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for Affine Formation Control
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Abstract—This paper introduces a new multi-agent control
problem, called an affine formation control problem, with the
objective of asymptotically reaching a configuration that preserves
collinearity and ratios of distances with respect to a target configu-
ration. Suppose each agent updates its own state using a weighted
sum of its neighbor’s relative states with possibly negative weights.
Then the affine control problem can be solved for either undirected
or directed interaction graphs. It is shown in this paper that an
affine formation is stabilizable over an undirected graph if and
only if the undirected graph is universally rigid, while an affine for-
mation is stabilizable over a directed graph in the d-dimensional
space if and only if the directed graph is (d + 1)-rooted. Rigorous
analysis is provided, mainly relying on Laplacian associated with
the interaction graph, which contain both positive and negative
weights.

Index Terms—Distributed control, formation control, graph
theory, multi-agent systems.

I. INTRODUCTION

THIS paper introduces a new type of collective pattern in
multi-agent systems, called an affine formation pattern,

and aims to uncover necessary and sufficient conditions so that
an affine formation pattern can emerge from simple relative-
state based local interactions. An affine formation in this paper
refers to a collection of states for a network of agents, which as-
sociates with a target configuration via an affine transformation.
That is, it preserves collinearity and ratios of distances (i.e., the
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agents lying on a line initially still lie on a line and maintain the
ratios of distances with respect to the target configuration).

The set of affine formations is a superset of the set of rigid
formations [1] (that preserve the distances between every pair
of agents) and the set of translational formations (that preserve
not only the distances between every pair of agents but also
the orientation of the formation). The main motivation for the
study of affine formations is to provide a new way for robotic
formations as well as for cooperative localization in sensor
networks. As we will show in this paper, a network of agents in
an affine formation can be reshaped to form a rigid formation
or a translational formation by controlling only a small number
of agents in the network. This is advantageous for robotic
formations to have better adaptivity to changing environments.
Therefore, controlling a network of agents to achieve an affine
formation is not only of its own interest, but also provides
a new avenue towards reshapable robotic formations. Also,
affine formation control is related to cooperative localization
in sensor networks. With the presence of a number of anchor
nodes knowing their absolute coordinates in a sensor network,
every other sensor node updates its estimate about its own
position according to affine formation control rules and it is
then able to determine its absolute coordinate. A detailed study
for cooperative localization in 2D can be found in [2].

A. Literature Review

There has been a tremendous surge of interest among re-
searchers from various disciplines of engineering and science
on analysis of collective patterns in multi-agent systems by
looking at local interaction rules using relative states. Suppose
each agent updates its state according to a weighted sum of
its neighbors’s relative states. A collective pattern (namely,
consensus) occurs provided that the graph (either undirected or
directed) modeling the interaction topology has certain connec-
tivity properties [3]–[6]. The notion of a rooted graph, meaning
there is a node in the graph called root so that every other node
is reachable from the root, unifies the necessary and sufficient
connectivity properties for consensus in undirected and directed
graphs. If a graph has multiple nodes playing the role of leaders,
while the others update their states according to their neighbors’
relative states, then the resulting collective pattern is either a
straight line [5], [7] or a configuration within a convex hull
spanned by the leaders [8]–[10].

The aforementioned works assume that the weights to gener-
ate the local interaction rules are all positive and real. Only few
papers address collective behaviors using negative real weights.
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[11] shows that the use of negative weights may lead to faster
convergence for distributed averaging consensus, while [12]
shows that the use of negative weights can lead to a consensus
value which is the same for all agents except for the sign.
Moreover, the works by [13]–[15] consider negative weights
as the inhibitory mechanism to desynchronize the interacting
agents in different clusters. More recently, a novel idea using
complex weights in the local interaction rules is proposed in
[16]–[18], which achieve a collective pattern called a similar
formation in the plane. That is, the achieved pattern is similar
to the target configuration subject to rotations, translations
and dilations. A necessary and sufficient graphical condition,
called 2-rooted connectivity, is given in [17] and [18] for the
realizability of similar formations. There have also been similar
works which consider control for a network of agents to achieve
a formation that is invariant to rotations, permutations, and
translations (see for example [19] and the references therein).

B. Statement of Contributions

This paper considers a local interaction law to update each
agent’s state using a weighted sum of its neighbor’s relative
states with both positive and negative weights and aims to
understand how such a local interaction law leads to an affine
formation pattern at the group level. In contrast to the consensus
control law, the local interaction law in this paper takes both
positive and negative weights to encode the target configura-
tion. That is, the weights are designed to meet certain algebraic
constraints related to the target configuration. Moreover, in
contrast to the complex-weight based local interaction law in
[16]–[18], which limits the state of each agent to the plane,
the local interaction law in this paper can deal with pattern
formation in any dimensional space, but the emergent pattern
does not preserve angles between lines. Compared to our earlier
work [20], this paper also extends to the setup with directed
interaction graphs.

The main contribution of this paper is fourfold. First, the
adoption of both positive and negative weights makes possible
to achieve affine formation in any dimensional space. Second,
necessary and sufficient graphical conditions are discovered to
ensure from the structural viewpoint whether a simple local in-
teraction law exists to steer the agents to an affine formation. On
one hand, we show that, for the undirected graph setup, global
rigidity is necessary and sufficient to make the affine image of
a target configuration the equilibrium subspace. On the other
hand, we reveal that global rigidity is not sufficient to guarantee
the existence of a local interaction law to steer the agents to an
affine formation. A stronger notion of rigidity, called universal
rigidity, is necessary and sufficient for stabilizability. For the
directed graph setup, we show that a (d+ 1)-rooted graph is
necessary and sufficient to make the affine image of a target
configuration the equilibrium subspace as well as to ensure sta-
bilizability. Third, the local control law is developed for single-
integrator agent models using relative distance measurements.
This is then generalized to more general and realistic agent
models by also incorporating velocity measurements. More-
over, a distributed control law without the need of centralized
computation at the design stage is developed for multi-agent

Fig. 1. (a) A framework in R
2 that is globally rigid but not universally rigid.

(b) A framework in R
2 that is both globally rigid and universally rigid.

systems allowing communication between neighboring agents.
Finally, it is revealed that when a network of agents are in an
affine formation, they can be reshaped to form a globally rigid
or translational formation by controlling only a small number
of agents in the network.

C. Notation

Denote by 1n the n-dimensional vector of ones and denote
by In the n× n identity matrix. Moreover, span{p1, . . . , pn}
is used to denote the linear span of vectors p1, . . . , pn and
diag(A1, . . . , An) represents the block diagonal matrix with
each diagonal block Ai.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce preliminary results on graphs
and formulate the affine formation control problems.

A. Basic Notions and Preliminary Results for
Undirected Graphs

An undirected graph (graph for short) is a set of n nodes
V and m edges E consisting of unordered pairs of nodes,
denoted as G = (V , E). A configuration in R

d (or simply called
a configuration in this paper) of a set of n nodes V is de-
fined by their coordinates in the Euclidean space R

d, denoted
as p = [p�1 , . . . , p

�
n ]

�
, where each pi ∈ R

d for 1 ≤ i ≤ n. A
framework in R

d (or simply called a framework in this paper) in
R

d is a graph G equipped with a configuration p in R
d, denoted

as F = (G, p). An example of two frameworks in R
2 is given

in Fig. 1. The vertices of the framework are represented by little
disks, while the edges are represented by straight lines.

Two frameworks (G, p) in R
d1 and (G, q) in R

d2 with G =
(V , E) are said to be equivalent, written as (G, p) ∼= (G, q), if

‖pi − pj‖ = ‖qi − qj‖, ∀ (i, j) ∈ E .

That is, two frameworks (G, p) and (G, q) are equivalent as long
as the distances are preserved for pairs of nodes with edges. On
the other hand, two frameworks (G, p) in R

d1 and (G, q) in R
d2
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are congruent, and we write (G, p) ≡ (G, q), if

‖pi − pj‖ = ‖qi − qj‖, ∀ i, j ∈ V .

