]–[16]. A deterministic LQR problem is
a special case of the stochastic LQR problem without noises,
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and its optimal controller is a linear state feedback with its
feedback gain given by solving a Riccati equation. When an
input delay is present, the optimal controller is known to take
the same form and a predictor approach can be used to handle
the time delay.

More specifically, the deterministic LQR problem with single
input delay is concerned with

min

∞∑
k=0

x′
kQxk +

∞∑
k=d

u′
k−dRuk−d (1)

subject to xk+1 = Axk +Buk−d (2)

where xk ∈ Rn is the state, uk ∈ Rm is the input control with
delay d > 0, A and B are constant matrices with compatible
dimensions, and Q and R are positive semi-definite matrices.
The initial values x0, ui, i = −d, . . . ,−1, are known. Owing to
the input delay, the controller is required to obey the causality
constraint, i.e., uk must be in the form of

uk = fk(xk, xk−1, . . . , x0, uk−1, uk−2, . . . , u−d) (3)

for some function fk(·).
Under the assumption that (A,B) is stabilizable, the optimal

controller for (1), (2) can be obtained by invoking the well-
known Smith predictor theory [17], and the result is given by

uk = K

(
Adxk +

d∑
i=1

Ai−1Buk−i

)
(4)

where the feedback gain matrix K is the same as in the delay-
free case [18]. Indeed, it is easy to see that the term (Adxk +∑d

i=1 A
i−1Buk−i) is the d-step prediction of the future state

xk+d.
Unfortunately, it is recognized that the theory for deter-

ministic LQR with input delay can not be dirtily generalized
to stochastic LQR involving multiplicative noises. In fact, let
system (2) involve a multiplicative noise as

xk+1 = (A+ ωkĀ)xk + (B + ωkB̄)uk−d (5)

where ωk is a scalar random white noise with zero mean
and variance σ2 and Ā and B̄, like A and B, are constant
matrices with compatible dimensions. Accordingly, consider
the following cost function:

J = E

{ ∞∑
k=0

x′
kQxk +

∞∑
k=d

u′
k−dRuk−d

}
(6)
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where E is the mathematical expectation over the noise
{ω0, ω1, . . .} and the weighting matrices Q and R are as in (1).
The same causality constraint (3) must be obeyed in minimizing
the cost function J . Although it is easy to verify that the term
(Adxk +

∑d
i=1 A

i−1Buk−i) remains as the (optimal) d-step
prediction of the future state xk+d, it is unfortunate that (4) is
no longer an optimal solution if the gain matrix K is the same as
the delay-free case. One such example is given below to show
that (4) is not the controller to minimize (6). Let us consider the
system (5) and the cost function (6) with

A = 1.1, Ā = 0.1, B = 0.2, B̄ = 0.22, d = 2, σ2 = 4
Q = 1, R = 1

and the initial values

x0 = 1, u−1 = 0, u−2 = 0.

By solving the algebraic Riccati equation for K [9], the
gain matrix is given by K = −1.0270 and the correspond-
ing cost of (6) is J∗ = 38.6937. However, if we chose uk =
−0.8807x̂k+2|k, the cost of (6) is calculated to be J� =
35.6268. It is obvious that J∗ > J� and controller with gain
K = −1.0270 is not optimal.

The discussion above leads to a fundamental difficulty
for stochastic systems with multiplicative noises: The well-
celebrated separation principle for stochastic systems with ad-
ditive noises fails to have a similar counterpart for stochastic
systems with multiplicative noises. That is, it is not possible to
simply “plug in” an optimal prediction of the state into a delay-
free design. We also note that the separation principle does
not hold in the case of control-dependent noise and/or state-
dependent noise, as pointed out in [19], [20] and references
therein. Only a suboptimal controller can be obtained there by
applying “enforced separation principle.”

This paper focuses on the LQR control and stabilization
problems for stochastic discrete-time systems as described by
(5). Apart from the general interest of solving these long-
standing problems, we are motivated by recent development
in networked control systems where multiplicative noises and
feedback time delays arise naturally [21]–[25]. Indeed, mul-
tiplicative noises have been used to model packet loss [21],
[24] and time delay that occur for packet transmission in a
communication network [23], [25]. For example, packet loss
and communication delay of the control input in a wireless
networked system can be described as

xk+1 = Exk + γkFuk−d (7)

where d is the transmission delay and γk is a random variable
representing the packet loss, taking value of either 1 (no loss) or
0 (loss), with packet loss probability of p ∈ (0, 1), i.e., P (γk =
0) = p and P (γk = 1) = 1− p. It is easy to verify that (7) is a
special case of (5) with A = E, Ā = 0, B = (1− p)F , B̄ = F ,
and ωk = γk − 1 + p. The stabilization problem for the system
(7) with packet loss only (i.e., d = 0) has been extensively
studied in the recent literature; see, e.g., [21]–[23]. However,
when both packet loss and input delay occur simultaneously,

the LQR control and stabilization problems for the system (7)
are much more complicated and largely unsolved.

It is true that any control problem for discrete-time systems
with time delays can be converted into one for a delay-free
system using the well-known lifting technique, but this will lead
to computational burden, as pointed out by Tadmor and Mirkin
[26]. This approach is not elegant conceptually. Besides, the
state feedback control problem will become an output feedback
problem which tends to alter the nature of the original problem.

Instead, this paper shall develop a direct approach based
on the solution to a delayed forward backward stochastic
difference equation (D-FBSDE), which will lead to a non-
homogeneous relationship between the optimal state and the
costate. The main contributions of this paper are as follows: An
explicit solution to the D-FBSDE is presented. Using this solu-
tion, a necessary and sufficient condition for the finite-horizon
optimal control problem is given in terms of the solution to
a Riccati-ZXL difference equation. We then generalize the
solution to the infinite-horizon case. Subsequently, a necessary
and sufficient condition for the stabilization of the stochastic
delayed systems is developed.

The rest of the paper is organized as follows. The finite-
horizon LQR problem is studied in Section II. The solutions
for the infinite-horizon case are given in Section III. Section IV
generalizes the above results to systems with multiple multi-
plicative noises. Numerical examples are given in Section V.
Conclusions are provided in Section VI. Relevant proofs are
detailed in Appendices. This paper is a companion of our
earlier work [27] where results for continuous-time systems are
presented.

Notation: Rn stands for the n−dimensional Euclidean
space; I denotes the unit matrix; The superscript ′ repre-
sents the matrix transpose; A symmetric matrix M > 0 (reps.
≥ 0) means that it is positive definite (reps. positive semi-
definite); {Ω,F ,P, {Fk}k≥0} denotes a complete probability
space on which a scalar white noise ωk is defined such that
{Fk}k≥0 is the natural filtration generated by ωk, i.e., Fk =
σ{ω0, . . . , ωk}, augmented by all the P−null sets in F [28];
x̂k|m

.
= E[xk|Fm−1] denotes the conditional expectation of

xk with respect to Fm−1; a.s. means almost surely as in the
probability theory.

II. FINITE-HORIZON STOCHASTIC LQR

A. Problem Statement

Consider the discrete-time stochastic system (5) and the
following finite-horizon cost function:

JN = E

(
N∑

k=0

x′
kQxk +

N∑
k=d

u′
k−dRuk−d

+ x′
N+1PN+1xN+1

)
(8)

where Q, R, and PN+1 are positive semi-definite matrices,
and N is the horizon length. In view of the fact xk de-
pends on ωk−1, ωk−2, . . . (from (5)), the causality constraint
(3) means that uk must be Fk−1-measurable, where Fk−1 has
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been defined in Introduction. Thus, the optimal stochastic LQR
problem to be addressed is stated as follows:

Problem 1: Find a Fk−1-measurable uk such that (8) is
minimized, subject to (5).

