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Abstract—This paper concentrates on coordinate-free forma-
tion control for directed networks, for which the dynamic motion
of each agent is assumed to be governed only by a local control.
We develop a graph Laplacian approach to solve the global and
exponential formation stablization problem using merely relative
position measurements between neighbors. First, to capture the
sensing and control architectures that are needed to maintain the
shape of a formation, a necessary and sufficient topological condi-
tion is proposed. Second, a Laplacian-based control law is devel-
oped for the stablization problem of a group of mobile agents to a
desired formation shape under both fixed and switching topologies
due to temporal node failures. Simulation results are provided to
demonstrate that our Laplacian-based formation control strategy
is inherently fault-tolerant and robust to node failures.

Index Terms—Directed graph, distributed control, formation,
multi-agent systems.

I. INTRODUCTION

MULTI-AGENT systems have received a lot of attention
by researchers from many different disciplines. On one

hand, a huge number of amazing examples of multi-agent sys-
tems are observed in nature, and researchers aim to understand
their underlying mechanisms of how local interactions lead to
collective patterns such as weaver ants forming a line to collab-
oratively pull nest leaves together, geese flying in V-formation
for energy saving, and multi-cellular organisms establishing
spatial patterns of gene expression during development [1],
[2]. On the other hand, technological advances in embedded
computing and control continuously enable the development
of new artificial multi-agent systems of higher complexity,
including autonomous underwater, ground or aerial vehicles,
which are able to perform coordinated tasks effectively in many
applications such as search and rescue in hazardous environ-
ments, ocean data retrieval and sampling, surveillance/combat
tasks, etc. [3], [4]. For these engineering systems, distributed
implementations are preferred as they provide higher flexi-

Manuscript received October 7, 2014; revised April 21, 2015 and June 23,
2015; accepted July 6, 2015. Date of publication July 9, 2015; date of current
version April 22, 2016. The work was supported by the National Natural Sci-
ence Foundation of China under Grant 61273113. Recommended by Associate
Editor C. Seatzu.

Z. Lin and M. Fu are with the State Key Laboratory of Industrial Con-
trol Technology and College of Electrical Engineering, Zhejiang University,
Hangzhou 310027 China, and also with the School of Electrical Engineering and
Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
(e-mail: linz@zju.edu.cn).

L. Wang is with the Department of Electrical Engineering, Yale University,
New Haven, CT 06520 USA (e-mail: lili.wang@yale.edu).

Z. Han is with the State Key Laboratory of Industrial Control Technology
and College of Electrical Engineering, Zhejiang University, Hangzhou 310027,
China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2015.2454711

bilities, scalability and robustness compared with centralized
implementations.

We address in this paper a fundamental coordinated task for
multi-agent systems, namely, the formation control problem.
There has been extensive literature on formation control.
Depending on whether a global coordinate system is needed, for-
mation control can be classified into two categories: coordinate-
dependentandcoordinate-free.Coordinate-dependent formation
control either assumes that the agents know their absolute
coordinates in a global coordinate system such as [5]–[7] or
assumes that the agents share a common north such as [8]–[13].
When the agents are able to access their global coordinates,
then the formation control problem can be addressed in a
trajectory tracking framework given a desired formation and a
desired trajectory for the center of mass of the formation [6].
On the other hand, when the agents share a common north,
then the formation control problem can be dealt with in the
consensus framework by adding the desired relative positions
with respect to the common north, for which the orientation of
achieved formations is fixed by the common north [8]–[12]. In
certain scenarios, the access of global coordinates or a common
north may be difficult, e.g., in GPS-denied areas, indoors etc.
To alleviate the requirement of such global information, it
is therefore important to develop coordinate-free formation
control strategies.

Coordinate-free formation control typically relies on how to
define a formation shape based only on inter-agent constraints
expressed without using a common coordinate system. One way
is to specify distance constraints between pairs of neighboring
agents and thus removes the requirement for a common coor-
dinate system. This develops distance-based formation control
[14]–[23]. The other way is to specify relative position con-
straints using the barycentric coordinates and thus does not
require a common coordinate system. This leads to Laplacian-
based formation control [24]–[30]. It is worth to point out that
although the distances between pairs of neighboring agents are
expected to be controlled in distance-based formation control,
the control law still uses relative positions and not just the
current distances between neighboring agents [17]–[23]. That
is, more needs to be sensed than being controlled. The only
exception is [31], in which the current distances are used as
feedback information. However, the algorithm in [31] is a cyclic
stop-and-go strategy, i.e., at each step, only one agent can move
while its neighbors have to remain stationary. Compared with
distance-based formation control, the advantages of Laplacian-
based formation control are two-folds. First, the Laplacian-
based approach requires less links for formation control as
it uses relative positions as feedback and the same needs to
be sensed as being controlled. Second, the Laplacian-based
formation control law is a linear one and thus ensures globally
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exponential convergence, while distance-based formation con-
trol takes nonlinear gradient-type laws, which only assure local
convergence in general. However, the drawback of Laplacian-
based formation control is that the resulting formation has one
more degree of freedom (namely, scaling of the formation)
in addition to rotations and translations, which are the three
degrees of freedom for distance-based formation. Nevertheless,
as shown in [29], by additionally controlling a pair of agents
to reach different distances, the scale of the formation can be
altered. In this sense, it is also an advantage that the agents
can scale the formation using the Laplacian-based approach
for better adaptivity to possibly changing environments, e.g.,
shrinking the formation to pass through a narrow corridor. [32]
also develops a scheme to scale the formation by modifying
distance-based formation control, but the control law is much
more complicated.

Regarding Laplacian-based formation control, two funda-
mental questions need to be addressed. That is, what are the
types of sensing and control architectures that are needed to
maintain the shape of a formation and what are the distributed
control laws that can steer a group of mobile agents to form
a desired geometric shape? Assuming a directed acyclic net-
work for the agents, [33] developed the rudiments of complex
Laplacian based formation control and showed that the leader-
follower system is bounded input-bounded output (BIBO) sta-
ble under certain conditions. Later in [27], the concept of
complex Laplacian was formally introduced to study forma-
tion control in the plane for leader-follower networks with
cycles. Only till very recently, [29] systematically addressed
the aforementioned two fundamental questions in the leader-
less setup. But it assumed that the network is undirected
and static. No results have been reported for Laplacian-based
formation control over directed leader-less networks except
the preliminary conference version [24], [26] of this paper.
However, as commented in [15], using directed networks as
opposed to undirected networks shows many advantages such
as halved sensing information and reduced difficulties with
interference, and has more practical implication due to non-
identical sensing capabilities of the agents. But formation
control becomes technically more challenging in the directed
graph case because many good properties due to the symmetric
structure of undirected graphs do not exist any more and many
tools that usually take advantages of the symmetric property of
undirected graphs are not applicable to directed networks.