That is, two frameworks (G, p) and (G, q) in the same dimen-
sional space are congruent if p and q can be obtained from each
other by a rigid motion such as a rotation or translation.

A framework (G, p) in R
d is called globally rigid if for any

configuration q in R
d, (G, p) ∼= (G, q) implies (G, p) ≡ (G, q).

A framework (G, p) in R
d is called universally rigid if for

any configuration q in R
s with s being any positive integer,

(G, p) ∼= (G, q) implies (G, p) ≡ (G, q). From the definitions of
global rigidity and universal rigidity, it immediately follows
that universal rigidity implies global rigidity but the converse
is not true. As an example, the two frameworks in R

2 in
Fig. 1 are globally rigid while the framework in Fig. 1(a) is not
universally rigid as there exists a framework in R

3 equivalent
to it but not congruent to it. That is, we keep points 1, 2, 3,
and 4 in the plane while pushing them along the directions as
shown in Fig. 1(a) and pulling node 5 out of the plane. Then
a non-congruent configuration in R

3 an be found to satisfy the
distance constraints corresponding to the edges in the graph.

A configuration p in R
d is said to be generic if all the

coordinates p1, . . . , pn are algebraically independent over the
integers [21]. That is, p is generic if there does not exist
a nonzero polynomial f(x1, . . . xnd) with integer coefficients
such that f(p11, . . . , p

d
1, . . . , p

1
n, . . . , p

d
n) = 0 where pji is the

jth element of the vector pi. Intuitively speaking, a generic
configuration has no degeneracy, i.e., no three points staying
on the same line, no three lines go through the same point,
etc. In nongeneric configurations, rigidity properties are more
difficult to predict. Standard examples are those where a flex-
ible framework becomes rigid, or where a framework loses
global rigidity, when passing from a generic configuration to
a nongeneric one. A framework (G, p) is generically globally
rigid or generically universally rigid if it is globally rigid or
universally rigid and p is generic. Generic rigidity is a property
of the graph, not the configuration. Thus, with a slight abuse of
notion, we also say a graph G is globally rigid or universally
rigid if the framework (G, p) is generically globally rigid or
generically universally rigid. We shall assume in this paper that
the configuration considered is generic. The justification for
this assumption is that in any dimensional space, the generic
configurations form a set of full measure.

Finally, we introduce two results regarding global rigidity
and universal rigidity in terms of the so-called stress matrix.
For a configuration p in R

d of n points, a symmetric matrix L
is called a stress matrix for the configuration p if it satisfies
L1n = 0 and (L⊗ Id)p = 0 ([22]). The first result below
shows that a generic framework is globally rigid if and only
if it has a stress matrix with its kernel of dimension d+ 1. The
sufficiency is shown in [22]. The necessity is conjectured in
[22] and proven in [21].

Theorem 2.1 ([21], [22]): Suppose an undirected graph G
has n nodes with n ≥ d+ 2 and p = [p�1 , . . . , p

�
n ]

�
is a generic

configuration in R
d. Then the framework (G, p) is globally

rigid if and only if there exists a stress matrix L whose rank is
n− d− 1.

The second result below gives a necessary and sufficient
condition for a generic framework to be universally rigid.

Theorem 2.2 ([23]): Suppose an undirected graph G has
n nodes with n ≥ d+ 2 and p = [p�1 , . . . , p

�
n ]

�
is a generic

configuration in R
d. Then the framework (G, p) is universally

rigid if and only if there exists a stress matrix L that is of rank
n− d− 1 and positive semi-definite.

Remark 2.1: An immediate necessary condition for a
d-dimensional framework (G, p) on n ≥ d+ 2 nodes to be
globally rigid or universally rigid is that the undirected graph
G should be (d+ 1)-connected, that is, there does not exist a
set of d nodes whose removal disconnects the graph. The nec-
essary and sufficient connectivity condition is still not known
yet. However, a recent work provides a construction based on
nonconvex Grünbaum polygon to obtain generically universally
rigid frameworks with the minimum number of edges in two or
three dimensions [24].

B. Basic Notation and Preliminary Results for
Directed Graphs

A directed graph (digraph for short) is a set of n nodes V
and m edges E consisting of ordered pairs of nodes, denoted
as G = (V , E). When (j, i) is an edge in G, node j is called an
in-neighbor of node i and node i is called an out-neighbor of
node j.

Definition 2.1: For a digraph G, a node v is said to be
k- reachable from a non-singleton set U of nodes if there exists
a path from a node in U to v after removing any k − 1 nodes
except node v (i.e., there are k disjoint paths from U to v).

Definition 2.2: A digraph is k-rooted if there exists a sub-
set of k nodes called roots, from which every other node is
k-reachable.

Definition 2.3: For a digraph G = (V , E), a spanning
k-tree of G rooted at R = {r1, r2, . . . , rk} ⊂ V is a spanning
subgraph T = (V , Ē) such that

(1) every node r ∈ R has no in-neighbor;
(2) every node v �∈ R has k in-neighbors;
(3) every node v �∈ R is k-reachable from R.

Lemma 2.1: A digraph G = (V , E) is k-rooted if and only if
G has a spanning k-tree.

Proof: (Sufficiency) If G has a spanning k-tree, then by
the definition of k-rooted graph, it is certain that G is k-rooted.

(Necessity) By the definition of a k-rooted graph, we know
that there exists a subset of k nodes, called roots, such that
every other node is k-reachable from them. Denote by R =
{r1, r2, . . . , rk} the set composed of k roots.

First we remove all incoming edges to nodes in R. By doing
so, every node v �∈ R is still k-reachable from R. Second, we
remove extra incoming edges for node v �∈ R such that there
remain k incoming edges for node v and is still k-reachable
from R. It is obvious that the removal of edges on node v
does not affect the k-reachability from R to other nodes that
do not have paths from R via node v. Moreover, for those
nodes that have paths from R via node v, there must be another
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disjoint path not containing v connecting fromR to u due to the
k-reachability property. So the removal of the extra incoming
edges on v also does not affect their k-reachability. Therefore,
by Definition 2.3, a spanning k-tree is constructed. �

C. Problem Formulation

We consider a group of n agents, whose states are denoted
by z1, . . . , zn ∈ R

d (for example, mobile robots or unmanned
aerial vehicles with their states being the positions in R

2 or R3).
Suppose each agent is governed by a single-integrator dynamics
as follows:

żi = ui, i = 1, . . . , n (1)

where ui ∈ R
d represents the control input of each agent. De-

fine the aggregate state z = [z�1 , . . . , z
�
n ]

�
, as a column vector

in R
nd.

Moreover, suppose that each agent i is able to access the
relative states (zj − zi) of its in-neighbors j ∈ Ni where Ni

denotes the set of agent i’s in-neighbors. If pairs of agents are
mutually neighbors, i.e., (j, i) ∈ E implies (i, j) ∈ E , then we
use an undirected graph G = (V , E) to model the information
flow structure among the n agents. Otherwise, we use a directed
graph G = (V , E) to model the information flow structure
among the n agents. In the sequel, we use

zij = zi − zj , j ∈ Ni

to denote the relative state available to agent i.
Consider a target configuration p = [p�1 , . . . , p

�
n ]

�
in R

d,
where each pi ∈ R

d for 1 ≤ i ≤ n. We denote the affine image
of p as

A(p) :=

{
q =

[
q�1 , . . . , q

�
n

]� ∣∣∣∣ qi = Api + a, A ∈ R
d×d

a ∈ R
d, and i = 1, . . . , n

}

or equivalently

A(p) :=
{
q = (In ⊗A)p+ 1n ⊗ a

∣∣A ∈ R
d×d, a ∈ R

d
}
.

Notice that any real matrix A can be factorized by singular
value decomposition as A = UΣV , where U and V are unitary
matrices, and Σ is a d× d diagonal matrix. This means that a
configuration in A(p) is attained via an affine motion from p,
namely, a rotation V , a scaling along different axes by Σ, and
then another rotation U , followed by a translation a. So indeed,
A(p) represents a set of patterns for the n agents in the state
space. We say that the n agents, z1, z2, . . . , zn, form an affine
formation if the state z belongs to A(p).

