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Abstract—In this two-part paper we study stabilization
and optimal control of linear time-invariant systems with
stochastic multiplicative uncertainties. We consider struc-
tured multiplicative perturbations, which, unlike in robust
control theory, consist of static, zero-mean stochastic
processes, and we assess the stability and performance of
such systems using mean-square measures. While Part 2 of
this paper tackles and solves optimal control problems un-
der the mean-square criterion, Part 1 is devoted to the sta-
bilizability problem. We develop fundamental conditions of
mean-square stabilizability which ensure that an open-loop
unstable system can be stabilized by output feedback in
the mean-square sense. For single-input single-output sys-
tems, a general, explicit stabilizability condition is obtained.
This condition, both necessary and sufficient, provides a
fundamental limit imposed by the system’s unstable poles,
nonminimum phase zeros and time delay. For multi-input
multi-output systems, we provide a complete, computation-
ally efficient solution for minimum phase systems possi-
bly containing time delays, in the form of a generalized
eigenvalue problem readily solvable by means of linear
matrix inequality optimization. Limiting cases and nonmin-
imum phase plants are analyzed in depth for conceptual
insights, revealing, among other things, how the directions
of unstable poles and nonminimum phase zeros may affect
mean-square stabilizability in MIMO systems. Other than
their independent interest, stochastic multiplicative uncer-
tainties have found utilities in modeling networked control
systems pertaining to, e.g., packet drops, network delays,
and fading. Our results herein lend solutions applicable to
networked control problems addressing these issues.
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I. INTRODUCTION

IN THIS two-part series we study stabilization and per-
formance problems for linear time-invariant (LTI) systems

subject to stochastic multiplicative uncertainties. Apart from
the longstanding interest in this class of systems by them-
selves, a direct impetus motivating our study is the newly
found relevance of multiplicative channel noises to networked
control systems. Recent studies by Elia [10] show that random
multiplicative noises provide a suitable framework to model
communication errors and uncertainties for classes of erasure
channels, which can be used to describe a number of data-loss
network phenomena, such as packet drops and network delays.
Similarly, in their study of estimation problems, Sinopoli et al.
[32], [35] adopted a multiplicative noise model to account for
the communication uncertainty due to packet loss. Thus, while
addressing an age-old problem of fundamental interest, the
study of control under stochastic multiplicative uncertainties
has a close bearing on networked control problems, which, un-
doubtedly, has seen an extraordinary level of research activities
in the recent years (see, e.g., [4], [15], [24], [25], [28], [32], [48]
and the references therein).

Throughout this series we model the system uncertainty as a
structured multiplicative stochastic perturbation, which, unlike
in robust control theory (see, e.g., [49]), consists of static, zero-
mean stochastic processes. Under this formulation, which is
standard in the classical stochastic control setting, the uncer-
tainty can be interpreted as state-or input-dependent random
noises [22], [45], while in the networked control setting, as
parallel memoryless noisy communication channels [10], [46].
In doing so, we assess the system’s stability and performance
based on mean-square criteria; in other words, the stability and
performance are to be evaluated statistically using such second-
order statistics as variance. In Part 1 of this paper we focus
on the stabilization problem. One fundamental question we
attempt to answer dwells on stabilizability: With given uncer-
tainty variances, can an unstable plant be stabilized despite the
presence of such stochastic uncertainties? We seek to develop
fundamental conditions that guarantee the stabilizability of LTI
systems in the mean-square sense.

Mean-square stability and stabilization, in retrospect, have
been long studied for LTI systems under stochastic multiplicative
uncertainty formulation. Willems and Blankenship [45] studied
the closed loop stability of single-input, single-output (SISO)
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systems and obtained a necessary and sufficient condition for
mean-square stability. Later, Hinrichsen and Pritchard [13], and
Lu and Skelton [22] formulated the mean-square stability prob-
lem as one of robust stability against stochastic multiplicative
uncertainties, which allowed them to obtain necessary and suf-
ficient mean-square stability conditions for multi-input, multi-
output (MIMO) systems. In much the same spirit, Elia [10], and
Xiao et al. [46] developed similar conditions for networked
control problems. With the distinctive feature of a frequency-
domain, input-output based approach, these developments share
much in common with robust stability analysis and lead to sta-
bility results reminiscent of small gain conditions, herein dubbed
as mean-square small gain theorems. Equally noteworthy none-
theless, there has also been a considerable amount of work built
on time-domain analysis contingent upon solving certain modi-
fied algebraic Ricatti equations (cf. Part 2 of this paper), which
seeks to address optimal control problems under random multi-
plicative noise assumptions. For the most part this latter line of
work is more pertinent to our performance studies, and for this
reason a summary review is relegated to Part 2 of this paper.