This paper aims to solve the aforementioned two fundamen-
tal problems for directed networks. First, to capture the neces-
sary and sufficient graphical characterization for formations of
directed networks such that a formation shape can be uniquely
determined by the linear constraints on the agents regarding
their neighbors, this paper develops a new approach that does
not rely on the symmetric structure property as done in [29]. We
then show the connection of topological connectivity and the
generic rank of complex-valued Laplacian, which is defined to
be the maximum of the rank of any complex-valued Laplacian
subject to the zero/nonzero structure constraint. Using this
connection, the sensing and control architecture that is needed
to maintain the shape of a formation in a directed graph setup
is uncovered. Second, assuming that the dynamical motion of
agents is governed only by a local control, this paper solves the
stabilization problem of a group of agents to a desired formation

shape under a fixed topology or a switching interaction topol-
ogy due to temporal node failures. The proposed control law
is valid for directed graphs with cycles. Due to the nature of
the onboard sensor devices and the usually harsh environments,
it becomes possible that one or more agents may temporarily
fail to get the relative position measurements, which leads to
a switching topology. Switching information graphs have been
considered in collective motion control [34] and flocking [35],
which however does not aim to form a specific formation for
the agents but stay cohesively. This paper provides a feasible
solution to achieve an arbitrary formation shape using the
Laplacian-based formation control law. We show that a group of
agents can globally exponentially reach the desired formation
shape with any desired exponential convergence rate if a scalar
control parameter is designed to make the averaged dominant
eigenvalue of the switched system surpass the divergence rate
of the system due to node failures. In this sense, our Laplacian-
based formation control strategy is inherently fault-tolerant and
robust to node failures.

Notation: C and R denote the set of complex and real
numbers, respectively. ι =

√
−1 denotes the imaginary unit.

For a complex number p ∈ C, |p| represents its modulus. For
a set E , |E| represents its cardinality. For a matrix M ∈ C

n×n,
|M | represents its matrix norm induced by Euclidean norm. 1n

represents the n-dimensional vector of ones and In denotes the
identity matrix of order n.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce several notions and a prelimi-
nary result for directed graphs, and formulate the problems.

A. Preliminaries From Graph Theory

A directed graph G = (V, E) consists of a non-empty node
set V = {1, 2, . . . , n} and an edge set E ⊆ V × V whose ele-
ments are ordered pairs of nodes. If (j, i) ∈ E , node j is called
an in-neighbor of i. We let Ni denote the in-neighbor set of
node i, i.e., Ni = {j : (j, i) ∈ E}. A path in a directed graph G
is an alternating sequence p : v1e1v2e2 · · · ek−1vk of nodes and
edges such that ei = (vi, vi+1) for every i = 1, 2, . . . , k − 1
where the nodes in the sequence are distinct. Two paths from
a subset of nodes, U ⊂ V , to a node v are said to be disjoint if
there are no common nodes in the two paths except v. A node v
is said to be reachable from a subset of nodes, U ⊂ V , if there
is a path from a node in U to v.

Next, we introduce several new concepts, which extend the
same notions for undirected graphs [29] to directed graphs.

Definition 2.1: A node v is said to be 2-reachable from a
non-singleton set U of nodes in G if there exists a path from a
node in U to v after removing any one node except node v (i.e.,
there are two disjoint paths from U to v).

Definition 2.2: A directed graph G is said to be 2-rooted if
there exists a subset of two nodes, from which every other node
is 2-reachable. These two nodes are called roots of G.

Definition 2.3: A spanning 2-tree of a directed graph G =
(V, E), rooted at R = {r1, r2} ⊂ V , is a spanning subgraph
T = (V, Ē) such that

1) every node r ∈ R has no in-neighbor;
2) every node v �∈ R has 2 in-neighbors;
3) every node v �∈ R is 2-reachable from R.
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In the following, we provide a preliminary result about the
2-rooted connectivity of a directed graph.

Lemma 2.1: A directed graph G = (V, E) is 2-rooted if and
only if G has a spanning 2-tree.

Proof: (Sufficiency) If G has a spanning 2-tree, then by
the definition of a 2-rooted graph, it follows that G is 2-rooted.

(Necessity) By the definition of 2-rooted connectivity, we
know that there exists a subset of two nodes, called roots,
such that every other node is 2-reachable from it. Denote by
R = {r1, r2} the set of two roots. Moreover, from the definition
of 2-rooted connectivity, we know that every node not in R has
at least two incoming edges. We then show that a spanning
2-tree rooted at R can be constructed by the following oper-
ations. First, we remove all incoming edges to nodes r1 and
r2. Second, for every node v �∈ R, we denote all the incoming
edges to node v by e1, e2, . . . , em. We remove some incoming
edges (see for example, e1, e2, . . . , em−2) for node v such that
node v has only two incoming edges left and is 2-reachable
from R. We denote the resulting graph by T .

We now show that T is a spanning 2-tree of G. First, we know
that every node v �∈ R is still 2-reachable from R in T accord-
ing to our operation rules. Second, we show in the following
that every node u �∈ R ∪ {v} is also 2-reachable from R in T .
For the first case, if u has two disjoint paths from R, which do
not go through v, then the removal of edges on node v does not
affect the 2-reachability from R to u. For the second case, if u
has two disjoint paths from R and one of them passes through v,
then the removal of the edges e1, e2, . . . , em−2 on node v does
not make the path from R to node u via node v disappear as
node v still has two incoming edges left and is still 2-reachable
from R. So there are still two disjoint paths from R to node u.
Therefore, by Definition 2.3, T is a spanning 2-tree of G. �

Finally, we introduce the Laplacian of a directed graph G
with n nodes, which is an n-by-n matrix with its (i, j)th off-
diagonal entry −wij if j ∈ Ni and 0 otherwise, and the (i, i)th
diagonal entry

∑
k∈Ni

wik. If the weights wij’s equal to 1
on the edges, then L is called the binary Laplacian of G. If
the weights wij’s are complex numbers, then L is called the
complex Laplacian of G. We use L(G) to denote the set of
all complex Laplacian associated to G. It is clear that for any
L ∈ L(G), L1n = 0. That is, a Laplacian matrix must have
an eigenvalue at the origin with its associated vector 1. The
Laplacian matrix is a discrete analog of the Laplacian operator
in multivariable calculus and arises in the analysis of random
walk and electrical networks on graphs [36].

B. Problem Formulation

We consider a group of n agents in the plane. The positions
of n agents are denoted by complex numbers z1, · · · , zn ∈ C.
The aggregate state z = [z1, z2, · · · , zn]T ∈ C

n is called the
position vector of the n agents. The motion of each agent is
governed by the following dynamics in continuous time:

żi(t) = ui(t), i = 1, . . . , n (1)

where ui(t) ∈ C is the control input. That is to say, by this
model, we do not explicit account for: internal dynamics of
the agent, environmental forcing terms, stochastic forcing,
and external forces. Also, except for node failure, the time-
dependence aspects are not considered.