B. Solution to Problem 1

Following the results in [29], we apply Pontryagin’s maxi-
mum principle to the system (5) with the cost function (8) to
yield the following costate equations:

λN =PN+1xN+1 (9)
λk−1 =E [A′

kλk|Fk−1] +Qxk, k = 0, . . . , N (10)
0 =E [B′

kλk|Fk−d−1] +Ruk−d, k = d, . . . , N (11)

where λk is the costate and

Ak
.
= A+ ωkĀ, Bk

.
= B + ωkB̄.

Next, we define a set of matrix sequences Υk, Mk, and P i
k,

i = 1, 2, . . . , d+ 1, by initializing the terminal values P 1
N+1 =

PN+1, P
i
N+1 = 0, i ≥ 2 and making the following backwards

recursion for k = N,N − 1, . . . , d:

Υk =

d+1∑
j=1

B′P j
k+1B + σ2B̄′P 1

k+1B̄ +R (12)

Mk =

d+1∑
j=1

B′P j
k+1A+ σ2B̄′P 1

k+1Ā (13)

P 1
k =A′P 1

k+1A+ σ2Ā′P 1
k+1Ā+A′P d+1

k+1A+Q (14)
P 2
k = −M ′

kΥ
−1
k Mk (15)

P i
k =A′P i−1

k+1A, i = 3, . . . , d+ 1. (16)

In (15), it is assumed that Υk is invertible. If this is not the
case, the recursion stops.

Remark 1: Let Zk =
∑d+1

i=1 P i
k and Xk = P 1

k . By taking the
sum on both sides of (14), (15), and (16) from i = 3 to d+ 1,
we obtain the following coupled equations:

Zk =A′Zk+1A+ σ2Ā′Xk+1Ā+Q− Lk (17)

Xk =Zk +

d−1∑
i=0

(A′)
i
Lk+iA

i (18)

where

Lk =M ′
kΥ

−1
k Mk (19)

Υk =B′Zk+1B + σ2B̄′Xk+1B̄ +R (20)
Mk =B′Zk+1A+ σ2B̄′Xk+1Ā (21)

with the terminal values ZN+1 = PN+1 and XN+1 = PN+1.
Conversely, suppose there exist matrices Zk and Xk obeying
(17)–(21), it is easy to construct P i

k, i = 1, . . . , d+ 1 to satisfy
(12)–(16).

For the convenience of the following discussions, equation
(17), (18) will be termed Riccati-ZXL difference equation.

The main result of this section is given below.
Theorem 1: Problem 1 has a unique solution if and only

if the recursion (12)–(16) is well defined, i.e., Υk, k = N,

N − 1, . . . , d, are all invertible. If this condition holds, then the
optimal controller uk is given by

uk = −Υ−1
k+dMk+dx̂k+d|k (22)

for k = 0, 1, . . . , N − d, where

x̂k+d|k
.
= E[xk+d|Fk−1] = Adxk +

d∑
i=1

Ai−1Buk−i. (23)

The associated optimal cost is given by

J�
N = E

[
d−1∑
i=0

x′
iQxi + x′

dP
1
d xd + x′

d

d−1∑
i=0

P i+2
d x̂d|i

]
(24)

which depends solely on the initial values x0, u−1, . . . , u−d,
where

x̂d|i = E[xd|Fi−1] = Ad−ixi +
d−i∑
j=1

Aj−1Bu−j (25)

for i = 0, . . . , d− 1. Moreover, the optimal costate λk−1 and
state xk satisfy the following non-homogeneous relationship:

λk−1 = P 1
kxk +

d+1∑
i=2

P i
kx̂k|k−d+i−2, k = d, . . . , N + 1. (26)

Proof: See Appendix A. �
Remark 2: For a delay-free stochastic system, i.e., d = 0,

(18) implies that Zk = Xk, then Riccati-ZXL difference equa-
tion (17), (18) is reduced to the following standard generalized
Riccati equation:

Zk = A′Zk+1A+ σ2Ā′Zk+1Ā+Q− Lk (27)

where

Lk =M ′
kΥ

−1
k Mk (28)

Υk =B′Zk+1B + σ2B̄′Zk+1B̄ +R (29)

Mk =B′Zk+1A+ σ2B̄′Zk+1Ā (30)

with the terminal value ZN+1 = PN+1. The optimal controller
reduces to

uk = −Υ−1
k Mkxk

which is exactly the result of the delay-free stochastic LQR [8].
Remark 3: For a deterministic system, i.e., Ā and B̄ are zero,

Riccati-ZXL difference equation (17), (18) is then reduced to
the following standard Riccati equation:

Zk = A′Zk+1A+Q− Lk

where

Lk =M ′
kΥ

−1
k Mk

Υk =B′Zk+1B +R

Mk =B′Zk+1A.
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In this case, (22) and (26) are reduced to

uk = −Υ−1
k+dMk+dxk+d

= −Υ−1
k+dMk+d

(
Adxk +

d∑
i=1

Ai−1Buk−i

)
, k ≥ 0

λk−1 =

d+1∑
i=1

P i
kxk = Zkxk, k ≥ d.

Hence, Theorem 1 contains the results for deterministic LQR
control with input delay as a special case.

III. INFINITE-HORIZON STOCHASTIC LQR

A. Problem Formulation

In this section, we will solve the infinite-horizon stochastic
LQR problem for the system (5) with the cost function (6). In
conjunction with this, the stabilization problem will be studied.

We start with some definitions.
Definition 1: System (5) with u = 0 is called asymptotically

mean-square stable if for any initial values x0, u−1, . . . , u−d,
there holds

lim
k→∞

E (x′
kxk) = 0.

Definition 2: System (5) is said to be stabilizable in the
mean-square sense if there exists a Fk−1-measurable con-
troller uk = Lxk +

∑d
i=1 Liuk−i, k ≥ 0 with constant matri-

ces L and Li, i = 1, . . . , d, satisfying limk→∞ E[u′
kuk] = 0,

such that the closed-loop system of (5) is asymptotically mean-
square stable.

Definition 3: [9] The following stochastic system:

xk+1 = (A+ ωkĀ)xk, yk = Cxk (31)

is said to be exactly observable (or (A, Ā, C) is said to be
exactly observable, for short), if for any N ≥ n

yk ≡ 0, a.s. ∀0 ≤ k ≤ N ⇒ x0 = 0.

The problem to be dealt with in this section is described as
follows.

Problem 2: Find the Fk−d−1-measurable controller uk−d =
Kx̂k|k−d, k ≥ d, such that the system xk+1 = Akxk +
BkKx̂k|k−d is asymptotically mean-square stable and that the
cost function (6) is minimized.

To guarantee the solvability of Problem 2, we make two
assumptions. The first one guarantees the uniqueness of the
optimal controller and the second one is standard for mean-
square stabilization [4].

Assumption 1: R is positive definite and Q is positive semi-
definite, i.e., Q = C ′C for some matrix C.

Assumption 2: (A, Ā, C) is exactly observable.

B. Solution to Problem 2

To make the time horizon N explicit in the finite-horizon
stochastic LQR problem, we rewrite Υk, P

i
k, and Mk in

(12)–(16) as Υk(N), P i
k(N), and Mk(N). To facilitate our

discussion in the sequel, the terminal weight matrix PN+1 in
the cost function (8) will be set to be zero.