In this paper, we study the affine formation control problem
with the objective of steering a group of agents to the affine
image of a target configuration and uncovering necessary and
sufficient topological conditions for the feasibility of affine
formation control using the local interaction law

ui = −
∑
j∈Ni

kijzij , i = 1, . . . , n. (2)

where kij is a non-zero scalar weight on edge (j, i) of the
graph G that models the information flow structure among the n
agents. If G is an undirected graph, then we assume kij = kji.
If G is a directed graph, then kij is not necessary to be equal to
kji. Note that kij may be negative or positive, so it is different
from the consensus control protocol [6].

With the local interaction law (2), the goal is then to find
the necessary and sufficient graphical conditions for both undi-
rected graphs and directed graphs and find control weights kij ’s
such that the trajectories of the closed-loop system satisfies

lim
t→∞

z(t) = z∗ where z∗ ∈ A(p).

Remark 2.2: If the matrix A in the definition of A(p) is
an unitary matrix, the affine image A(p) is called a rotation/
translation image, denoted as R(p). In other words, if z∈R(p),
the agents form a configuration congruent to the target con-
figuration. In particular, if the matrix A is an identity matrix,
the affine image A(p) is called a translation image, denoted as
T (p). That is, z ∈ T (p) implies the agents form a configuration
that is congruent to the target configuration and has the same
orientation as it.

As shown in [25], a generic framework (G, p) in R
d with

d+ 1 or fewer nodes is globally rigid if and only if G is
a complete graph, a trivial case. Therefore, in this paper we
assume that our graph has d+ 2 or more nodes, i.e., n ≥ d+ 2.
This also implies that a generic framework does not lie in any
proper affine subspace of Rd.

III. AFFINE FORMATION OVER UNDIRECTED NETWORKS

This section considers the undirected graph case, for which
we will present necessary and sufficient graphical conditions
for realizability as well as stabilizability of affine formation.

A. Realizability of Affine Formation

As the first step towards the goal of asymptotically achieving
an affine formation, we explore a necessary and sufficient
condition, under which the equilibrium set of the closed-loop
system under the local interaction law (2) over an undirected
graph G is the affine image A(p) for a generic target configura-
tion p.

Under the local interaction law (2) over an undirected graph
G, the closed-loop system is of the following form:

ż = −(L⊗ Id)z (3)

where L ∈ R
n×n is the matrix whose (i, j)th off-diagonal

element is 0 if (j, i) is not an edge of G and the weight kij
otherwise, and whose diagonal entry is the negative row sum of
off-diagonal entries in the same row. In this paper, the Laplacian
L associated with the undirected graph G may contain both
positive and negative off-diagonal entries, which is different
from the classic Laplacian matrix used in consensus study [6].
Since this section assumes that G is undirected, L is symmetric.
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For a target configuration p, an affine formation of p is said
to be realizable over the undirected graph G if there exists a
symmetric matrix L associated with G such that the equilibrium
set of system (3) equals to A(p) (i.e., (L⊗ Id)z = 0 if and only
if z ∈ A(p)).

Next, we present our main result. But before that, we give a
preliminary result regarding the affine image A(p).

Lemma 3.1: Consider p = [p�1 , . . . , p
�
n ]

�
with every pi ∈

R
d. If span{p1, . . . , pn} = R

d, then A(p) is a linear subspace
of dimension d2 + d.

The proof of Lemma 3.1 is given in the Appendix.
Theorem 3.1: Suppose an undirected graph G has n nodes

with n ≥ d+ 2 and p = [p�1 , . . . , p
�
n ]

�
is a generic configura-

tion in R
d. Then an affine formation of p is realizable over G if

and only if G is globally rigid.
Proof: (Sufficiency) From Theorem 2.1 we know that if

the undirected graphG is globally rigid, then there exists a stress
matrix L whose rank is n− d− 1. As a result, for a generic
configuration p in R

d, the null space of L⊗ Id is of dimension
(d+ 1)d. On the other hand, since (L⊗ Id)p = 0, it turns out
that for any A ∈ R

d×d and a ∈ R
d

(L⊗ Id) [(In ⊗A)p+ 1n ⊗ a] = (L ⊗A)p

=(In ⊗A)(L ⊗ Id)p = 0

which means the affine image A(p) is a subset of the equilib-
rium set. Moreover, from Lemma 3.1 we know that A(p) is
a linear subspace of dimension (d+ 1)d, which equals to the
dimension of null space of L⊗ Id. Therefore, it is certain that
the equilibrium set of system (3) equals to A(p), that means an
affine formation of p is realizable over G.

(Necessity) If an affine formation of p is realizable over G,
then there exists a symmetric matrix L associated with G such
that the equilibrium set of system (3) equals to A(p). Thus, it
can be inferred that (L⊗ Id)p = 0 due to p ∈ A(p). Moreover,
since the dimension of A(p) is d2 + d by Lemma 3.1, it then
follows that rank(L) = n− d− 1. Therefore, by Theorem 2.1,
it is concluded that G is globally rigid. �

B. Stabilizability of Affine Formation

The preceding subsection shows that in order to make an
affine formation an equilibrium of the system under the local
interaction law (2), the undirected graph G needs to be globally
rigid. The result in this subsection will show that global rigidity
is not sufficient to ensure the existence of L making the system
asymptotically stable, while universal rigidity is the necessary
and sufficient condition.

For a target configuration p, an affine formation of p is said
to be stabilizable over the undirected graph G if there exists
a symmetric matrix L associated with G such that the state of
the closed-loop system (3) converges to a point in A(p). The
theorem below provides a necessary and sufficient condition for
stabilizability of an affine formation.

Theorem 3.2: Suppose an undirected graph G has n nodes
with n ≥ d+ 2 and p = [p�1 , . . . , p

�
n ]

�
is a generic configura-

tion in R
d. Then an affine formation of p is stabilizable over G

if and only if G is universally rigid.
Proof: (Sufficiency) If G is universally rigid, then by

Theorem 2.2, for a generic configuration p, there exists a stress
matrix L (satisfying L1n = 0 and (L⊗ Id)p = 0) that is of
rank n− d− 1 and positive semi-definite. Thus, we construct
such a matrix L for system (3), for which the eigenvalues of
L are all positive other than d+ 1 zero eigenvalues with d+ 1
linearly independent associated eigenvectors. Then it follows
from the properties of Kronecker product that system (3) is
asymptotically stable, namely, converging to A(p).

(Necessity) If an affine formation of p is stabilizable over G,
then there exists a symmetric matrix L associated with G such
that the equilibrium set of system (3) equals to A(p) and the
state of system (3) converges to a point in A(p). This implies
that other than d+ 1 zero eigenvalues, the eigenvalues of L
are positive. Therefore, it is positive semi-definite. Thus, by
Theorem 2.2 it follows that G is universally rigid. �

C. Design of Control Weights for Stabilization

Next, we come to design kij’s when the undirected graph G
is universally rigid, that is, solving the affine formation control
problem over undirected graphs with the objective to steer a
group of agents to the affine image A(p).

Denote q1 the n-dimensional vector by aggregating the first
components of p1, . . . , pn. Similarly, we denote q2, . . . , qd the
corresponding aggregate vectors. Since for a generic configura-
tion p, 1n, q1, . . . , qd are linearly independent, we can find an
(n− d− 1)× n matrix Q with orthonormal rows that are each
orthogonal to 1n, q1, . . . , qd; that is

Q1n = 0, Qq1 = 0, . . . , Q qd = 0, QQ� = In−d−1.

Then we are ready to present a stability criteria that will be used
in the control weight design.

Theorem 3.3: Suppose L1n = 0 and (L⊗ Id)p = 0. Then
an affine formation of p is stabilizable over G if and only
if λmin(QLQ�) > 0 where λmin(·) represents the smallest
eigenvalue of a symmetric matrix.

Proof: When L1n = 0 and (L⊗ Id)p = 0, then
λmin(QLQ�) > 0 is equivalent to the fact that the eigenvalues
of L are all positive except the ones at the origin. Thus the
conclusion follows. �

Based on Theorem 3.3, we formulate the control weight
design problem as an optimization problem in the following.