Define a target configuration ξ = [ξ1, ξ2, . . . , ξn]
T ∈ C

n to
be an assignment of the n agents to points in a global reference
frame Σ, which is used to characterize the formation shape that
the agents try to achieve. However, it should be emphasized that
the agents do not have the knowledge about the global reference
frame Σ and do not know their own absolute positions zi’s.

Throughout the paper, we assume that the target configura-
tion ξ is generic. A configuration ξ is said to be generic if the
coordinates ξ1, . . . , ξn do not satisfy any nontrivial algebraic
equation with integer coefficients [37]. Intuitively speaking, a
generic configuration has no degeneracy, i.e., no three points
staying on the same line, no three lines go through the same
point, etc. The set of all formations similar to the target config-
uration ξ is described by

S(ξ) = {c11n + c2ξ : c1, c2 ∈ C}.

In other words, the set S(ξ) consists of similar formations
obtained from ξ via translations c1, rotations θ, and scaling
ρ (four degrees of freedom) where θ and ρ are the phase and
magnitude of the complex number c2.

A directed graph G of n nodes represents the sensing graph
in which an edge (j, i) indicates that agent i can measure the
relative position of agent j. To be more specific, suppose that
each agent i has a local frame Σi, whose orientation angle
(namely, the angle between the x-axis of this local frame and
the global frame) is θi. Then the relative position measurements
by agent i are

yij = eιθi(zj − zi), ∀j ∈ Ni.

Remark 2.1: It is worth to point out that the actual control
equation of each agent i is

żi = e−ιθiua
i (2)

where ua
i is the actual control input of agent i defined with

respect to its own local coordinate system Σi. But if the control
law ui of the form

ui = gi(· · · , zj − zi, · · ·), for j ∈ Ni (3)

has the rotational invariance property, i.e.,

eιθigi(· · · , zj − zi, · · ·) = gi
(
· · · , eιθi(zj − zi), · · ·

)

then the actual control input ua
i uses only the relative position

measurement yij , that is

ua
i = eιθiui = eιθigi(· · · , zj − zi, · · ·)
= gi

(
· · · , eιθi(zj − zi), · · ·

)
= gi(· · · , yij , · · ·).

For the neatness of the presentation, in the rest of the paper,
we will concentrate on the control law of the form (3) and the
agent model in (1) rather than the one given in (2). By referring
to the control law (3), we mean the control law (3) having the
rotational invariance property.

The following assumptions are made in this paper.
Assumption A1: The local frames Σi may not be aligned and

the agents do not know the orientation difference.
Assumption A2: Each agent i knows ξj for all j ∈ Ni.
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Fig. 1. A sensing graph and examples of relative measurements for agent 1
and 2 in their local frames. (a) Sensing graph. (b) Local measurements.

An illustration of a sensing graph and relative measurements
in local frames is given in Fig. 1. In Fig. 1(a), the black lines
with arrows indicate the edges of the graph, while in Fig. 1(b)
the blue lines with arrows represent the relative state vectors
(e.g., z3 − z2, z3 − z1, and z4 − z1) in the local frames (the red
lines with arrows are the x-axis and y-axis of the local frames
of different agents).

Over time, some agents may temporarily fail to sense their
in-neighbors, resulting in a time-varying graph. To precisely
describe the time-varying graph, we need the notion of a
switching signal. We use the symbol P to denote a suitably
defined set, indexing all possible sensing graphs of n agents
subject to some agent failures. A switching signal is a piecewise
constant function σ: [0,∞) → P . Such a function σ has a finite
number of discontinuities-which we call the switching times-on
every bounded time interval and takes a constant value on every
interval between two consecutive switching times. The role of
σ is to specify, at each time instant t, the index σ(t) ∈ P of the
active sensing graph, for which we denote by Gσ(t).

The goal of this paper is to achieve a formation similar to
the target configuration ξ for arbitrarily initial distribution of
n agents in a general directed graph setup. We term this prob-
lem formation shape control. Before formally formulating our
problems, we introduce a definition. Let Q be an (n− 2)× n
matrix with orthonormal rows that are each orthogonal to 1n

and ξ; that is

Q1n = 0, Qξ = 0, QQT = In−2. (4)

Let z be the aggregate state of zi’s. Then z → S(ξ) is equivalent
to x := Qz → 0.

Definition 2.4: The n agents are said to globally exponen-
tially reach a similar formation of ξ (with the exponential
convergence rate α > 0) if there exists a positive constant c
such that for any x0 = Qz0

‖Qz(t)‖ = ‖x(t)‖ ≤ c‖x0‖e−αt. (5)

Thus, the formation shape control problem is summarized as
follows.
(P1) Given Assumptions A1–A2 and relative position measure-

ments zj − zi for j ∈ Ni, find the necessary and sufficient
graphical condition, under which there exists a distributed
local control law of the form (3) such that (5) is satisfied
for some positive α (namely, the formation shape control
problem is solvable).

(P2) Consider the scenario that the directed sensing graph G
is fixed. Given Assumptions A1–A2 and relative position
measurements zj − zi for j ∈ Ni, for a given α > 0, find
a distributed local control law of the form (3) such that (5)
is satisfied.

Fig. 2. An illustration of the linear constraint
∑

j∈Ni
wij(ξj − ξi) = 0.

(P3) Consider the scenario that the directed sensing graph G is
time-varying due to node failures or link failures which can
be also treated as node failures. Given Assumptions A1–A2
and relative position measurements zj − zi for j ∈ Ni, for
a given α > 0, find a distributed local control law of the
form (3) such that (5) is satisfied.

Remark 2.2: The solution to Problem (P1) is related to
certain graph connectivity of the directed sensing graph G.
However, no appropriate known connectivity in graph theory
can be found. As we will show in next section, we introduce
the novel notion called “2-rooted” to characterize such graph
connectivity for this problem.

III. GRAPHICAL CONDITION FOR

FORMATION CHARACTERIZATION

In this section, we will explore a necessary and sufficient
graphical condition (namely, the connectivity pattern of a di-
rected graph G) such that any formation z = [z1, . . . , zn]

T

satisfying ∑
j∈Ni

wij(zj − zi) = 0, i = 1, . . . , n (6)

for some complex weights wij’s on the edges of G is a similar
formation of ξ (i.e., z ∈ S(ξ)). Then, we introduce a new
concept, called realizability of a similar formation on a directed
graph G.

Definition 3.1: A similar formation of ξ is said to be realiz-
able on G if there are complex weights wij’s on the edges of G
such that

ker(L) = S(ξ)

where L is the Laplacian of G with complex weights wij’s.
Remark 3.1: The advantage of using (6) to define a similar

formation is that no global reference frame and no absolute
states are required as the condition (6) is equivalent to∑

j∈Ni

wije
ιθi(zj − zi) = 0, i = 1, . . . , n

which means that the set of configurations {z : z satisfies (6)}
is irrelevant to the orientations of each agent’s local frame.