Lemma 1: Under the condition R > 0, Problem 1 has a
unique solution for any terminal time N ≥ d.

Proof: See Appendix B. �
Remark 4: Under the condition R > 0, it follows from

Lemma 1 that:

Υk(N + 1) > 0, k = N + 1, . . . , d.

It is also easy to see from (12)–(16) that Υk(N + 1) can be
calculated for k = d− 1, d− 2, . . . , 0 too. Moreover, noting
PN+1 = 0, it follows that:

Υd−1(N) = Υd(N + 1) > 0.

Inductively, it can be derived that for any k = 0, . . . , d− 1
and N

Υk(N) > 0.

Lemma 2: Take any N ≥ d. If R > 0, then for k =
N, . . . , 0, P i

k(N) obtained from (12)–(16) satisfy the following:

P 1
k (N) ≥ 0 (32)

P i
k(N) ≤ 0, i = 2, . . . , d+ 1 (33)

d+1∑
i=1

P i
k(N) ≥ 0. (34)

Proof: See Appendix C. �
Lemma 3: Under Assumptions 1 and 2, there exists a

positive integer N0 ≥ d, such that
∑d+1

i=1 P i
d(N0) is positive

definite.
Proof: See Appendix D. �

Theorem 2: Under Assumptions 1 and 2, if system (5) is
stabilizable in the mean-square sense, we have the following
properties:

1) For any k ≥ 0 and i = 1, . . . , d+ 1, P i
k(N) is convergent

when N → ∞, i.e., P i .
= limN→∞ P i

k(N) exists and it
is independent of k. Moreover, P i satisfies the following
coupled algebraic equation:

P 1 =A′P 1A+ σ2Ā′P 1Ā+A′P d+1A+Q (35)
P 2 = −M ′Υ−1M (36)
P i =A′P i−1A, i = 3, . . . , d+ 1 (37)

where

Υ =

d+1∑
i=1

B′P iB + σ2B̄′P 1B̄ +R > 0 (38)

M =

d+1∑
i=1

B′P iA+ σ2B̄′P 1Ā. (39)

2) The matrix
∑d+1

i=1 P i is positive definite.
Proof: See Appendix E. �

Now we are in the position to give the main result of this
section.
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Theorem 3: Under Assumptions 1 and 2, the system (5) is
stabilizable in the mean-square sense if and only if there exists
a unique solution to (35)–(39) such that

∑d+1
i=1 P i > 0. In this

case, the controller

uk = −Υ−1Mx̂k+d|k, k ≥ 0 (40)

stabilizes (5) in the mean-square sense and minimizes the cost
function (6). The optimal cost is given by

J0 = x′
0

d+1∑
i=1

P ix0 −
d−1∑
k=0

u′
k−dRuk−d +

d−1∑
k=0

E [(uk−d+

Υ−1Mx̂k|k−d)
′Υ(uk−d + Υ−1Mx̂k|k−d)

]
(41)

where

x̂k|k−d = Akx0 +

k−1∑
j=0

Ak−1−jBuj−d, k = 0, . . . , d− 1.

Proof: See Appendix F. �
Similar to the discussions in Remark 1, let Z =

∑d+1
i=1 P i

and X = P 1. By taking the sum on both sides of (35), (36),
and (37) from i = 3 to d+ 1, we obtain the following coupled
algebraic equations:

Z =A′ZA+ σ2Ā′XĀ+Q− L (42)

X =Z +

d−1∑
i=0

(A′)
i
LAi (43)

with

L =M ′Υ−1M (44)
Υ =B′ZB + σ2B̄′XB̄ +R (45)
M =B′ZA+ σ2B̄′XĀ. (46)

For the convenience of the following discussions, equation (42),
(43) will be termed algebraic Riccati-ZXL equation.

Thus Theorem 3 can be restated as follows.
Corollary 1: Under Assumptions 1 and 2, the system (5) is

stabilizable in the mean-square sense if and only if algebraic
Riccati-ZXL equation (42), (43) admits a unique solution with
Z > 0. In this case, the controller (40) stabilizes the system (5)
and minimizes the cost function (6). The corresponding optimal
cost is given by (41).

IV. STOCHASTIC LQR WITH MULTIPLE

MULTIPLICATIVE NOISES

In this section, we generalize the results in the previous sec-
tions to stochastic systems with multiple multiplicative noises.
Consider the following system:

xk+1 =

(
A+

r∑
i=1

ωk(i)Āi

)
xk +

(
B +

r∑
i=1

ωk(i)B̄i

)
uk−d

(47)
where the variance of the noise is given by

E (ωk(i)ωk(j)) = σ2
ij , i, j = 1, . . . , r.

The finite-horizon and infinite-horizon cost functions are still as
in (8) and (6) respectively. Accordingly, E represents the math-

ematical expectation over the noises {ωk(i), i = 1, . . . , r, k ≥
0}. It turns out that the change of the system from (5) to
(47) does not cause any fundamental difficulties. Our approach
developed in the previous sections is still effective to deal with
(47). Thus, it is easy to develop a counterpart of Theorems 1–3.

We first generalize the backwards recursion in (12)–(16) as
follows: For k = N,N − 1, . . . , d, compute

Υk =

d+1∑
j=1

B′P j
k+1B +

r∑
m=1

r∑
n=1

σ2
mnB̄

′
mP 1

k+1B̄n +R

(48)

Mk =

d+1∑
j=1

B′P j
k+1A+

r∑
m=1

r∑
n=1

σ2
mnB̄

′
mP 1

k+1Ān (49)

P 1
k =A′P 1

k+1A+
r∑

m=1

r∑
n=1

σ2
mnĀ

′
mP 1

k+1Ān

+A′P d+1
k+1A+Q (50)

P 2
k = −M ′

kΥ
−1
k Mk (51)

P i
k =A′P i−1

k+1A, i = 3, . . . , d+ 1 (52)

with the same terminal values P 1
N+1 = PN+1, P i

N+1 = 0, i =
2, . . . , d+ 1.

Theorem 4: In the finite-horizon case, the stochastic LQR
problem has a unique solution if and only if Υk defined by the
backwards recursion (48)–(52) is positive definite for all k =
N,N − 1, . . . , d. In this case, the optimal controller is given by

uk = −Υ−1
k+dMk+dx̂k+d|k, k = 0, 1, . . . , N − d (53)

with x̂k+d|k given by (23).
Theorem 5: Suppose R is positive definite, Q = C ′C is posi-

tive semi-definite and (A, Ā1, . . . , Ār|C) is exactly observable.
Then, the system (47) is stabilizable in the mean-square sense
if and only if there exists a unique solution to the following
coupled algebraic equations:

P 1 =A′P 1A+

r∑
m=1

r∑
n=1

σ2
mnĀ

′
mP 1Ān +A′P d+1A+Q

P 2 = −M ′Υ−1M

P i =A′P i−1A, i = 3, . . . , d+ 1

with

Υ =
d+1∑
i=1

B′P iB +
r∑

m=1

r∑
n=1

σ2
mnB̄

′
mP 1B̄n +R > 0

M =
d+1∑
i=1

B′P iA+
r∑

m=1

r∑
n=1

σ2
mnB̄

′
mP 1Ān

such that
∑d+1

i=1 P i > 0. In this case, the controller that sta-
bilizes (47) in the mean-square sense and minimizes the cost
function (6) is given by

uk = −Υ−1Mx̂k+d|k, k ≥ 0 (54)

with x̂k+d|k given by (23).
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V. NUMERICAL EXAMPLES

A. The Finite-Horizon Case

Consider the system (5) with

A = 1.1, Ā = 0.1, B = 0.2, B̄ = 0.1, d = 2, σ2 = 1

x0 = 1 , u−1 = −1, u−2 = 2

and the cost function (8) with

Q = 1, R = 1, N = 4, PN+1 = 0.