We suppose the undirected graph G has m edges, with labels
1, . . . ,m. We arbitrarily assign an orientation for each edge.
The choice of orientation does not change the analysis. The
incidence matrix B ∈ R

n×m is defined as

Bil =

⎧⎪⎨
⎪⎩
1 if edge l starts from node i

−1 if edge l ends at node i

0 otherwise.

Note that each edge l of the undirected graph is associated with
a single weight wl = kij = kji, where edge l is incident to
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nodes i and j. We let w ∈ R
m denote the vector of weights

on the m edges. Using this notation, the matrix L can be
written as

L(w) = Bdiag(w)B�

where diag(w) stands for the m×m diagonal matrix with the
lth diagonal entry wl. Thus, the control design problem turns
out to be the design problem of the weight vector w subject to
certain equality or inequality constraints, to meet the stability
requirement of the multi-agent formation. That is,

maximize
w

λ

subject to 0 < λ ≤ λ̄

QL(w)Q� � λIn−d−1

L(w)qi = 0, i = 1, . . . , d

where A � B refers that A−B is positive definite and λ̄ can
be any positive constant to make the optimization problem
have a bounded solution. From Theorem 3.2, we know that
if G is universally rigid, the optimization always has a solu-
tion. The constraints in the above optimization problem are
represented by linear matrix inequalities. The optimization is a
semi-definite programming that can be efficiently and globally
solved by using a polynomial-time interior point method [26].

IV. AFFINE FORMATION OVER DIRECTED NETWORKS

This section considers the directed graph case, for which we
will present necessary and sufficient graphical conditions for
realizability as well as stabilizability of affine formation.

A. Realizability of Affine Formation

Similar to the undirected graph case, we firstly aim to explore
a necessary and sufficient condition, under which the equilib-
rium set of the closed-loop system under the local interaction
law (2) over a directed graph G is exactly the affine image A(p)
of a target configuration p.

Under the local interaction law (2), the closed-loop system is
of the following form:

ż = −(L⊗ Id)z (4)

where L ∈ R
n×n is the matrix whose (i, j)th off-diagonal

element is 0 if (j, i) is not an edge of G and kij otherwise, and
whose diagonal entry is the negative row sum of off-diagonal
entries in the same row. We call L the Laplacian associated
with a directed graph G.

For a target configuration p, an affine formation of p is said to
be realizable over a directed graph G if there exists a Laplacian
L associated with G such that the equilibrium set of system (4)
equals to A(p) (i.e., (L ⊗ Id)z = 0 if and only if z ∈ A(p)).

Next, we present our main result. Before that, we give a result
that will be used in the proof of our main result.

Lemma 4.1: For a generic Laplacian L of a digraph G, if G is
k-rooted with the root set R = {r1, . . . , rk}, then:

(a) all the principal minors of LR are distinct from zero,
where LR is the sub-matrix of L with the rows and
columns corresponding to nodes in R crossed out;

(b) det(M) �= 0 where M is a sub-matrix of L by deleting
the k rows corresponding to the k roots and any k
columns.

The proof of Lemma 4.1 is given in the Appendix.
Theorem 4.1: Suppose a directed graph G has n nodes with

n ≥ d+ 2 and p = [p�1 , . . . , p
�
n ]

�
is a generic configuration in

R
d. Then an affine formation of p is realizable over G if and

only if G is (d+ 1)-rooted.
Proof: (Sufficiency) If G is (d+ 1)-rooted, we show in

the following that there exists a Laplacian L satisfying (L ⊗
Id)p = 0 and rank(L) = n− d− 1.

Since G is (d+ 1)-rooted, by Lemma 2.3 we know that
G has a spanning (d+ 1)-tree. Denote by T the spanning
(d+ 1)-tree. Let T be a generic Laplacian associated with T .
It is known that the rows of T corresponding to the d+ 1 roots
are all zero vectors. Moreover, by Lemma 4.1, rank(T ) ≥ n−
d− 1. So the kernel of T is a (d+ 1)-dimensional subspace, for
which one basis is 1n. Denote η0 = 1n and the other linearly
independent bases as η1, . . . , ηd.

Next we show that for the tall matrix [η0, η1, . . . , ηd], by
removing any n− d− 1 rows, the remaining square matrix is
of full rank. To see this, suppose by contradiction that it is
not. That is, by row switching, [η0, η1, . . . , ηd] transforms to

the form

[
M
N

]
where M ∈ R

(d+1)×(d+1) is not of full rank.

In other words, there is a nonzero vector ξ such that Mξ = 0.
By corresponding column switching for T followed by remov-
ing the rows in T corresponding to the d+ 1 roots, denote
the resulting transformed sub-matrix as [T1 T2] where T1 is
(n− d− 1)-by-(d+ 1) and T2 is (n− d− 1)-by-(n− d− 1).
Then we have

[T1 T2]

[
M
N

]
= 0. (5)

Plugging Mξ = 0 into (5) leads to T2Nξ = 0. On the other
hand, from Lemma 4.1, we know that for a generic Laplacian
T , T2 is of full rank. Therefore, Nξ = 0, which together with
Mξ = 0 imply η0, η1, . . . , ηd are not linearly independent, a
contradiction.

Since T is a (d+ 1)-tree, each non-root node has exactly
(d+ 1) in-neighbors, which implies the corresponding row of
T has at most (d+ 2) nonzero entries. Denote by μ the sub-
vector of a row of T corresponding to a non-root node, which
aggregates only the (d+ 2) nonzero entries. Since we just
showed that for the tall matrix [η0, η1, . . . , ηd], by removing
any n− d− 1 rows the remaining (d+ 1)-by-(d+ 1) square
matrix is of full rank, it means μ lies in a one-dimensional
subspace. So for a generic p and a Laplacian T ′ associated with
T and satisfying (T ′ ⊗ Id)p = 0, the corresponding μ′ of T ′

is in a subspace of at least one dimension. Therefore, T ′ has
the same zero/nonzero pattern as T and rank(T ′) = rank(T ) =
n− d− 1 in a generic sense.
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For a (d+ 1)-rooted graph G and a Laplacian L satisfying
(L⊗ Id)p = 0, T ′ can be considered as a Laplacian of G for a
special choice of weights with edges not in T being 0. Thus, by
using the fact that either a polynomial is zero or it is not zero
almost everywhere, it follows that rank(L) = n− d− 1, too.

On the other hand, since (L⊗ Id)p = 0, it turns out that for
any A ∈ R

d×d and a ∈ R
d

(L⊗ Id) [(In ⊗A)p+ 1n ⊗ a] = (L⊗A)p

=(In ⊗A)(L ⊗ Id)p

=0

which means the affine image A(p) is a subset of the equilib-
rium set. Moreover, from Lemma 3.1 we know that A(p) is
a linear subspace of dimension (d+ 1)d, which equals to the
dimension of null space of L⊗ Id. Therefore, it is certain that
the equilibrium subspace of system (4) equals to A(p), that
means an affine formation of p is realizable over G.

(Necessity) If an affine formation of p is realizable over a
directed graph G, then there exists a Laplacian L associated
with G such that the equilibrium set of system (4) equals
to A(p). Thus, it can be inferred that (L⊗ Id)p = 0 due to
p ∈ A(p). Moreover, since the dimension of A(p) is d2 + d as
shown in Lemma 3.1, it then follows that rank(L) = n− d− 1.
Thus, there exist d+ 1 rows of L, which can be transformed to
zero vectors by elementary row operations. Denote by R the set
of nodes corresponding to the indices of these d+ 1 rows.

Now suppose by contradiction that G is not (d+ 1)-rooted.
Then there exists a node i �∈ R such that after deleting d nodes,
without loss of generality say {1, 2, . . . , d}, i is not reachable
from R. Let U be the set of nodes not in R (including node i)
such that all nodes in U are not reachable from R after remov-
ing {1, 2, . . . , d}. Let

Ū = V − U − {1, 2, . . . , d}.