Remark 3.2: In order to encode the desired formation shape
specified by ξ in a global reference frame, the complex weights
wij’s on the edges incident to node i should be chosen to satisfy∑

j∈Ni

wij(ξj − ξi) = 0. (7)

An illustration of such a linear constraint (7) is given in Fig. 2,
in which agent 1 has two in-neighbors (agent 2 and 3). The
complex weights w12 and w13 thus rotate and scale the vectors
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ξ2 − ξ1 and ξ3 − ξ1 respectively so that the sum becomes zero.
We point out that such complex weights are not unique.

Remark 3.3: Definition 3.1 indicates that if a graph G makes
a similar formation realizable, then the desired formation shape
can be maintained by the agents that actively control themselves
to satisfy (6).

A necessary and sufficient topological condition is given
below for the realizability of a similar formation on G.

Theorem 3.1: For a generic ξ ∈ C
n, a similar formation of ξ

is realizable on G if and only if G is 2-rooted.
The proof of Theorem 3.1 is technically involved. We will

develop two lemmas first. These two lemmas establish the
relationship between the connectivity property of a directed
graph and the algebraic property of the associated Laplacian
matrix.

In the sequel, we use LR to represent the sub-matrix of L
with the rows and columns corresponding to nodes in R ⊂ V
crossed out.

Lemma 3.1: If G is 2-rooted with the root set R = {r1, r2},
then for the Laplacian L of G with almost all1 complex weights
wij’s,

a) all the principal minors of LR are distinct from zero;
b) det(M) �= 0 where M is the sub-matrix of L by deleting

the two rows corresponding to the two roots and any two
columns.

The proof of Lemma 3.1 is given in the Appendix.
Lemma 3.2: Consider a directed graph G = (V, E) and a

generic ξ ∈ C
n. The following statements are equivalent.

1) G is 2-rooted with the root set R = {r1, r2}.
2) For almost all2 L ∈ {L ∈ L(G) : Lξ = 0}, all the princi-

pal minors of LR are distinct from zero.
3) There exists an L ∈ {L ∈ L(G) : Lξ = 0} such that

det(LR) �= 0.
Proof of Lemma 3.2: (1) =⇒ (2) If (1) holds, then by

Lemma 2.1, it follows that G has a spanning 2-tree rooted at
R = {r1, r2}. We denote it by T = (V, Ē).

First, we show that for any L ∈ {L ∈ L(T ) : Lξ = 0} with
ξ being generic, all the principal minors of LR are distinct from
zero. To this end, we first consider an L ∈ L(T ), that does not
need to satisfy Lξ = 0. Recall that for a spanning 2-tree, the two
rows of L ∈ L(T ) corresponding to the two roots (r1 and r2)
are all zeros. On the other hand, from Lemma 3.1, we know that
rank(L) = n− 2. Thus, the kernel of L is a two-dimensional
subspace, for which one basis vector is 1. We denote the
other linearly independent basis vector as η. We show in the
following that the components, ηi’s of η, are distinct. To see
this, suppose by contradiction that there exist two components,
say ηi and ηj , which are equal. Then the basis η can be scaled
to have ηi = ηj = 1. Let ηs be the sub-vector composed of the
remaining entries of η after removing ηi and ηj . Denote by N
the sub-matrix of L by deleting the two rows corresponding to
r1, r2, and the two columns corresponding to nodes i and j.
Moreover, denote by M the sub-matrix of L by deleting the

1Here “for almost all” parameter values is to be understood as “for all
parameter values except for those in some proper algebraic variety in the
parameter space.” The proper algebraic variety for which a property is not
true is the zero set of some nontrivial polynomial with real coefficients in the
parameters. A proper algebraic variety has Lebesgue measure zero [38].

2Here “for almost all Laplacian L” means “for almost all complex weights
used to construct the Laplacian L.”

two rows corresponding to r1, r2, and the n− 2 columns
corresponding to all nodes in V − {i, j}. Thus, we have

N1(n−2) +M12 =0 (8)

Nηs +M12 =0. (9)

Equations (8) and (9) together imply N(ηs − 1(n−2)) = 0.
Note from Lemma 3.1, we know that N is of full rank. Hence
N(ηs − 1(n−2)) = 0 implies ηs = 1(n−2), which contradicts
the assumption that η and 1 are linearly independent.
Therefore, the components of η are all distinct. In addition, it
should be noted that each row of L ∈ {L ∈ L(T ) : Lξ = 0}
corresponding to a node not in R has exactly three non-zero
entries and satisfies

[
1 1 1
ξi ξj1

i
ξj2

i

]⎡
⎣ Lii

Lij1
i

Lij2
i

⎤
⎦ = 0 (10)

where Lii, Lij1
i
, and Lij2

i
are the three nonzero entries of

the ith row of L, and ξi, ξj1
i
, and ξj2

i
are the corresponding

components of ξ with j1i and j2i being the two in-neighbors
of i. Thus, [Lii, Lij1

i
, Lij2

i
] can be written in a general form in

terms of ξ, i.e.,

[
Lii, Lij1

i
, Lij2

i

]
= a

[
ξj1

i
− ξj2

i
, ξi − ξj1

i
, ξj2

i
− ξi

]

where a is any nonzero complex coefficient. Therefore, the
nonzero entries of L are polynomials of ξ, so are the principal
minors of L. Recall from above that we have found an instance
of ξ, namely, ξ = η, such that all the principal minors of LR

are nonzero for L ∈ {L ∈ L(T ) : Lξ = 0}. So for any generic
ξ, the conclusion holds.

Second, we consider L ∈ {L ∈ L(G) : Lξ = 0} with ξ be-
ing generic. Notice that the difference between L ∈ {L ∈
L(G) : Lξ = 0} and L′ ∈ {L′ ∈ L(T ) : L′ξ = 0} is that some
nonzero weights in L become zero in L′. Since the principal
minors of LR are polynomials P (· · · , wij , · · ·) of the weights
wij in L, the nonzero principal minors of L′

R imply that there
exists a set of weights wij with some of them being zero such
that P (· · · , wij , · · ·) are nonzero. Thus, P (· · · , wij , · · ·) is not
identically zero, from which we can infer that for all weights
wij , except for being the roots of P (· · · , wij , · · ·) = 0, which
are countable, the principal minors of LR (namely, the poly-
nomials P (· · · , wij , · · ·)) are nonzero. Thus, the conclusion
follows.