By applying Theorem 1, direct calculation yields

P 1
2 = 3.7084, P 1

3 = 2.2200, P 1
4 = 1

P 2
2 = −0.2250, P 2

3 = −0.0504, P 2
4 = 0

P 3
2 = −0.0610, P 3

3 = 0, P 3
4 = 0

Υ2 = 1.1090,Υ3 = 1.0500,Υ4 = 1

M2 = 0.4995,M3 = 0.2300,M4 = 0.

Note that Υi > 0 for i = 2, 3, 4, thus there is a unique solution
to the stochastic LQR problem according to Theorem 1. The
optimal controller is calculated from (22) as

u0 = −0.4504x̂2|0

u1 = −0.2190x̂3|1

u2 = 0

and the optimal value of (8) is J�
N = 10.9455.

B. The Infinite-Horizon Case

Consider the system (5) with

A = 1.3, Ā = 0.1, B = 0.2, B̄ = 0.1, d = 5, σ2 = 1

x0 = 0.1, u−1 = 0.1, u−2 = −0.2, u−3 = −0.1

u−4 = 0.3, u−5 = −0.2

and the cost function (6) with R = Q = 1 > 0. Note that the
Assumptions 1 and 2 are satisfied. It can be verified by direct
calculation that

P 1 = 4274.8218, P 2 = −217.1339, P 3 = −366.9563

P 4 = −620.1561, P 5 = −1048.0639, P 6 = −1771.2279

Υ = 53.7996,M = 108.0820

is the unique solution to (35)–(39) and
∑d+1

i=1 P i = 251.2836 >
0. According to Theorem 3, there exists a unique optimal
controller to stabilize system (5) in the mean-square sense, and
the controller is given by

uk = −Υ−1Mx̂k+5|k = −2.0090x̂k+5|k, k ≥ 0.

From (41), it can be derived that the optimal cost is J0 =
38.3066. A simulation result of the designed controller is shown
in Fig. 1. It can be seen that the regulated state is asymptotically

Fig. 1. Dynamic Behavior of E(x′
kxk).

Fig. 2. Dynamic Behavior of E[(x�
k)

′x�
k].

mean-square stable. To show the effectiveness of our approach,
we select the following controller:

u�
k = KE[x�

k+5|Fk−1] = −2.7686E[x�
k+5|Fk−1], k ≥ 0

whose gain K and the predictor are separated enforcedly,
i.e., K = −(B′ZB + σ2B̄′ZB̄)−1(B′ZA+ σ2B̄′ZĀ) with Z
being the solution to the standard generalized algebraic Riccati
equation (the algebraic version of (27)–(30)). In this case, the
corresponding state is given in Fig. 2. It can be observed that
the chosen controller fails to stabilize system (5).

VI. CONCLUSION

In this paper, the optimal control and stabilization problems
for stochastic discrete-time systems with multiplicative noises
and input delay have been studied. The necessary and suffi-
cient condition for the existence of a unique solution to the
finite-horizon stochastic control has been obtained, and optimal
controller for stochastic LQR has been presented. Under the
standard assumption of exactly observability, it has been proved
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that the stochastic system with a single input delay is stabi-
lizable in the mean-square sense if and only if one algebraic
Riccati-ZXL equation has a unique solution such that the
specific matrix (

∑d+1
i=1 P i) is positive definite. The presented

results show that optimal control for stochastic systems with
input delay is fundamentally different from optimal control
for deterministic systems with input delay and much more
complicated than the optimal control for stochastic systems
without input delay. Although a single input delay is considered,
we expect that the results in this paper pave new ways for
optimal control of stochastic systems with multiple input delays
and/or state delays.

APPENDIX A
PROOF OF THEOREM 1

Proof—“Necessity”: Suppose Problem 1 has a unique
solution. We will show by induction that Υk in (12) is invertible
for all k = N,N − 1, . . . , d and the optimal controller is given
by (22). Denote

J(k)
.
= E

[
N∑
i=k

(
x′
iQxi + u′

i−dRui−d

)
+ x′

N+1PN+1xN+1

]

for k = d, . . . , N . Firstly, we note the terminal conditions (9)
and P 1

N+1 = PN+1, P
i
N+1 = 0 for i ≥ 2. It is obvious that (26)

holds for k = N + 1. For k = N , note that

J(N) = E
[
x′
NQxN + u′

N−dRuN−d + x′
N+1PN+1xN+1

]
.

Using (5), it is clear that J(N) can be expressed as a quadratic
function of xN and uN−d. The uniqueness of the optimal uN−d

implies that the quadratic term of uN−d is positive for any
nonzero uN−d. Setting xN = 0, we obtain

J(N) =E
[
u′
N−dRuN−d + (BNuN−d)

′PN+1BNuN−d

]
=u′

N−dΥNuN−d > 0.

It follows that ΥN > 0.
Next the optimal uN−d is to be calculated. By making use of

(5), (9), and (11), it yields that

0 = E [B′
NPN+1AN ] x̂N |N−d +ΥNuN−d.

Hence, the optimal uN−d is given by

uN−d = −Υ−1
N MN x̂N |N−d (55)

which is (22) with k = N − d.

Now let us show that λN−1 has the form as (26). From (10),
(5), and (55), it follows that:

λN−1 =E [A′
NλN |FN−1] +QxN

=E [A′
NPN+1xN+1|FN−1] +QxN

=E [A′
NPN+1ANxN |FN−1]

+ E (A′
NPN+1BNuN−d|FN−1] +QxN

= (E [A′
NPN+1AN ] +Q)xN

− E [A′
NPN+1BN ] Υ−1

N MN x̂N |N−d.

In view of the definition of P i
N in (14)–(16), we have verified

(26) for k = N .
To complete the induction proof, we take any n with d ≤ n ≤

N , and assume that Υk in (12) is invertible and that the optimal
uk−d and λk−1 are as (22) and (26) for all k ≥ n+ 1. We show
that these conditions will also hold for k = n. Set uk−d to be
optimal for all k ≥ n+ 1. We first verify the invertibility of Υn.
For this, following the argument for ΥN above, we set xn = 0
and then check the quadratic term of un−d in J(n). By applying
(5), (10), and (11), for k ≥ n+ 1, we get

E
[
x′
kλk−1 − x′

k+1λk

]
= E [x′

kE (A′
kλk|Fk−1)

+ x′
kQxk − x′

kA
′
kλk − u′

k−dB
′
kλk

]
= E (x′

kQxk)− E
[
E
(
u′
k−dB

′
kλk|Fk−d−1

)]
= E (x′

kQxk)− E
[
u′
k−dE (B′

kλk|Fk−d−1)
]

= E (x′
kQxk) + E

(
u′
k−dRuk−d

)
.

Adding from k = n+ 1 to k = N on both sides of the above
equation yields that

E
[
x′
n+1λn − x′

N+1PN+1xN+1

]
=

N∑
k=n+1

E
[
x′
kλk−1 − x′

k+1λk

]

=

N∑
k=n+1

E
[
x′
kQxk + u′

k−dRuk−d

]
.