Then it is clear that there is no edge from any node in Ū to
any node in U . So by relabeling the nodes in U and Ū in a
consecutive manner respectively, the matrix L transforms to the
following form by a permutation matrix P , i.e.,

PLP� = L′ :=

⎡
⎣L11 L12 L13

L21 L22 0
L31 L32 L33

⎤
⎦

where the rows and columns in L11 correspond to nodes
1, 2, . . . , d, the rows and columns in L22 correspond to the
nodes in U , and the rows and columns in L33 correspond to
the nodes in Ū . Thus, (L⊗ Id)p = 0 is equivalent to

(L′ ⊗ Id)(P ⊗ Id)p = 0

from which we have

([L21 L22 0]⊗ Id) (P ⊗ Id)p = 0.

Moreover, we have [L21 L22 0]1=0. Therefore, [L21 L22 0]
is not of full row rank, which together with the fact that d+ 1
rows corresponding nodes not in U can be transformed to

zero vectors by elementary row operations, imply rank(L) ≤
n− d− 2. It contradicts to the above conclusion rank(L) =
n− d− 1. Therefore, G is (d+ 1)-rooted. �

B. Stabilizability of Affine Formation

This subsection will show that a (d+ 1)-rooted graph is also
necessary and sufficient to ensure the existence of a Laplacian
L, making the system asymptotically stable.

For a target configuration p, an affine formation of p is
said to be stabilizable over a directed graph G if there exists
a Laplacian L associated with G such that the state of the
closed-loop system (4) converges to a point in A(p). The
theorem below provides a necessary and sufficient condition for
stabilizability of an affine formation.

Theorem 4.2: Suppose a directed graph G has n nodes with
n ≥ d+ 2 and p = [p�1 , . . . , p

�
n ]

�
is a generic configuration in

R
d. Then an affine formation of p is stabilizable over G if and

only if G is (d+ 1)-rooted.
The proof requires the following result related to the multi-

plicative inverse eigenvalue problem (MIEP) [27] over the real
field.

Lemma 4.2 ([27]): Let A be an n× n real matrix with all
of its leading principal minors being nonzero. Then there is an
n× n diagonal matrix D such that all the roots of DA are
positive and simple.

Proof of Theorem 4.2: (Sufficiency) If G is (d+1)-rooted,
then by Lemma 4.1 it follows that for a generic Laplacian L,
there is a permutation operation (multiplying with a permu-
tation matrix P , equivalent to relabeling the nodes) such that
PLPT has the form

L′ =

[
B1 B2

B3 B4

]

with B1 ∈ R
(n−d−1)×(n−d−1) and B2, B3, and B4 of appro-

priate dimension, and all principal minors of B1 are nonzero.
The property also holds for L satisfying (L⊗ Id)p = 0 for a
generic p, which can be shown by the same argument as to show
rank(L) = n− d− 1 in Theorem 4.1. Thus, by Lemma 4.2,
there exists a diagonal matrix D1 = diag(d1, . . . , dn−d−1) such
that all the eigenvalues of D1B1 are in the right half plane.

Denote D2 = diag(dn−d, . . . , dn) and D = diag(D1, D2).
Moreover, define M(D1, D2) = DL′. Then it is clear that

M(D1, 0) =

[
D1B1 D1B2

0 0

]
.

So the eigenvalues of M(D1, 0) consist of d+ 1 zero eigen-
values and the eigenvalues of D1B1. Then by the continuity
property of eigenvalues, for sufficiently small entries in D2,
M(D1, D2) also has eigenvalues in the right half plane except
the fixed d+ 1 zero eigenvalues. This means, P�DPL can
be used to replace the original L and stabilize the closed-
loop system to an affine formation, where P�DPL is another
Laplacian associated with G because P�DP is a diagonal
matrix just scaling each row of L. Thus, the conclusion follows.
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(Necessity) If an affine formation is stabilizable over G, then
it can be inferred that an affine formation must be realizable
over G. So by Theorem 4.1, G is (d+ 1)-rooted. �

Remark 4.1: From Remark 2.1, we know that global rigidity
or universal rigidity of an undirected graph implies (d+ 1)-
connectedness, which further implies that the undirected graph
is (d+ 1)-rooted according to its definition. The reason that the
undirected graph case requires a stronger graphical condition
(global rigidity for realizability and universal rigidity for sta-
bilizability) is that a single weight is considered on each edge
in the undirected graph case while two different weights are al-
lowed to be associated with the edge with different orientations
when a directed graph becomes bidirectional, equivalent to an
undirected graph in terms of topology.

C. Design of Control Weights for Stabilization

In this subsection, we come to solve the affine formation
control problem over directed graphs with the objective to steer
a group of agents to the affine image A(p), namely, to find
proper control weights kij ’s such thatL1n = 0, (L⊗ Id)p = 0,
rank(L) = n− d− 1 and the nonzero eigenvalues of L all have
positive real parts. Theorem 4.2 shows that such L exists if G is
(d+ 1)-rooted. From the proof of Theorem 4.2, finding proper
weights kij for this purpose can be decomposed into two steps.

First, find weights k′ij so that L′1n = 0, (L′ ⊗ Id)p = 0, and
rank(L′) = n− d− 1, where L′ is the Laplacian associated to
G with weights k′ij . This step can be done in a distributed

manner. For a given target configuration p = [p�1 , . . . , p
�
n ]

�
,

each agent i is supposed to know pi and pj for j ∈ Ni as
otherwise the problem is not solvable. Then agent i computes
k′ij ’s according to the following formula

∑
j∈Ni

k′ij(pj − pi) = 0. (6)

Since G is (d+ 1)-rooted, by the definition of a rooted graph, it
is known that each node has at least (d+ 1) in-neighbors, which
means that (6) must have a solution and the solution space is
of at least one dimension. Eq. (6) is a linear equation and can
be solved easily. For each agent i, picking any one solution to
(6) gives a choice of k′ij for j ∈ Ni, which certainly ensures
L′1n = 0 and (L′ ⊗ Id)p = 0. Moreover, from the proof of
Theorem 4.1, we know that for arbitrarily picking k′ij ’s as
described above, rank(L′) = n− d− 1 holds in the generic
sense since G is (d+ 1)-rooted.

Secondly, design a diagonal matrix D such that the nonzero
eigenvalues of DL′ all have positive real parts. The existence
of D is assured by Theorem 4.2. Usually, this step requires a
centralized computation.

V. EXTENSION TO OTHER AGENT MODELS

Suppose the motion agent i is governed by a second-order
dynamic model, i.e.,

Miz̈i = fi(żi) + τi (7)

where Mi ∈ R
d×d represents the inertia matrix, fi(żi) is the

damping term, which does not depend on the absolute position
of the agent, and τi ∈ R

d is the actuation force.
As we will show in the following, the local control law (2)

designed for the single-integrator case and its corresponding
results serve as the starting point for formation control with
more complex and realistic agent dynamics. Define ui to be an
auxiliary variable for each agent (7)

ui = −
∑
j∈Ni

kijzij , i = 1, . . . , n (8)

which is exactly the same as (2). Consistent with the back-
stepping philosophy, we adopt an objective of designing τi to
ensure that

żi → ui, as t → ∞.

By virtue of the definition of ui in (8), it can be seen that if
it were replaced by żi, we would have the same closed-loop
system formula for zi as the single-integrator case and the
desired formation could be achieved with żi going to zero for
each i. It is then intuitively reasonable that if żi exponentially
converges to ui, we should still achieve the desired formation.

Now we come to design τi for this objective. Define an error

ei = żi − ui. (9)

Towards the goal of making ei converge to zero exponentially,
we shall design τi such that the error obeys

ėi = −Kiei

for some positive definite Ki. By considering (7) and (9), it can
be obtained that

ėi = z̈i − u̇i

=M−1
i fi(żi) +M−1

i τi +
∑
j∈Ni

kij żij .

Thus, we can choose

τi = Mi

⎡
⎣−Kiei −

∑
j∈Ni

kij żij

⎤
⎦− fi(żi) (10)

which makes ėi = −Kiei. The convergence to a desired forma-
tion is stated in the following theorem.