(2) =⇒ (3). It is straightforward.
(3) =⇒ (1) We prove it in a contrapositive form. Suppose

that there exists a node i �∈ R such that there are no two disjoint
paths in G from R to i. That is, after removing a node, without
loss of generality, say k, a subset W of nodes becomes not
reachable from R. Denote the set of remaining nodes as W̄ ,
which are reachable from R after removing k. It is certain that
r1, r2 ∈ W̄ and after removing node k, the nodes in W are
not reachable from any node in W̄ . Suppose the total number
of nodes in W is m. If necessary, re-label the nodes in W
as 1, . . . ,m, change the label of node k to m+ 1, and re-
label the nodes in W̄ as m+ 2, . . . , n. Then the matrix L after
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Fig. 3. An example of 2-rooted graph, for which a similar formation of some
particular ξ taken from a set of measure zero is not realizable.

re-labeling satisfies L(i, j) = 0 for i ∈ W and j ∈ W̄ . That is,
L is of the following form:[

Lw l 0

∗ ∗ ∗

]

where Lw ∈ C
m×m and l ∈ C

m. Re-order the components of ξ
in the same way as relabeling the nodes, and denote the result-
ing vector by [ξTa , ξ

T
b ]

T
where ξa ∈ C

m+1 and ξb ∈ C
(n−m−1).

According to the definition of L, we have

[Lw l]1m+1 = 0 and [Lw l]ξa = 0.

As 1m+1 and ξa are linearly independent for a generic ξ, we
then know that [Lwl] must be row linearly dependent, which
means det(LR) = 0 for any L ∈ {L ∈ L(G) : Lξ = 0}. �

Proof of Theorem 3.1: (Sufficiency) If G is 2-rooted, it
follows from Lemma 3.2 that for any generic ξ, there exists
an L ∈ {L ∈ L(G) : Lξ = 0} such that ker(L) = S(ξ). Thus,
by Definition 3.1, a similar formation of ξ is realizable.

(Necessity) Suppose that G is not 2-rooted. Then by
Lemma 3.2, it follows that for any subset R of two nodes
and for any L ∈ {L ∈ L(G) : Lξ = 0} we have det(LR) = 0,
which implies S(ξ) is a strict subspace of ker(L). So a similar
formation of ξ is not realizable on G. �

Remark 3.4: Theorem 3.1 shows that the assumption of a
generic configuration ξ is needed for formation shape control
over a directed graph, which is different from the undirected
graph case [29]. In other words, there exist special ξ’s taken
from a set of measure zero, which may not be realizable on a
directed graph G even though the graph is 2-rooted. An example
is given in Fig. 3 to demonstrate this observation. This example
has six agents, whose sensing graph is shown in Fig. 3. It can
be verified that the graph is 2-rooted with nodes 5 and 6 being
the two roots. Let us consider a formation vector ξ = [1 +
ι,−6ι,−0.8− 1.6ι,−1− ι,−3− 3ι, 0]. It can be checked that
for any Laplacian L ∈ {L ∈ L(G) : Lξ = 0}, rank(L) < 4,
which means there is another formation shape η that satisfies
Lη = 0 but is not similar to ξ. However, arbitrarily perturb-
ing the configuration ξ, for example, we take ξ′ = [1,−0.5−
2.5ι,−0.3− 0.1ι,−1− ι, 3− ι, 0.5]. We are able to find a
Laplacian L ∈ {L ∈ L(G) : Lξ′ = 0}, e.g.,

L =⎡
⎢⎢⎢⎢⎢⎣

2 + 24ι 13 + ι −15− 25ι 0 0 0
0 −1 0 0 −ι 1 + ι
0 0 2 + ι −1 0 −1− ι
−4 0 0 2− ι 2 + ι 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

satisfying rank(L) = 4 and ker(L) = S(ξ′). Indeed, in this
example, for any L ∈ {L ∈ L(G) : Lξ′ = 0} it holds that
ker(L) = S(ξ′).

Remark 3.5: It should be pointed out that by Lemma 3.2,
if there exists a complex Laplacian L ∈ {L ∈ L(G) : Lξ = 0}
such that ker(L) = S(ξ), then for almost all complex Laplacian
L ∈ {L ∈ L(G) : Lξ = 0}, ker(L) = S(ξ). In other words, if
the 2-rooted condition holds, then we can randomly select an
L ∈ {L ∈ L(G) : Lξ = 0}, which can be used for formation
shape control as shown later in this section.

IV. FORMATION STABILIZATION UNDER FIXED GRAPH

According to the preceding section, a set of complex weights
wij’s can be designed to encode the desired formation shape.
This can be done in a distributed manner. That is, the complex
weights wij for j ∈ Ni can be calculated by agent i from the
equation

∑
j∈Ni

wij(ξj − ξi) = 0 (11)

as ξj’s for j ∈ Ni are available to agent i by Assumption A2. It
is a fact that there are infinite number of solutions wij satisfying
(11). For our use, we can randomly select one from the solution
space. By such random selection, the properties in Lemma 3.2
will be satisfied if the directed graph G is 2-rooted. Then we
consider the following distributed control law for formation
shape control:

ui = di
∑
j∈Ni

wij(zj − zi), i = 1, . . . , n (12)

where di ∈ C is a control parameter, which requires global
information of the group (namely, L) to determine. Given wij’s,
a Newton iteration method can then be used to compute di
for the purpose of assigning the eigenvalues of the closed-loop
system (see [29] for the details of the method).

Remark 4.1: It can be checked that the linear control law
(12) does satisfy the rotational invariance property and thus is
locally implementable by an onboard sensor.

With the control law (12), the closed-loop system turns out
to be

ż = −DLz (13)

where D is the diagonal matrix with its diagonal entries di’s
and L is the Laplacian of G with the complex weights wij’s
satisfying (11).

As whether or not a group of n agents globally exponen-
tially reaches a similar formation of ξ with the exponential
convergence rate α > 0 relies on the eigenvalue distribution of
−DL, the next result shows that it is always feasible to have
exponential convergence by using the control law (12) if the
directed graph G is 2-rooted.

Theorem 4.1: Consider a positive constant α > 0. If G is
2-rooted, then for almost all L ∈ {L ∈ L(G) : Lξ = 0}, a di-
agonal and invertible matrix D exists to assign the eigenvalues
of −DL in the half-plane {s : Re(s) < −α} in addition to two
fixed eigenvalues at the origin.
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The proof requires the result related to the multiplicative
inverse eigenvalue problem by Friedland in 1975.

Lemma 4.1 ([39]): Let A be an n× n complex-valued ma-
trix. Let σ = {λ1, . . . , λn} be an arbitrary set of n complex
numbers. If all the principal minors of A are distinct from zero,
then there exists a diagonal complex valued matrix D such that
the spectrum of DA is the set σ. Moreover, the number of
different matrices D is at most n!.