Hence, we obtain

J(n)

= E
[
x′
nQxn + u′

n−dRun−d

]

+ E

[
N∑

k=n+1

(
x′
kQxk+u′

k−dRuk−d

)
+x′

N+1PN+1xN+1

]

= E
[
x′
nQxn + u′

n−dRun−d

]
+ E

[
x′
n+1λn

]
= E

(
u′
n−dRun−d

)
+ E

(
u′
n−dB

′
nλn

)
. (56)
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By applying (26) and (5), λn can be written as

λn =P 1
n+1xn+1 +

d+1∑
i=2

P i
n+1x̂n+1|n−d+i−1

=P 1
n+1Anxn + P 1

n+1Bnun−d

+

d+1∑
i=2

P i
n+1

[
Ax̂n|n−d+i−1 +Bun−d

]

=P 1
n+1Anxn +

d+1∑
i=2

P i
n+1Ax̂n|n−d+i−1

+

(
P 1
n+1Bn +

d+1∑
i=2

P i
n+1B

)
un−d. (57)

Using xn = 0 (thus x̂n|n−d+i−1 = 0) and plugging the above
equation into (56), we get

J(n) =E
[
u′
n−dB

′
nP

1
n+1Bnun−d

]
+ E

[
u′
n−d

d+1∑
i=2

B′
nP

i
n+1Bun−d

]

+ E
[
u′
n−dRun−d

]
=u′

n−dΥnun−d.

The uniqueness of the optimal control implies that J(n) must
be positive for any un−d �= 0. Hence, Υn > 0.

To compute the optimal un−d, substituting (57) into (11)
yields

0 =E

[
B′

nP
1
n+1Anxn +

d+1∑
i=2

B′
nP

i
n+1Ax̂n|n−d+i−1

+

(
B′

nP
1
n+1Bn +

d+1∑
i=2

B′
nP

i
n+1B

)
un−d|Fn−d−1

]

+Run−d

=E

[
E
(
B′

nP
1
n+1An

)
xn+

d+1∑
i=2

E
(
B′

nP
i
n+1A

)
x̂n|n−d+i−1

|Fn−d−1

]
+E

[
B′

nP
1
n+1Bn+

d+1∑
i=2

B′
nP

i
n+1B

]
un−d

+Run−d

=

(
E
[
B′

nP
1
n+1An

]
+

d+1∑
i=2

B′P i
n+1A

)
x̂n|n−d

+Υnun−d.

The optimal un−d is derived as

un−d = −Υ−1
n Mnx̂n|n−d (58)

where Mn is as (16). Hence, (22) holds for k = n.

Now we show that λn−1 is of the form as (26). In terms of
(10), (57), and (58), we get

λn−1

= E

[ (
A′

nP
1
n+1An +A′

nP
d+1
n+1A

)
xn

−
(

d+1∑
i=2

A′
nP

i
n+1B +A′

nP
1
n+1Bn

)
Υ−1

n Mnx̂n|n−d

+

d∑
i=2

A′
nP

i
n+1Ax̂n|n−d+i−1|Fn−1

]
+Qxn

=
[
E
(
A′

nP
1
n+1An +A′

nP
d+1
n+1A

)
+Q

]
xn

− E

(
d+1∑
i=2

A′
nP

i
n+1B +A′

nP
1
n+1Bn

)
Υ−1

n Mnx̂n|n−d

+

d+1∑
i=3

A′P i−1
n+1Ax̂n|i+n−d−2.

By means of (14)–(16), the above equation can be written as
(26). This ends the proof of necessity.

“Sufficiency” Suppose (12) is true, i.e., Υk > 0 for k ≥ d.
The uniqueness of the solution to Problem 1 is to be shown.
Denote by

VN (k, xk)
.
= E

[
x′
kP

1
kxk + x′

k

d+1∑
i=2

P i
kx̂k|i+k−d−2

]
. (59)

Using (5) and (12)–(16), we have

VN (k, xk)− VN (k + 1, xk+1)

=E

[
− x′

k

(
A′P 1

k+1A+σ2Ā′P 1
k+1Ā+A′P d+1

k+1A−P 1
k

)
xk

− 2u′
k−d

(
σ2B̄′P 1

k+1Ā+B′
d+1∑
i=1

P i
k+1A

)
x̂k|k−d

− x′
kA

′
d+1∑
i=3

P i−1
k+1Ax̂k|i+k−d−2

+ x′
k

d+1∑
i=3

P i
kx̂k|i+k−d−2 + x′

kP
2
k x̂k|k−d

− u′
k−d

(
σ2B̄′P 1

k+1B̄ +B′
d+1∑
i=1

P i
k+1B

)
uk−d

]

= E
[
x′
kQxk − 2u′

k−dMkx̂k|k−d

+ x̂′
k|k−dP

2
k x̂k|k−d − u′

k−d(Υk −R)uk−d

]
= E

[
x′
kQxk + u′

k−dRuk−d −
(
uk−d +Υ−1

k Mkx̂k|k−d

)′
× Υk

(
uk−d +Υ−1

k Mkx̂k|k−d

) ]
. (60)
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Adding from k = d to k = N on both sides of (60), the cost
function (8) is rewritten as

JN =E

[
d−1∑
k=0

x′
kQxk + x′

dP
1
d xd + x′

d

d+1∑
i=2

P i
dx̂d|i−2

]

+ E

[
N∑

k=d

(
uk−d +Υ−1

k Mkx̂k|k−d

)′
Υk

×
(
uk−d +Υ−1

k Mkx̂k|k−d

) ]
. (61)

Note that for k ≤ d, xk is determined by the initial value
x0, u−1, . . . , u−d, and that Υk is positive definite. Thus, the
unique optimal control exists and is given by (22) and the
optimal cost is given by (24). This completes the sufficiency
proof. �

APPENDIX B
PROOF OF LEMMA 1

Proof: We show by induction that Problem 1 has a unique
solution for any terminal time N ≥ d. When N = d, ΥN (N)
is given by

ΥN (N) =B′
d+1∑
i=1

P i
N+1(N)B + σ2B̄′P 1

N+1(N)B̄ +R

=R > 0.

In view of Theorem 1, Problem 1 with N = d has a unique
solution.

Now suppose the solution to Problem 1 with N = m is
unique for some m ≥ d, i.e.,

Υk(m) > 0, k = m, . . . , d. (62)

It follows that:

P 2
k (m) = −M ′

k(m)Υ−1
k (m)Mk(m) ≤ 0 (63)

P i
k(m) =A′P i−1

k+1(m)A ≤ 0, i = 3, . . . , d+ 1. (64)

Let the system (5) start at d with an arbitrary initial value xd

and denote

Fm
.
=

m∑
k=d

E
(
x′
kQxk + u′

k−dRuk−d

)
. (65)

By applying (24) of Theorem 1, it is apparent that the optimal
value of (65) is given by

Fm =E

[
x′
dP

1
d (m)xd + x′

d

d+1∑
i=2

P i
d(m)x̂d|i−2

]

=x′
dP

1
d (m)xd +

d+1∑
i=2

x′
dP

i
d(m)xd

=x′
d

d+1∑
i=1

P i
d(m)xd ≥ 0 (66)

where the second equality is based on the fact that x̂d|i−2 = xd

with i = 2, . . . , d+ 1. The arbitrariness of xd yields

d+1∑
i=1

P i
d(m) ≥ 0 (67)

and further

P 1
d (m) ≥ −

d+1∑
i=2

P i
d(m) ≥ 0.