Theorem 5.1: Suppose G is universally rigid the undirected
graph case or (d+ 1)-rooted for the directed graph case. If each
agent i can access its own velocity żi and the relative velocity
of its in-neighbors, i.e., żij = żi − żj , then the local control
law (10), with kij ’s in (8) designed exactly the same as for
the single-integrator case, solves the affine formation control
problem for the agents modelled in (7).
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Proof: Consider the multi-agent system with each agent
modelled as (7) and the local control law (10). It can be obtained
that {

ėi = −Kiei

żi = −
∑

j∈Ni
kijzij + ei

or in the matrix form{
ė = −Ke

ż = −(L⊗ Id)z + e

where e = [e�1 , . . . , e
�
n ]

�
, z = [z�1 , . . . , z

�
n ]

�
, and K =

diag(K1, . . . ,Kn). Observe from this matrix form that the
closed-loop system is a cascade linear system with e converging
to zero exponentially. Therefore, with a stable H as designed in
Sections III and IV for the undirected graph and directed graph
case respectively, z converge to an affine formation of p. �

The control law (10) indicates that the relative velocity
of in-neighbor j has to be available to agent i as stated in
Theorem 5.1. Therefore, in the scenario when the relative veloc-
ity information is not accessible by agent i, the control law (10)
is not implementable. In the following, we will develop an al-
ternative control law to solve the affine formation control prob-
lem without using the relative velocity information but each
agent’s own velocity information. The latter can be measured by
onboard tachometers. The idea is based on building an approx-
imate of ui and seeking to have żi approach the approximate
rather than ui itself. Then the requirement of knowing the
relative velocity falls away.

Consider an approximate ûi governed by the following
dynamics:

˙̂ui = −γûi + ui (11)

where γ > 0 is a parameter to be designed. Next, we define an
error

ηi = żi − ûi.

Then considering the agent dynamics (7), we obtain that

η̇i = z̈i − ˙̂ui

=M−1
i fi(żi) +M−1

i τi + γûi − ui.

Thus, we can choose

τi = Mi[−Kiηi − γûi + ui]− fi(żi) (12)

for some positive definite Ki, which makes

η̇i = −Kiηi.

The following result states the convergence property.
Theorem 5.2: Suppose G is universally rigid for the undi-

rected graph case or (d+ 1)-rooted for the directed graph case.
If each agent i can access its own velocity żi, then the local

control law (11), (12), with kij’s in (8) designed exactly the
same as for the single-integrator case and γ satisfying

γ2 >
Im2(λi)

Re(λi)

where λi are the non-zero eigenvalues of L, solves the affine
formation control problem for the agents modelled in (7).

Proof: Consider the multi-agent system with each agent
modelled as (7) and the local control law (11), (12). It can be
obtained that ⎧⎪⎨

⎪⎩
η̇i = −Kiηi

żi = ûi + ηi
˙̂ui = −γûi −

∑
j∈Ni

kijzij

or in the matrix form⎧⎪⎨
⎪⎩
η̇ = −Kη

ż = û+ η
˙̂u = −γû− (L⊗ Id)z

where η = [η�1 , . . . , η
�
n ]

�
, z = [z�1 , . . . , z

�
n ]

�
, û = [û�

1 , . . . ,
û�
n ]

�, and K = diag(K1, . . . ,Kn). Notice that this closed-
loop system can be considered as a cascade linear system of
subsystem

η̇ = −Kη

and subsystem[
ż
˙̂u

]
=

[
0 I

−(L⊗ Id) −γI

] [
z
û

]
+

[
η
0

]

for which η is known to be convergent to zero exponentially.
Thus, it remains to show that the eigenvalues of the matrix[

0 I
−(L⊗ Id) −γI

]

are all in the open left complex plane except d(d+ 1) fixed
eigenvalues at 0. According to the condition given in the proof
of [16, Theorem 3.6], the above conclusion holds if

γ2 >
Im2(λi)

Re(λi)

where λi are the non-zero eigenvalues of L. �
Remark 5.1: The formula given in Theorem 5.2 provides a

lower bound for a valid γ. To compute this lower bound, it needs
to know the entire graph Laplacian.

Remark 5.2: Based on the local control law for the single-
integrator case, extensions can also be made to a class of
more general nonlinear agent models with the same technique
developed in this section. Suppose each agent i has a model of
the form

ζ̇i = fi(ζi) +Gi(ζi)ui

zi =hi(ζi)
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where zi ∈ R
d is the position, ui ∈ R

d is the control input,
and ζi ∈ R

pi for some pi ≥ d. Further suppose that each agent
model has vector relative degree [mi, . . . ,mi] with respect to
zi (see, e.g., [28]) and can be transformed into the normal form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1i = ξ2i
ξ̇2i = ξ3i

...

ξ̇mi

i = gi(ξi, ηi) +Bi(ξi, ηi)ui

η̇i = q(ηi, ξi)

zi = ξi

(13)

by a diffeomorphism [ξ�i , η
�
i ]

�
= Ti(ζi), where ξi = [ξ1i , . . . ,

ξmi
i ]�. The same feedback linearization technique considered

in this section can be applied iteratively to find a feasible local
control law solving the affine formation control problem as long
as the zero dynamics η̇i = q(ηi, ξi) holds certain property such
as input-to-state stability with respect to ξi. The model (7) is
a simple example of (13) where mi = 2 and the dimension
of ηi is 0. However, feedback linearization is based on exact
mathematical cancellation of the nonlinear terms gi and Bi.
For practical reasons such as model simplification, parameter
uncertainty, and computation errors, accurate models may not
be available, for which robust state feedback stabilization tech-
niques such as sliding mode control, Lyapunov redesign, and
high-gain feedback can be applied (see [29] for details).

Remark 5.3: In the same way, extensions can be made to
multi-agent systems with the Lagrange agent model, expressed as

Mi(zi)z̈i + Ci(zi, żi)żi + gi(zi) = Yi(zi, żi, z̈i)θi = τi

where zi, żi, z̈i are vectors of Rd. Mi(zi) is the d× d positive
definite inertia matrix. Ci(zi, żi)żi represents the Coriolis and
centripetal forces. gi(zi) is the gravity vector and τi is the
applied motor forces. The parametrization τi = Yiθi simply
means the system parameter vector θi enters linearly in the
system. If the model contains uncertainty (i.e., the system
parameter vector θi is unknown), then an adaptive control law
(see for example [30]) can be adopted to combine with the
formation control law extended from the one for the single-
integrator case as done in this section.

VI. EXTENSION TO MULTI-AGENT NETWORKS

ALLOWING COMMUNICATION

In Sections III, IV, and V, the distributed control laws for
affine formation control do not require communication but
only onboard sensing for their implementation. The control
parameters in such distributed control laws need a central-
ized computation. However, if local communication between
neighboring agents is allowed, then an alternative control law
for affine formation control can be developed such that both
its design and implementation can be done in a distributed
manner without relying on centralized computation and the
knowledge of the entire graph. This issue is addressed in this
section.

As the undirected graph case is a special one of the directed
graph case and the more complex dynamic agent models can
be tackled based on the results for the single-integrator case as
done in Section V, we will restrict our focus to the case with
directed sensing graphs and single-integrator agent models in
this section.

Consider a directed sensing graph G characterizing that agent
i can measure the relative position of agent j when (j, i) is
an edge of G. We assume in this section that agent i and j
can communicate to each other if either (j, i) or (i, j) is an
edge of the sensing graph G. This assumption is practically
reasonable as usually communication is bidirectional and the
communication range is larger than the sensing range.

Consider a target configuration p = [p�1 , . . . , p
�
n ]

�
. Suppose

each agent i knows its own pi in the target configuration. Then
by communication with its neighbors, agent i can know pj ,
j ∈ Ni, as well. Thus, agent i is able to select its own control
parameters kij , j ∈ Ni, to satisfy

∑
j∈Ni

kij(pj − pi) = 0

which can be carried out without a centralized computation. As
discussed in Section IV-C, such a selection process makes the
Laplacian L associated to the directed sensing graph G with
weights kij have rank n− d− 1 and satisfy (L⊗ Id)p = 0 if
G is (d+ 1)-rooted.