Proof of Theorem 4.1: Since G is 2-rooted by assumption,
without loss of generality, we label two roots of G as n− 1
and n, and denote R = {n− 1, n}. By Lemma 3.2, it follows
that for almost all L ∈ {L ∈ L(G) : Lξ = 0}, all the principal
minors of LR are distinct from zero. Thus, by Lemma 4.1, there
exists a diagonal complex matrix D1 that can arbitrarily assign
the eigenvalues of D1LR. Suppose D1 is chosen to assign the
eigenvalue of D1LR in the half-plane {s : Re(s) > α}. Note
that with D = diag(D1, 02×2), the eigenvalues of DL are the
union of the eigenvalues of D1LR and the two fixed zero
eigenvalues. Then by the continuity property of eigenvalues,
a diagonal and invertible complex matrix D exists to assign
the eigenvalues of DL in the half-plane {s : Re(s) > α} in
addition to the two fixed zero eigenvalues. �

V. FORMATION STABILIZATION UNDER

TEMPORARY NODE FAILURES

In this section, we investigate formation shape control under
time-varying topology due to node failures. From the preceding
section we know that a generic formation shape can be achieved
under a directed sensing graph if and only if the graph is
2-rooted. Therefore, we assume in this section that the nominal
directed graph is 2-rooted and is denoted by G0. When one or
more agents temporarily fail to get the relative state measure-
ments of all its in-neighbors at some time, say for example
agent i, the in-neighbor set Gi becomes an empty set at that
time and the graph switches to the graph generated from G0

by removing the edges to node i. This is called node failure.
On the other hand, link failures may occur in the sense that
agent i becomes not able to get the relative state measurement
of one in-neighbor temporarily at some time. In this case, the
measurements about other in-neighbors by agent i may not
be useful in helping achieve the desired formation shape, so
these measurements are also disregarded by agent i. Hence,
link failures can be treated as node failures in our formulation
of the formation shape control problem. We denote by Gp =
(V, Ep), p = 1, . . .m, the subgraphs of G0 due to different
nodes failures. Let P = {0, 1, . . . ,m} and denote by Gσ(t) the
switching sensing graph with σ: [0,∞) → P being a piecewise
constant switching signal due to node failures. Denote by Ni(t)
the set of in-neighbors at t. It should be noted that Ni(t) is
either empty or the in-neighbor set Ni of the nominal graph G0.

We define the node failure rate as

r = lim
T0→∞

sup
T>T0

[
Tfail ([0, T ])

T

]

where Tfail([0, T ]) denotes the total failure time during the time
interval [0, T ].

For a generic formation vector ξ ∈ C
n, we let wij’s and di’s

for the nominal graph G0 be designed as shown in Section IV so
as to make the eigenvalues of DL strictly in the right complex

plane in addition to two fixed zero eigenvalues. Then it is clear
that there exist scalars μ0 > 0 and αs > 0 such that∥∥∥e−QDL0Q

T t
∥∥∥ ≤ μ0e

−αst (14)

where Q is the matrix defined in (4). The scalars μ0 and αs are
easy to compute ([40]).

We consider the following linear control law for the case with
possible node failures:

ui = kdi
∑

j∈Ni(t)

wij(zj − zi), i = 1, . . . , n (15)

where k ∈ R is a positive scalar.
Under the distributed control law (15), the closed-loop dy-

namics for the entire network is

ż = −kDLσ(t)z (16)

where z ∈ C
n is the aggregate state vector of n agents and Lσ(t)

is the complex Laplacian matrix associated to Gσ(t) with the
weights wij’s.

For p = 1, . . . ,m, there exist scalars μp > 0 and αp such that

‖e−QDLpQ
T t‖ ≤ μpe

−αpt (17)

where Q is the matrix defined in (4). It should be noted that αp

may or may not be positive. We define

μ := max0≤p≤m μp

αu := min1≤p≤m αp.

In the following, we are going to explore the stability condi-
tions. To avoid chattering, the switching signals can not change
arbitrarily fast in practice. Therefore, we consider a dwell
time assumption and an average dwell time assumption for
the switching signals [41], [42]. Suppose the switching signal
σ(t) switches its value at time instants t1, t2, . . .. We say the
switching signal has dwell time τD if ti+1 − ti ≥ τD for all i’s.
We denote by Π(τD) the set of all switching signals with dwell
time τD, i.e.,

Π(τD) = {σ(t) : ti+1 − ti ≥ τd for all i} .

However, in certain situations, the switching signals may oc-
casionally have consecutive discontinuities separated by less
than τD, but for which the average interval between consecutive
discontinuities is no less than τD. This leads to the concept
of average dwell time. For a switching signal σ(t), we let
Nσ(t0, t) denote the number of discontinuities of σ(t) in the
interval [t0, t). Then the set of all switch signals with average
dwell time τD and chatter bound N0 is denoted as

Πave(τD, N0)

=

{
σ(t) : Nσ(t0, t) ≤ N0 +

t− t0
τD

for any t > t0 ≥ 0

}
.

Roughly speaking, when the time interval is long enough, the
average dwell time is approximately τD considering the upper-
bound of the number of discontinuities in the interval. Clearly,
Π(τD) is a subset of Πave(τD, 1).
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Under practical dwell time or average dwell time conditions,
we show in the main result below that the n agents can globally
exponentially converge to the desired formation shape.

Theorem 5.1: Suppose σ(t) ∈ Π(τD) or σ(t) ∈ Πave(τD,
N0) with a constant τD>0 and arbitrary chatter bound N0>0.
The n agents globally exponentially reach a similar formation
of ξ with the exponential convergence rate α > 0 under the
distributed control law (15) if

k [(1− r)αs + rαu] > α+
lnμ

τD
. (18)

Proof: Consider the linear transformation x = Qz with Q
defined in (4). Note that In −QTQ is an orthogonal projection
matrix onto the span of 1n and ξ, and that 1n and ξ are in the
null space of Lp for any p ∈ P , which together imply Lσ(t)(I −
QTQ) = 0 or equivalently Lσ(t) = Lσ(t)Q

TQ. Thus, under the
distributed control law (15) we obtain that

ẋ =Qż = −kQDLσ(t)z = −kQDLσ(t)Q
TQz

= −kQDLσ(t)Q
Tx. (19)

For any p ∈ P , we denote Mp = −kQDLpQ
T . Then it

follows from (14) and (17) that∥∥eMpt
∥∥ ≤μe−kαst for p = 0,∥∥eMpt
∥∥ ≤μe−kαut for any p �= 0. (20)

Denote by t1, t2, . . . the time instants, at which the switching
occurs, and suppose σ(t) = pi for t ∈ [ti−1, ti). Then for any
t > 0 lying in the interval [ti, ti+1), the solution to (19) with its
initial condition x0 = Qz0 is of the following form:

x(t) = eMpi+1
(t−ti)eMpi

(ti−ti−1) · · · eMp1
t1x0.

Using (20), we have

‖x(t)‖ ≤ μμNσ(0,t)e−kαsTs(t)−kαuTu(t)‖x0‖

where Nσ(0, t) is the number of switching occurred in [0, t),
and Ts(t) and Tu(t) are the total activation time of the system
without any node failure and the systems with some node
failures during [0, t).