Note that the variables given in (12)–(16) are time invariant for
N due to the choice that PN+1 = 0, i.e.,

P i
k(N) =P i

k−s(N − s), i = 1, . . . , d+ 1 (68)
Υk(N) =Υk−s(N − s),Mk(N) = Mk−s(N − s),

d+ s ≤ k ≤ N, N ≥ d, 0 ≤ s ≤ N − d. (69)

For N = m+ 1, it follows from (62) that:

Υk(m+ 1) = Υk−1(m) > 0, k = m+ 1, . . . , d+ 1. (70)

For k = d, we have

Υd(m+ 1)

= B′
d+1∑
i=1

P i
d+1(m+ 1)B + σ2B̄′P 1

d+1(m+ 1)B̄ +R

= B′
d+1∑
i=1

P i
d(m)B + σ2B̄′P 1

d (m)B̄ +R ≥ R > 0.

Thus Problem 1 has a unique solution with N = m+ 1 from
Theorem 1. Now the uniqueness of the solution to Problem 1
for any terminal time N ≥ d is shown. �

APPENDIX C
PROOF OF LEMMA 2

Proof: Recall the results of Theorem 1 that Problem 1 has
unique solution implies that Υk(N) > 0 for any N ≥ d and
d ≤ k ≤ N . If 0 ≤ k < d, there holds Υk(N) = Υk+d(N + d)
due to the time-invariance of (12)–(16). Υk+d(N + d) > 0
since the solution to Problem 1 with terminal time N + d
is unique. Thus Υk(N) > 0 for any 0 ≤ k ≤ N . Therefore,
similar to (63) and (64) in Appendix B, it is easily known
that P i

k(N) ≤ 0 (i = 2, . . . , d) for any N ≥ d. Noting the time-
invariance of P i

k(N) = P i
d(N + d− k) and (67), we have∑d

i=1 P
i
k(N) ≥ 0. Then P 1

k (N) ≥ 0 follows immediately. This
ends the proof of Lemma 2. �

APPENDIX D
PROOF OF LEMMA 3

Proof: Under Assumption 1, it follows from Lemma 2
that

∑d+1
i=1 P i

d(N) ≥ 0 for all N ≥ d, we only need to show
that there exists N0 ≥ d such that

∑d+1
i=1 P i

d(N0) is invertible.
Suppose this is not the case. Then we get an non-empty set

XN
.
=

{
x ∈ Rn : x �= 0,

d+1∑
i=1

P i
d(N)x = 0

}
.
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The positive semi-definiteness of
∑d+1

i=1 P i
d(N) implies that

XN =

{
x ∈ Rn : x �= 0, x′

d+1∑
i=1

P i
d(N)x = 0

}
.

Now the monotonicity of
∑d+1

i=1 P i
d(N) with respect to N is to

be proven. Similar to the proof of Lemma 1, the optimal cost of
(65) satisfies

x′
d

d+1∑
i=1

P i
d(N)xd = F 0

N ≤ F 0
N+1 = x′

d

d+1∑
i=1

P i
d(N + 1)xd.

The arbitrariness of xd implies
d+1∑
i=1

P i
d(N) ≤

d+1∑
i=1

P i
d(N + 1) (71)

i.e.,
∑d+1

i=1 P i
d(N) increases with respect to N . Furthermore, it

follows that:

x′
d+1∑
i=1

P i
d(N + 1)x = 0 ⇒ x′

d+1∑
i=1

P i
d(N)x = 0

i.e., XN+1 ⊂ XN . Each XN is a non-empty finite-dimensional
set. So

1 ≤ · · · ≤ dim(Xd+2) ≤ dim(Xd+1) ≤ dim(Xd) ≤ n

where dim represents the dimension of the set. Thus there must
exist N1, such that for any N ≥ N1

dim(XN ) = dim(XN1
)

which yields that XN = XN1
, and thus⋂

N≥d

XN = XN1
�= 0.

So there exists a nonzero vector x ∈ XN1
such that

x′
d+1∑
i=1

P i
d(N)x = 0, ∀N ≥ d.

Let the value xd be equal to x. Then the optimal value of (65)
is as

FN = min

{
N∑

k=d

E
(
x′
kQxk + u′

k−dRuk−d

)}

=

N∑
k=d

E
(
x∗
k
′Qx∗

k + u∗
k−d

′Ru∗
k−d

)

=x′
d+1∑
i=1

P i
d(N)x

=0

where u∗
k−d and x∗

k represent the optimal controller and the
optimal state trajectory, respectively. Note that R > 0 and Q =
C ′C ≥ 0. It follows that:

u∗
k−d = 0, Cx∗

k = 0, d ≤ k ≤ N, N ≥ d.

Then system (5) is reduced to

x∗
k+1 =Akx

∗
k

Cx∗
k =0, ∀k ≥ d.

Recalling the definition of exactly observability of (A, Ā, C),
it yields that xd = x = 0, which is a contradiction to
x �= 0. Therefore, there exists some N0 ≥ d such that∑d+1

i=1 P i
d(N0) > 0. �

APPENDIX E
PROOF OF THEOREM 2

Proof: 1). First, we show that P 1
0 (N) is increasing with

respect to N . To this end, we will calculate the optimal JN
for the case ui = 0 for all i = −d, . . . ,−1 but x0 is arbitrary.
Recall that (60) with k ≥ d was derived by using (5) and
(12)–(16). As pointed out in Remark 4, the recursion (12)–(16)
is also meaningful for k = d− 1, . . . , 0. So (60) holds for k =
d− 1, . . . , 0 too. Then adding from k = 0 to k = N on both
sides of (60) yields

VN (0, x0)

=

N∑
k=0

[VN (k, xk)− VN (k + 1, xk+1)]

=

N∑
k=0

E
[
x′
kQxk + u′

k−dRuk−d

−
(
uk−d+Υ−1

k (N)Mk(N)x̂k|k−d

)′
Υk(N)

×
(
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

)]
.

So

JN =

N∑
k=0

E (x′
kQxk) +

N∑
k=d

E
(
u′
k−dRuk−d

)

=VN (0, x0)−
d−1∑
k=0

E
(
u′
k−dRuk−d

)

+

N∑
k=0

E

[ (
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

)′
Υk(N)

×
(
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

) ]
.

In the above equation, let uk−d, k = d, . . . , N , be optimal, i.e.,
uk−d = −Υ−1

k (N)Mk(N)x̂k|k−d. Then

J�
N =VN (0, x0)−

d−1∑
k=0

E
(
u′
k−dRuk−d

)

+

d−1∑
k=0

E

[ (
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

)′
Υk(N)

×
(
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

) ]
.

By (59), VN (0, x0) is as

VN (0, x0)=E

[
x′
0P

1
0 x0 + x′

0

d+1∑
i=2

P i
0x̂0|i−d−2

]
=x′

0

d+1∑
i=1

P i
0x0.
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where x̂0|i−d−2 = x0 has been applied. Hence

J�
N =E

[
x′
0

d+1∑
i=1

P i
0(N)x0 −

d−1∑
k=0

u′
k−dRuk−d

+
d−1∑
k=0

(
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

)′
Υk(N)

×
(
uk−d +Υ−1

k (N)Mk(N)x̂k|k−d

) ]
.