The following control law is then proposed to solve the affine
formation control problem:

⎧⎪⎨
⎪⎩
żi = −

∑
j∈Ni

kijζi +
∑
i∈Nj

kjiζj

ζ̇i = −aζi +
∑
j∈Ni

kijzij
(14)

where ζi ∈ R
d is an auxiliary state and a > 0 is any constant

parameter.
Remark 6.1: The control law (14) requires the following

relative position information by agent i:

• (zj − zi) of its in-neighbors in the sensing graph G, and
requires the following information via communication:

• the auxiliary information kjiζj from its out-neighbors
in G.

By our assumption that communication is bidirectional, the
whole piece of information kjiζj that is known by agent j
can be sent to agent i. In other words, the control law (14)
is locally implementable in a distributed manner by allowing
communication between neighboring agents.

Denote z = [z1, . . . , zn]
� and ζ = [ζ1, . . . , ζn]

�. The closed-
loop system under the control law (14), can be described as

[
ż

ζ̇

]
=

[
0 −L� ⊗ Id

L⊗ Id −aI

] [
z
ζ

]
. (15)

The following result shows the convergence to an affine forma-
tion of p by using the control law (14).
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Theorem 6.1: Suppose G is (d+ 1)-rooted. Then the local
control law (14) solves the affine formation control problem.

Proof: Denote

A =

[
0 −L�

L −aIn

]
.

It can be observed that the system matrix in (15) has d duplicate
copies of the eigenvalues of A. Thus, to show that the local
control law (14) solves the affine formation control problem, it
remains to show that the eigenvalues of A are in the open left
complex plane except d+ 1 zero eigenvalues.

Let λ be an eigenvalue of A and let

[
ω



]
be its associated

eigenvector. Then we have(
λI2n −

[
0 −L�

L −aIn

])[
ω



]
= 0.

By several steps of mathematical manipulation, it can then be
obtained that −L�Lω = λ(λ + a)ω, which means, λ(λ+ a) is
an eigenvalue of −L�L with ω being its associated eigenvector.
In other words, let σi be an eigenvalue of the matrix L�L. Then
the roots of the polynomial equation

λ2 + aλ+ σi = 0, i = 1, . . . , n (16)

are the eigenvalues of A. Note that the roots of the polynomial
(16) have the following explicit formula.

λ =
−a±

√
a2 − 4σi

2
, i = 1, . . . , n. (17)

The matrix L�L is positive semi-definite with its rank the
same as L (namely,n− d− 1). So it has d+ 1 zero eigenvalues
and all other eigenvalues are positive and real. Thus, it follows
from (17) and the conditiona> 0 that the eigenvalues ofA lies in
the open left complex plane except d+ 1 zero eigenvalues. �

VII. EXTRA CONDITIONS FOR RIGID FORMATION

In this section, we show how a group of agents in an
affine formation transforms to a globally rigid formation or a
translational formation with a few extra constraints. Necessary
and sufficient conditions are provided below.

Theorem 7.1: Suppose p = [p�1 , . . . , p
�
n ]

�
is a generic con-

figuration in R
d. A configuration z ∈ A(p) is congruent to p

(i.e., z ∈ R(p)) if and only if there exist at least d+ 1 agents,
labelled m1, . . . ,md+1, such that the dimension of the convex
hull of zm1

, . . . , zmd+1
is d and∥∥zmi

− zmj

∥∥ =
∥∥pmi

− pmj

∥∥ for any i, j. (18)

Proof: (Sufficiency) For z ∈ A(p), there exist A ∈ R
d×d

and a ∈ R
d such that zi = Api + a for all i. Moreover, the

condition (18) implies that there are at least d+ 1 agents in
a globally rigid formation, from which we can infer that A is a
unitary matrix, i.e.,

A�A = I.

As a result, for any i and j

‖zi − zj‖2 = (pi − pj)
�A�A(pi − pj) = ‖pi − pj‖2 (19)

meaning that the distance between any pair of nodes is pre-
served, i.e., z is congruent to p.

(Necessity) If z is congruent to p, then (19) holds for any i
and j. Thus, the conclusion follows. �

Theorem 7.2: Suppose p = [p�1 , . . . , p
�
n ]

�
is a generic con-

figuration in R
d. A configuration z ∈ A(p) is a translation of p

(i.e., z ∈ T (p)) if and only if there exist at least d pairs of agents
such that the dimension of the convex hull of d pairs of agents
is d and

zk − zj = pk − pj . (20)

Proof: (Sufficiency) For z ∈ A(p), there exist A ∈ R
d×d

and a ∈ R
d such that zi = Api + a for all i. Moreover, if there

exist d pairs of agents such that (20) holds, then the following
holds for these d pairs of agents:

pk − pj = zk − zj = A(pk − pj)

(I −A)(pk − pj) = 0.

By the condition that the dimension of the convex hull of d
pairs of agents position is d, we know that the linear span of
(pk − pj) of d pairs, equals to R

d. Thus

(I −A)(pk − pj) = 0 for all j ∈ Nk

for these d pairs implies

A = I.

As a result, for any i and j, we have

zi − zj = pi − pj (21)

meaning that z is a translation of p.
(Necessity) If z is a translation of p, then (21) holds for any i

and j and thus the conclusion follows. �
Remark 7.1: From Theorem 7.1, we know that if we choose

a network of agents to be in the affine image A(p) and make
d+ 1 agents maintain as a globally rigid formation, then a
globally rigid formation of the entire network is achieved. Thus,
it is flexible to reshape the formation by controlling only a small
number of agents in the group for better adaptivity to a possibly
changing environment.

Remark 7.2: Similarly, in addition to make the agents con-
verge to the affine image A(p), if we can control d pairs of
agents to attain their desired relative positions in a common
reference frame, then the whole group of agents can achieve
a globally rigid formation subject to only translations. This
can also be interpreted from the dimension of the affine image
A(p) and the number of constraints. In a generic sense, the
preservation of relative positions for d edges in R

d results in d2

linearly independent constraints, which reduces the (d2 + d)-
dimensional equilibrium subspace A(p) to a subspace of di-
mension d, corresponding to the translation motions.
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Fig. 2. The target configuration p for the simulation example in R
3. The

dashed straight lines connecting the points are used only to outline the geo-
metric shape and do not have any meaning. There are totally 128 edges in the
interaction graph, which are not drawn in the figure.

Fig. 3. Simulated trajectories of 27 agents governed by (3) in achieving an
affine formation. The hollow circles indicate the initial states of the agents while
the colored dots represent the states the agents converge to. The dashed straight
lines connecting the final states are plotted only for the purpose of outlining the
formation shape.

VIII. SIMULATIONS

In this section, we present several simulations to illustrate our
results in R

3.
Consider a system consisting of 27 agents. Its interaction

topology is modelled by an undirected graph with 27 nodes
and 128 edges. The target configuration p is shown in Fig. 2.
The goal is to reach an affine formation of the target configura-
tion by distributed control laws. By solving the optimization
problem described in Section III-C, a positive semi-definite
L ∈ R

27×27 of rank 23 is obtained.
First, we consider the single integrator case. From

Theorem 3.3, we know that an affine formation of p is achiev-
able under the control law (3) with the obtained L above. Fig. 3

Fig. 4. Simulated trajectories of 27 agents governed by (7) and (10) in
achieving an affine formation.

shows the simulated trajectories starting from a random initial
condition, from which it is observed that the 27 agents expo-
nentially converge to form an affine formation of p in R

3.
Second, we consider the double integrator case. We carry

out two simulation for the agents with the double integrator
model (7) using two different control laws (namely, (10) and
(12) respectively). Without loss of generality, we assume that
Mi is the identity matrix and fi(żi) = −żi. To demonstrate
the effectiveness of the generalized control laws for double
integrator agents, we use the same interaction graph, the same
target configuration, the same positive semi-definite L, and the
same initial condition as for the single integrator case. For both
control laws

Ki =

⎡
⎣1 0 0
0 2 0
0 0 3

⎤
⎦

is used, while additionally γi = 5 is used in (12) to satisfy the
condition in Theorem 5.2. With these control parameters, the
simulated trajectories by executing the control law (10) and
(12) are plotted in Figs. 4 and 5. From the simulation results,
we can see that the 27 agents exponentially converge to form
desired affine formations in R

3, which validate Theorem 5.1
and Theorem 5.2.