From the condition (18), we know there exists a δ > 0 such
that

k [(1− r)αs + rαu − δ] > α+
lnμ

τD
. (21)

Let ε = δ/(αs − αu), which is positive. Then (21) can be re-
written as

k [(1− (r + ε))αs + (r + ε)αu] > α+
lnμ

τD
. (22)

On the other hand, for this ε, we know that there exists a T0 > 0
such that

sup
T>T0

[
Tfail ([0, t])

T

]
< r + ε. (23)

Now without loss of generality, suppose t = T0. Thus, utiliz-
ing (23) first and then (22), we obtain that

‖x(t)‖ ≤μμNσ(0,t)e−k[(1−(r+ε))αs+(r+ε)αu]t‖x0‖
≤μμNσ(0,t)e

−
[
α+ lnμ

τD

]
t‖x0‖.

Fig. 4. The sensing graph G used in our simulations.

Suppose σ(t) ∈ Πave(τD, N0). Then we know that

μNσ(0,t) ≤ μ
N0+

t
τD

and thus

‖x(t)‖ ≤ μN0+1e−αt‖x0‖.

Repeating this argument shows that the sub-sequence of state at
T0, 2T0, . . . decays exponentially with the rate α. This further
implies that ‖x(t)‖ converges to 0 with the exponential decay
rate α. Therefore, by Definition 2.4, it is concluded that the
n agents globally exponentially reach a similar formation of ξ
with the exponential convergence rate α.

Moreover, it can be seen that Π(τD) ⊂ Πave(τD, 1) from
their definitions. Hence, if σ(t) ∈ Π(τD) and (18) holds, then
the n agents also globally exponentially reach a similar forma-
tion of ξ with the exponential convergence rate α. �

Remark 5.1: Note that the left-hand side of (18) in
Theorem 5.1 is equivalent to the negative real part of the aver-
aged dominant eigenvalues for formation shape control in some
sense. The condition (18) indicates that this averaged dominant
eigenvalue should be able to generate an exponential conver-
gence rateα after neutralizing possible growth due to switching.
The scalark can be chosen big enough to fulfil the condition (18).

Remark 5.2: It is worth to mention that when the sensing
graph is fixed, the dwell time τD is infinity and the failure rate
r = 0. Then the condition (18) in Theorem 5.1 degenerates to
the same condition for exponential stability with the ensured
convergence rate α under a fixed topology.

VI. SIMULATION RESULTS

In this section, we present several simulations to illustrate our
results. The example we consider consists of 9 agents. Suppose
the sensing graph G is given in Fig. 4, which is 2-rooted with
roots {4, 6}, namely, every node other than 4 and 6 has two
disjoint paths from {4, 6}.

The desired formation shape is described by the target
configuration

ξ = [−1 + ι, ι, 1 + ι,−1, 0, 1,−1− ι,−ι, 1− ι]T

in a global reference frame Σ. This is a 3-by-3 grid. It should
be pointed out that this target configuration is not generic.
However, note that a generic property, in topology and algebraic
geometry, is one that holds on a dense open set, so a generic
configuration assumption is only sufficient and that is why the
simulation example can be still successful as we will see.
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Fig. 5. The solution trajectories. (Fixed topology).

According to the sensing graph G given in Fig. 4 and the
target configuration ξ defined above, the weights are solved
from the formula (7). For example, we choose

w14 =6.7016− 0.9582ι, w15 = −2.8717 + 3.8299ι

w21 = −0.2767 + 1.1172ι, w25 = −1.1172− 0.2767ι

w32 =5.5818− 0.6142ι, w36 = 0.6142 + 5.5818ι

w46 =1.7128 + 2.1726ι, w47 = 4.3452− 3.4257ι

w52 = −2.6901, w58 = −2.6901

w63 =6.0798 + 0.0326iι, w64 = −0.0163 + 3.0399ι

w74 = −3.9112− 2.6227ι, w78 = −2.6227 + 3.9112ι

w85 = −1.8900 + 3.0397ι, w89 = 3.0397 + 1.8900ι

w95 =1.7471 + 6.1059ι, w96 = 4.3587− 7.8530ι.

The next step is to find di, i = 1, . . . , 9, such that the eigenval-
ues of −DL lie in the half-plane {s : Re(s) ≤ −5} in addition
to two fixed eigenvalues at 0 if we expect the exponential
convergence rate to be α = 5. For this objective, the following
di’s are used:

d1 =9, d2 = −0.5, d3 = 2

d4 =4, d5 = −3, d6 = 4

d7 = −4, d8 = 5, d9 = 3.

First, we consider k = 1 and suppose the sensing graph G is
fixed (no node failures). The solution trajectories in this simu-
lation are plotted in Fig. 5, which demonstrate that the agents
converge to a similar formation of 3-by-3 grid. Moreover, the
norm of Qz(t) with Q defined in (4) is plotted in Fig. 6, from
which we can see that it is exponentially convergent with the
rate α = 5.

Second, we consider k = 1 but the sensing graph is time-
varying due to temporary node failures. In this simulation,
the failure of every agent is assumed to occur randomly. The
indicator function in Fig. 7 shows the occurrence of failures
(one or more agents) when the function value is 1. It is counted
that the average dwell time is τD = 0.0135 for this simulation.
The corresponding solution trajectories are presented in Fig. 8
and the norm of Qz(t) is plotted in Fig. 9. From the simulation
result, we can see that the norm of Qz(t) (in Fig. 9) overshoots
the same upper-bound for the fixed topology case (in Fig. 6).

Fig. 6. The norm of Qz(t). (The sensing graph G is fixed and the third biggest
real part of all the eigenvalues of −DL is −5).

Fig. 7. The failure indicator function (1 indicates the occurrence of one or
more agent failures and 0 indicates no failure).

Fig. 8. The solution trajectories. (The sensing graph is time-varying due to
temporary node failures).

Third, we consider k = 1.2 to shift the eigenvalues of −DL
into the half-place {s : Re(s) ≤ −7} and adopt the same time-
varying graph as for the second simulation. The norm of Qz(t)
is given in Fig. 10. Now it is seen that the 9 agents are able to
reach a similar formation with the exponential convergence rate
α = 5 even in the presence of node failures over time.
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Fig. 9. The norm of Qz(t). (The sensing graph is time-varying due to
temporary node failures and the third biggest real part of all the eigenvalues
of −DL is −5).

Fig. 10. The norm of Qz(t). (The sensing graph is time-varying due to
temporary node failures and the third biggest real part of all the eigenvalues
of −DL is −7).