Using ui = 0, i = −d, . . . ,−1, the optimal cost becomes

J�
N =E

[
x′
0

d+1∑
i=1

P i
0(N)x0 −

d−1∑
k=0

x̂′
k|k−dP

2
k (N)x̂k|k−d

]

=x′
0

d+1∑
i=1

P i
0(N)x0 −

d−1∑
k=0

x′
0A

k ′P 2
k (N)Akx0

=x′
0

d+1∑
i=1

P i
0(N)x0 −

d−1∑
k=0

x′
0P

k+2
0 (N)x0

=x′
0P

1
0 (N)x0. (72)

Hence, we have

x′
0P

1
0 (N)x0 = J�

N ≤ J�
N+1 = x′

0P
1
0 (N + 1)x0.

The arbitrariness of x0 implies that P 1
0 (N) increases with

respect to N , i.e., P 1
0 (N + 1) ≥ P 1

0 (N).
Now the boundedness of P 1

0 (N) is to be clarified. Since
system (5) is stabilizable in the mean-square sense, there exists

uk = Lxk +

d∑
i=1

Liuk−i, k ≥ 0 (73)

with L and Li, i = 1, . . . , d, being constant matrices, such that
the closed-loop system of (5) satisfies

lim
k→∞

E(x′
kxk) = 0, lim

k→∞
E(u′

kuk) = 0. (74)

By defining

x̄k
.
=

⎛
⎜⎜⎝

xk

uk−1
...

uk−d

⎞
⎟⎟⎠ , Āk

.
=

⎛
⎜⎜⎜⎜⎝

Ak 0 · · · 0 Bk

0 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎞
⎟⎟⎟⎟⎠

B̂
.
=

⎛
⎜⎜⎜⎜⎝

0
I
0
...
0

⎞
⎟⎟⎟⎟⎠

the system (5) is converted into the following “delay-free”
system:

x̄k+1 = Ākx̄k + B̂uk. (75)

Note that (73) can be rewritten as

uk =Lxk +
d∑

i=1

Liuk−i

=(L L1 · · · Ld )

⎛
⎜⎜⎝

xk

uk−1
...

uk−d

⎞
⎟⎟⎠ .

Denote L̄
.
= (L L1 · · · Ld). Thus uk = L̄x̄k, k ≥ 0. Then the

closed-loop system of (75) is

x̄k+1 = (Āk + B̂L̄)x̄k. (76)

From (74), it can be derived that

lim
k→∞

E (x̄′
kx̄k) = lim

k→∞
E

(
x′
kxk +

d∑
i=1

u′
k−iuk−i

)
= 0

i.e., (76) is asymptotically mean-square stable. By [30], there
exists a constant c > 0, such that for any deterministic initial
value x̄0, we have

∞∑
k=0

E(x̄′
kx̄k) ≤ cx̄′

0x̄0. (77)

Select a constant λ, such that Q ≤ λI and L̄′RL̄ ≤ λI . Then

J =

∞∑
k=0

E (x′
kQxk) +

∞∑
k=d

E
(
u′
k−dRuk−d

)

=

∞∑
k=0

E (x′
kQxk) +

∞∑
k=0

E
(
x̄′
kL̄

′RL̄x̄k

)

≤λ

[ ∞∑
k=0

E (x′
kxk) +

∞∑
k=0

E (x̄′
kx̄k)

]

≤ 2λ

∞∑
k=0

E (x̄′
kx̄k) ≤ 2λcx̄′

0x̄0.

Let u−i = 0, i = 1, . . . , d. We have

0 ≤ x′
0P

1
0 (N)x0 = J�

N ≤ J ≤ 2λcx′
0x0

which indicates that 0 ≤ P 1
0 (N) ≤ 2λcI , i.e., P 1

0 (N) is
bounded. Recall that P 1

0 (N) is monotonically increasing.
Hence, it is convergent, i.e.,

lim
N→∞

P 1
0 (N) = P 1.

From (68), we obtain

lim
N→∞

P 1
k (N) = lim

N→∞
P 1
0 (N − k) = P 1.

Therefore, P 1
k (N) is convergent for any k ≥ 0.

In order to show the convergence of P i
k for i = 2, . . . , d+ 1,

we shall prove the convergence of
∑d+1

i=1 P i
k(N) first. In fact,

via (32)–(34), we get

0 ≤
d+1∑
i=1

P i
k(N) ≤ P 1

k (N) = P 1
0 (N − k) ≤ 2λcI
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where the last inequality holds, as shown in the above. Thus∑d+1
i=1 P i

k(N) is bounded. With a similar line to the proof of
Lemma 3, it is easily known that

∑d+1
i=1 P i

d(N) is increasing
on N . So

∑d+1
i=1 P i

k(N) =
∑d+1

i=1 P i
d(N − k + d) is monotoni-

cally increasing with regards to N and thus convergent, in view
of its boundedness.

Further, from (12), (16), (33), and (34)

Υk(N) =B′
d+1∑
i=1

P i
k+1(N)B + σ2B̄′P 1

k+1(N)B̄ +R ≥ R

Mk(N) =B′
d+1∑
i=1

P i
k+1(N)A+ σ2B̄′P 1

k+1(N)Ā.

Since
∑d+1

i=1 P i
k+1(N) and P 1

k+1(N) are convergent as shown
in the above, Υk(N) and Mk(N) converge, i.e.,

lim
N→∞

Υk(N) = Υ ≥ R > 0, lim
N→∞

Mk(N) = M.

Notice that

P 2
k (N) = −M ′

k(N)Υ−1
k (N)Mk(N)

P i
k(N) =A′P i−1

k+1(N)A, i = 3, . . . , d+ 1.

Thus P i
k(N) is convergent for i = 2, . . . , d+ 1 and any k ≥ 0.

By letting N → ∞ on both sides of (12)–(16), it can be derived
that P i, i = 1, . . . , d+ 1 obeys (35)–(39).

2). From Lemma 3, there exists a positive integer N0, such
that

∑d+1
i=1 P i

d(N0) > 0. Since
∑d+1

i=1 P i
d(N) is monotonically

increasing with respect to N , there holds

d+1∑
i=1

P i = lim
N→∞

d+1∑
i=1

P i
d(N) ≥

d+1∑
i=1

P i
d(N0) > 0.

Thus the positive definiteness of
∑d+1

i=1 P i is shown. The proof
of Theorem 2 is now completed. �

APPENDIX F
PROOF OF THEOREM 3

Proof—“Sufficiency”: Assume P i, i = 1, . . . , d+ 1 is a
solution to (35)–(39) such that

∑d+1
i=1 P i > 0. We shall show

that (40) stabilizes system (5) in the mean-square sense. To this
end, define the Lyapunov function candidate V (k, xk) as

V (k, xk)
.
= E

[
x′
kP

1xk + x′
k

d+1∑
i=2

P ix̂k|i+k−d−2

]
. (78)

The claim that V (k, xk) is monotonically decreasing and
bounded with regard to k for k ≥ d is to be proven. Using (5)
and (35)–(39) yields

V (k, xk)− V (k + 1, xk+1)

= E

{
x′
k

(
P 1 −A′P 1A− σ2Ā′P 1Ā−A′P d+1A

)
xk

− 2x̂′
k|k−d

(
A′P 1B+σ2Ā′P 1B̄+A′

d+1∑
i=2

P iB

)
uk−d

− u′
k−d

(
B′P 1B+σ2B̄′P 1B̄+B′

d+1∑
i=2

P iB

)
uk−d

− x′
kA

′
d∑

i=2

P iAx̂k|i+k−d−1+x′
k

d+1∑
i=2

P ix̂k|i+k−d−2

}

= E
{
x′
kQxk − x̂′

k|k−d−1M
′uk−d − u′

k−dMx̂k|k−d

− u′
k−d(Υ−R)uk−d + x′

kP
2x̂k|k−d

}
= E

[
x′
kQxk + u′

k−dRuk−d −
(
uk−d +Υ−1Mx̂k|k−d

)′
Υ

×
(
uk−d +Υ−1Mx̂k|k−d

) ]
(79)