IX. CONCLUSION

This paper generalizes the well-known consensus control
protocol by allowing both positive and negative weights to
analyze a new emergent collective pattern. The connection of
the generic rank property of Laplacian with both positive and
negative weights and the connectivity of a graph is established,
with which necessary and sufficient conditions are obtained
for a multi-agent system to ensure the emergence of collective
pattern by local interactions for both undirected and directed
networks. It is then shown how extension of the local interaction
law for the single-integrator case can be made to deal with more
general and realistic dynamic agent models. Moreover, with
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Fig. 5. Simulated trajectories of 27 agents governed by (7) and (12) in
achieving an affine formation.

the allowance of communication between neighboring agents,
an alternative control law is developed to solve the formation
control problem, which is distributed in both design stage and
implementation stage. Finally, we show how a network of
agents in an affine formation can be reshaped to form a globally
rigid formation or translational formation with a few extra
constraints on a small number of agents in the network. Along
the line, many interesting problems can be explored, such as
rigid formation control of multi-agent systems and localization
of sensor networks in high dimensional spaces, the coordination
of heterogeneous dynamic systems, etc.

APPENDIX

Proof of Lemma 3.1: First of all, it can be verified that
A(p) is closed under linear combinations. So it is a linear
subspace. Moreover, notice that

{1n ⊗ a : a ∈ R
d}

is a linear subspace of dimension d. Hence, it remains to show
that {

(In ⊗A)p : A ∈ R
d×d

}
is a linear subspace of dimension d2. Denote Eij ∈ R

d×d

(i = 1, . . . , d and j = 1, . . . , d) the matrix with only the (i, j)th
entry being 1 and others being 0. Then it is clear that {(In ⊗
A)p : A ∈ R

d×d} is the linear span of vectors

(In ⊗ E11)p, . . . , (In ⊗ Edd)p.

Thus, in order to show that {(In ⊗A)p : A ∈ R
d×d} is a linear

subspace of dimension d2, we just need to show the vectors

(In ⊗ E11)p, . . . , (In ⊗ Edd)p

are linearly independent. To see this, we let

α11(In ⊗ E11)p+ · · ·+ αdd(In ⊗ Edd)p = 0

from which we get

(α11E11 + · · ·+ αddEdd)p1 = 0
...

(α11E11 + · · ·+ αddEdd)pn = 0.

Since span{p1, . . . , pn} = R
d, it follows that:

α11E11 + · · ·+ αddEdd = 0

in order to make the above inequalities hold. Recall that
E11, . . . , Edd are linearly independent. Therefore, α11 = · · · =
αdd = 0, which implies

(In ⊗ E11)p, . . . , (In ⊗ Edd)p

are linearly independent. �
Proof of Lemma 4.1: We prove this lemma by induction.

Step 1: Consider k = 1.
Part (a): By Lemma 2.1, a rooted graph G has a spanning

tree, denoted as T , with a root set R1 = {i} without loss of
generality. For a generic Laplacian L′ of T , det(L′

R1
) �= 0.

Adding any one other node in R1 to make a new set R2, all the
remaining nodes are reachable from R2 then. So det(L′

R2
) �= 0

for a generic L′. Repeating this argument, it can be concluded
that all principal minors of L′

R1
are distinct from zero for a

generic L′ associated with T . For a rooted graph G and a
generic Laplacian L associated with G, L has possibly more
nonzero entries compared with L′. So by using the fact that
either a polynomial is zero or it is not zero almost everywhere,
it follows that all principal minors of L are distinct from zero.

Part (b): Next we show that for a generic L′ corresponding
to T , det(M ′) �= 0 where M ′ is the sub-matrix of L′ by
deleting the row corresponding to the root i and the column
corresponding to any one node, say j ∈ V −R1. Denote l′i
and l′j the row vectors of L′ corresponding to node i and j
respectively. Clearly, l′i = 0 since i is the root of T . We take
the following elementary row transformation:

L′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
l′i
...
l′j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⇒ L̄′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
l′i + l′j

...
l′j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
l′j
...
l′j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Denote by T̄ the graph associated with L̄′. It is certain that node
i is also a root of T̄ . Moreover, notice that L̄′(i, j) = L′(j, j) �=
0 (where L̄′(i, j) and L′(j, j) stand for the corresponding entry
of L̄′ and L′). So there is an edge from j to i, which means
j is also a root of T̄ . Thus, according to (1a), det(L̄′

{j}) �= 0.

Notice that M ′ can be obtained from L̄′
{j} via elementary row

transformations, so det(M ′) �= 0, too. By the same argument
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as given in the end of (1a), then it is known that the conclusion
also holds for a generic Laplacian L associated with a rooted
graph G.

Step 2: Suppose k = d and for a generic Laplacian L associ-
ated with a d-rooted graph G with the root set R = {1, . . . , d},
all principal minors of LR are nonzero and det(M) �= 0. Next
we show that the statement also holds for k = d+ 1.

Part (a): Without loss of generality, consider a (d+ 1)-
rooted graph G with the root set R = {1, . . . , d+ 1} and let
L be a generic Laplacian of G. By removing an arbitrary node
in R, say d+ 1 without loss of generality, and its incident
edges, we denote the resulting sub-graph by G1. Clearly, G1 is
d-rooted with the root set R1 = {1, . . . , d}. Denote by L1 the
corresponding Laplacian of G1. Then it is known by assumption
that all principal minors of (L1)R1

are nonzero, and det(M1) �=
0 where M1 is the sub-matrix of L1 by deleting the d rows
corresponding to nodes in R1 and any d columns. This implies,
all principal minors of LR are nonzero and det(M) �= 0 for
M being the sub-matrix of L by deleting the (d+ 1) rows
corresponding to nodes R and (d+ 1) columns corresponding
to at least one node in R and others not in R.

Part (b): Then it remains to show that det(M) �= 0 for M
being the sub-matrix of L by deleting the (d+ 1) rows corre-
sponding to nodes in R and any (d+ 1) columns corresponding
to nodes all not in R. Consider any node not in R, say j. Denote
by li the row vector of L corresponding to node i. We make the
following elementary row transformation for L, i.e.,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1
...

ld+1

...
lj
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ L̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 kili

...
ld+1

...
lj
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since G is (d+ 1)-rooted, every root in R has at least
one out-going edge. Thus, with a proper choice of ki’s,
L̄(1, 1), . . . , L̄(1, d+ 1) and L̄(1, j) can all become nonzero.
Denote by Ḡ the graph associated with L̄. It is certain that Ḡ is
also (d+ 1)-rooted with a root set R. Moreover, there are edges
from nodes 2, . . . , d+ 1 and node j to node 1. So node 1 is
(d+ 1)-reachable from the set R̄ = {2, . . . , d+ 1, j}. Now we
consider any node v in V − {R, j} and show that v is (d+ 1)-
reachable from R̄, too. Certainly, if d+ 1 disjoint paths from
R to v does not pass through node j, then there exist d+ 1
disjoint paths from R̄ to v with one path goes from node j to
1 and then the original path from 1 to v. If for d+ 1 disjoint
paths from R to v, there exists a path, say from node m to v,
passing through node j, then there still exist d+ 1 disjoint paths
from R̄ to v with two new paths: one is the path from j to v
taken from the path m to v and the other is the path connecting
from m to 1 and 1 to v. This means, Ḡ is (d+ 1)-rooted with
the root set R̄. According to the argument in case 1, we can
know that det(L̄R̄) �= 0. Notice that M can be obtained from
L̄R̄ via elementary row transformations, so det(M) �= 0. Thus,
the conclusion follows by induction. �
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