VII. CONCLUSION

In this paper, we consider a network of agents governed
only by a local control and address the formation shape control
problem using complex-weight based local interaction strate-
gies. The more general and more challenging setup of directed
networks and time-varying networks due to temporary node
failures is considered. The technical challenge in establishing
the connection between the complex-valued Laplacian and the
connectivity pattern of directed graphs is overcome under the
assumption of generic target configurations for a network of
agents. Then a necessary and sufficient graphical condition is
developed, under which a formation shape subject to rotations,
translations, and dilations can be characterized in terms of
complex weights over a directed graph. This answers the funda-
mental question whether a formation shape can be formed and
maintained under a distributed control law for multiple agents
using unidirectional and relative-position information in local
frames. Moreover, exponential convergence towards the desired
formation shape is analyzed under fixed topology and time-
varying topology due to temporary node failures. It is shown
that exponential convergence with specific decay rate is always
possible by tuning the diagonal scaling parameters for both
fixed topology and time-varying topology.

In this paper, however, we have not accounted for internal
dynamics of the agents, uncertain environment forces, and other
external forces. It will be interesting to generalize our method-
ology to deal with formation control of agents with internal
dynamics, uncertain environment forces, or nonholonomic con-
straints such as those in [6], [10], [43] and [44]. Moreover,
except for node failures, the general time-dependence aspects
of multi-agent formation has not been considered. However,
further investigation will be possible along the avenue devel-
oped in this paper. Also, based on the formation control law
developed in this paper, it will be possible to take into account
other control specifications such as group path following and
collision avoidance during motion.

In addition to multi-vehicle formations, this work also has
applicability in network localization such as those in [45]–[47],
for which a few nodes, called anchors, know their absolute
positions while the other nodes have only relative position
measurements and also lack the common sense of direction.
The fundamental problem of whether all the nodes in such a
network are localizable can then be transformed to finding the
topological properties of the sensing directed graphs, for which
there exists a unique realization.

APPENDIX

Proof of Lemma 3.1: We prove this lemma in the
iterative way.

1) We consider a rooted graph G, that is, there exists a node,
from which every other node is reachable.
(1a) It is certain that a rooted graph G has a spanning tree.

Without loss of generality, we denote it as T , with
the root set R1 = {ri}. Then for the Laplacian L′

of T with almost all weights wij’s, det(L′
R1

) �= 0.
Compose another set R2 by adding any one other
node to R1 and then it is clear that the nodes not
in R2 are all reachable from R2. So det(L′

R2
) �= 0.

Repeating this argument, it can be concluded that all
the principal minors of L′

R1
are distinct from zero for

the Laplacian L′ of T with almost all weights wij’s.
Note that comparing with the Laplacian L′ of T , the
Laplacian L of G has possibly more non-zero entries.
Hence, by using the fact that either a polynomial is
zero or it is not zero almost everywhere, it follows
that all the principal minors of L are distinct from
zero for almost all weights wij’s.

(1b) We show in the following that for the Laplacian L′

of T with almost all weights wij’s, det(M ′) �= 0
where M ′ is the sub-matrix of L′ by deleting the
row corresponding to the root ri and the column
corresponding to any other node, say vj ∈ V −R1.
Denote l′i and l′j the row vectors of L′ corresponding
to node ri and vj respectively. Clearly, l′i = 0 since
ri is the root of T . We take the following elementary
row transformation:

L′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
l′i
...
l′j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⇒ L̄′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
l′i + l′j

...
l′j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
l′j
...
l′j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Denote by T̄ the graph associated with L̄′. It is
certain that node ri is also a root of T̄ . Moreover,
notice that L̄′(i, j) = L′(j, j) �= 0 (where L̄′(i, j)
and L′(j, j) stand for the corresponding entry of L̄′

and L′). So there is an edge from vj to ri, which
means vj is also a root of T̄ . Thus, according to
(1a), det(L̄′

{vj}) �= 0. Notice that M ′ can be obtained

from L̄′
{vj} via elementary row transformations, so

det(M ′) �= 0, too. By the same argument as given
in the end of (1a), the conclusion follows for the
Laplacian L of G with almost all weights wij’s.

2) We consider a 2-rooted graph G, that is, there exists two
nodes from which every other node is 2-reachable.
(2a) Without loss of generality, let R = {r1, r2} be the

root set of G and let L ∈ L(G). By removing an arbi-
trary node in R, say r2 without loss of generality, and
its incident edges, we denote the resulting sub-graph
by G1. Clearly, G1 is rooted with the root set R1 =
{r1}. Denote by L1 the corresponding Laplacian of
G1. Then it is known from (1) that all the principal
minors of (L1)R1

are nonzero, and det(M1) �= 0
where M1 is the sub-matrix of L1 by deleting the row
corresponding to r1 ∈ R1 and any one column. This
implies, all the principal minors of LR are nonzero
and det(M) �= 0 for M being the sub-matrix of L
by deleting the two rows corresponding to nodes in
R and two columns corresponding to one node in R
and the other not in R.

(2b) Then it remains to show that det(M) �= 0 for M
being the sub-matrix of L by deleting the two rows
corresponding to nodes in R and any two columns
corresponding to nodes neither in R. Consider any
one node not in R, say vj . Without loss of generality,
denote r1 = v1 and r2 = v2, and denote by li the row
vector of L corresponding to node vi. We make the
following elementary row transformation for L, i.e.,

L =

⎡
⎢⎢⎢⎢⎢⎣

l1
l2
...
lj
...

⎤
⎥⎥⎥⎥⎥⎦
⇒ L̄ =

⎡
⎢⎢⎢⎢⎢⎣

∑n
i=1 kili
l2
...
lj
...

⎤
⎥⎥⎥⎥⎥⎦
.

Since G is 2-rooted, every root in R has at least one
out-going edge. Thus, with a proper choice of ki’s,
L̄(1, 1), L̄(1, 2) and L̄(1, j) can all become nonzero.
Denote by Ḡ the graph associated with L̄. It is certain
that Ḡ is also 2-rooted with the root set R. Moreover,
there are edges from node r2 and node vj to node r1.
So node r1 is 2-reachable from the set R̄ = {r2, vj}.

Now we consider any node vk in V − {R, vj} and show that
vk is 2-reachable from R̄, too. Certainly, if the two disjoint
paths from R to vk do not pass through node vj , then there
exist two disjoint paths from R̄ to vk with one path going from
node vj to r1 followed by the path from r1 to vk. If for the two
disjoint paths from R to vk, there exists a path, from node r2 to
vk, passing through node vj , then there still exist two disjoint
paths from R̄ to vk with two new paths: One is the path from
vj to vk taken from the path r2 to vk and the other is the path

connecting from r2 to r1 and r1 to vk. If there exists a path,
from node r1 to vk, passing through node vj , then there still
exist two disjoint paths from R̄ to vk with one new path going
from vj to vk taken from the path r1 to vk. This means, Ḡ is
2-rooted with the root set R̄. Hence, according to the argument
in (1), we can know that det(L̄R̄) �= 0. Notice that M can
be obtained from L̄R̄ via elementary row transformations, so
det(M) �= 0. Thus, the conclusion follows. �
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