= E[x′
kQxk + u′

k−dRuk−d] ≥ 0, k ≥ d (80)

where uk−d = −Υ−1Mx̂k|k−d for k ≥ d has been imposed in
the last identity. The above inequality indicates that V (k, xk)
decreases with respect to k. In virtue of the orthogonality
of xk and xk − x̂k|i+k−d−2, and P i ≤ 0, i = 2, . . . , d+ 1, the
Lyapunov function V (k, xk) becomes

V (k, xk) =E

{
x′
k

d+1∑
i=1

P ixk −
d+1∑
i=2

[xk − x̂k|i+k−d−2]
′P i

× [xk − x̂k|i+k−d−2]

}

≥E

(
x′
k

d+1∑
i=1

P ixk

)
≥ 0 (81)

i.e., V (k, xk) is bounded below and thus is convergent.
Now let m be any nonnegative integer. By adding from k =

m+ d to k = m+N on both sides of (80) and letting m →
+∞, it yields that

lim
m→∞

m+N∑
k=m+d

E
[
x′
kQxk + u′

k−dRuk−d

]
= lim

m→∞
V (m+ d, xm+d)− V (m+N + 1, xm+N+1) = 0

(82)

where the last equality holds because of the convergence of
V (k, xk). Recall that

N∑
k=d

E
(
x′
kQxk + u′

k−dRuk−d

)
≥ x′

d

d+1∑
i=1

P i
d(N)xd.

Via a time-shift of length of m, it leads to

m+N∑
k=m+d

E
(
x′
kQxk + u′

k−dRuk−d

)

≥ E

(
x′
m+d

d+1∑
i=1

P i
m+d(m+N)xm+d

)

= E

(
x′
m+d

d+1∑
i=1

P i
d(N)xm+d

)
≥ 0.
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From (82), it follows that:

lim
m→∞

E

[
x′
m+d

d+1∑
i=1

P i
d(N)xm+d

]
= 0, ∀N ≥ d. (83)

According to Lemma 3, there exists N0, such that∑d+1
i=1 P i

d(N0) is positive definite. Thus (83) implies that
limm→∞ E[x′

m+dxm+d] = 0. Therefore, the controller (40)
stabilizes (5) in the mean-square sense.

Next we will show that (40) minimizes the cost function (6).
Apply (79) again. Adding from k = 0 to k = N to (79) leads to

E

[
N∑

k=0

x′
kQxk +

N∑
k=d

u′
k−dRuk−d

]

= V (0, x0)− V (N + 1, xN+1)

+

N∑
k=d

E
[
(uk−d +Υ−1Mx̂k|k−d)

′Υ

×(uk−d +Υ−1Mx̂k|k−d)
]

+
d−1∑
k=0

E
[
(uk−d +Υ−1Mx̂k|k−d)

′Υ

×(uk−d +Υ−1Mx̂k|k−d)
]

−
d−1∑
k=0

E(u′
k−dRuk−d) (84)

where V (0, x0) and V (N + 1, xN+1) are defined in (78). Then
limk→∞ V (k, xk) = 0 is to be shown. In fact, in view of (81)
and P i ≤ 0, i = 2, . . . , d+ 1, it follows that:

0 ≤V (k, xk)=E

[
x′
kP

1xk+x̂′
k|i+k−d−2

d+1∑
i=2

P ix̂k|i+k−d−2

]

≤E
(
x′
kP

1xk

)
.

Now we only consider the controller which stabilizes system
(5). Thus limk→∞ E(x′

kP
1xk) = 0. So limk→∞ V (k, xk) = 0.

By letting N → ∞ on both sides of (84), the cost function (6)
is rewritten as

J =x′
0

d+1∑
i=1

P ix0

+

d−1∑
k=0

E
[
(uk−d +Υ−1Mx̂k|k−d)

′Υ

×(uk−d +Υ−1Mx̂k|k−d)
]
−

d−1∑
k=0

u′
k−dRuk−d

+

∞∑
k=d

E
[
(uk−d +Υ−1Mx̂k|k−d)

′Υ

×(uk−d +Υ−1Mx̂k|k−d)
]
. (85)

In view of the positive definiteness of Υ, the optimal controller
to minimize (85) must be (40) and the corresponding optimal
cost is as (41). Therefore the proof of sufficiency is finished.

“Necessity”: Suppose the system (5) is stabilizable in the
mean-square sense. In Theorem 2, the existence of the solution
to (35)–(39) satisfying

∑d+1
i=1 P i > 0 has been verified. We

just need to show the uniqueness. Let Si, i = 1, . . . , d+ 1, be
another solution to (35)–(39) satisfying

∑d+1
i=1 Si > 0, i.e.,

S1 =A′S1A+ σ2Ā′S1Ā+A′Sd+1A+Q (86)

S2 = −Π′Δ−1Π (87)

Si =A′Si−1A, i = 3, . . . , d+ 1 (88)

where

Δ =
d+1∑
i=1

B′SiB + σ2B̄′S1B̄ +R > 0 (89)

Π =
d+1∑
i=1

B′SiA+ σ2B̄′S1Ā. (90)

In view of the proof of sufficiency as in the above, the optimal
value of the cost function (6) is as

J0 =x′
0

d+1∑
i=1

P ix0 +
d−1∑
k=0

E
[ (

uk−d +Υ−1Mx̂k|k−d

)′
Υ

×
(
uk−d +Υ−1Mx̂k|k−d

) ]
−

d−1∑
k=0

u′
k−dRuk−d

=x′
0

d+1∑
i=1

Six0 +
d−1∑
k=0

E
[ (

uk−d +Δ−1Πx̂k|k−d

)′
Δ

×
(
uk−d +Δ−1Πx̂k|k−d

) ]
−

d−1∑
k=0

u′
k−dRuk−d. (91)

If u−1, . . . , u−d are zero, the identity (91) becomes

J0 = x′
0P

1x0 = x′
0S

1x0.

As x0 is arbitrary, the above equation implies that

P 1 = S1. (92)

If we let uk−d = −Υ−1Mx̂k|k−d, k = 0, . . . , d− 1, it follows
from (91) and Δ > 0 that:

x′
0

d+1∑
i=1

P ix0

= x′
0

d+1∑
i=1

Six0 +

d−1∑
k=0

E
[ (

uk−d +Δ−1Πx̂k|k−d

)′
Δ(uk−d

+Δ−1Πx̂k|k−d

) ]
≥ x′

0

d+1∑
i=1

Six0.
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Since x0 is arbitrary,
∑d+1

i=1 P i ≥
∑d+1

i=1 Si. In a similar way,
we can show that

∑d+1
i=1 P i ≤

∑d+1
i=1 Si. Therefore

d+1∑
i=1

P i =

d+1∑
i=1

Si. (93)

Furthermore, via (92), (93), (38)–(39), and (89)–(90), it fol-
lows that Υ = Δ,M = Π and (36), (37), (87), and (88) result
in P i = Si, i = 2, . . . , d+ 1. Thus the uniqueness has been
proven. The proof of necessity is now complete. �
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