We shall employ a frequency-domain approach enabled by the
mean-square small gain theorem alluded to above. Our contri-
butions in Part 1 can be summarized as follows. For SISO sys-
tems, the mean-square stabilizability condition is shown to be
equivalent to solving an H2 optimal control problem. We solve
this problem explicitly and provide an explicit bound on the
noise variance, which furnishes a fundamental limit, both nec-
essary and sufficient, for a system to be stabilizable under the
mean-square criterion. Similar to stabilizability results found in
the networked control literature, the system’s degree of instabil-
ity is seen to play an essential role in this condition. More gen-
erally, with output feedback under consideration, the system’s
nonminimum phase zeros may also couple with unstable poles
to render the condition more stringent. When interpreted in the
networked control setting, the result is rather reminiscent of
prior work on networked feedback stabilization under various
channel descriptions, including, e.g., the minimum data rate of
a communication channel required to stabilize an unstable plant
[23], [24], [34], [41], [42], [47], [48], stabilization over erasure
channels [10], [28], [29], [32], stabilization subject to channel
signal-to-noise ratio (SNR) constraints [4], [19], [20], [30], [31],
[33], effect of quantization on stabilization [5], [11], [12], [16],
[26] and channel delay effect on stabilization [29], [39].

MIMO systems, on the other hand, prove far more intricate
and indeed pose a formidable challenge: the mean-square stabi-
lizability condition generally requires solving an optimization
problem involving the spectral radius of a certain closed loop
transfer function matrix, which is unlikely to be convex. We
explore this problem to a greater depth. Among our main
contributions, we show that for a MIMO minimum phase
plant, this problem is solvable in the general case of output
feedback as a generalized eigenvalue problem (GEVP), which
can be solved using linear matrix inequality (LMI) optimization
methods, thus resulting in a necessary and sufficient condition
for mean-square stabilizability. It is useful to point out that with
state feedback, a plant is effectively rendered minimum phase
and as such the mean-square stabilizability problem is fully
resolved in the case of state feedback. Further investigation into
limiting cases shows that the stabilizability condition not only

depends on the locations of the plant unstable poles, but also
the directions associated with the poles.

The mean-square stabilizability for general MIMO nonmin-
imum phase plants remains to be an open problem. Advances,
however, are made in this paper on two important accounts. For
systems with time delays, which manifest themselves as the
system’s relative degrees, we develop analogously necessary
and sufficient stabilizability conditions. Here the delays may
result from the plant itself, or be considered network delays in
the networked control setting, which both can be viewed as an
extreme nonminimum phase behavior. In the same spirit, the
stabilizability condition amounts to solving a GEVP problem,
and the delays can be seen to have a direct impact on the mean-
square stabilizability. For more generic nonminimum phase
behavior, we examine plants containing one unstable pole and
one nonminimum phase zero, and show that the mean-square
stabilizability condition depends on the mutual orientation of
the pole and zero directions. This orientation is measured by
the principal angle between the two directions. The result sheds
light into the complication brought about by nonminimum
phase zeros on the mean-square stabilizability problem, which
in general does not admit a convex program, as shown by an
illustrative example.

It is worth highlighting the fact that the mean-square sta-
bilization problem being considered herein is in essence one
of robust optimal control synthesis with respect to structured
uncertainties, albeit with stochastic uncertainties. Similar prob-
lems of minimizing the spectral radius have been widely known
in robust synthesis [17], [49], and are also found in networked
feedback stabilization problems [10], [44]. Problems in this
category are by and large unresolved; they are generally known
to be nonconvex and as such, only approximate solutions are
available based on e.g., numerical algorithms resembling to the
D-K iteration for μ-synthesis [10], [49]. By obtaining the mean-
square stabilizability condition, our result goes significantly
beyond the mean-square small gain condition and provides
perhaps, to the best of the authors’ knowledge, the first solution
to the stabilizability problem with structured stochastic mul-
tiplicative uncertainties, and more broadly, an exact solution
to this variant of robust synthesis problem. Accordingly, by
solving this general problem, our result lends solutions readily
applicable to related networked control problems, concerning,
e.g., erasure channels [10], [46] and SNR-constrained channels
[44]. Moreover, since we consider output feedback stabiliza-
tion, which is markedly more difficult than its state-feedback
counterpart, our development brings to light useful insight into
how directions of the plant unstable poles and nonminimum
phase zeros may affect the stabilizability. In the networked
control setting, the latter has a direct implication on how such
directions may be aligned with communication channels to
hamper feedback stabilization.

We now close this section by briefly commenting on our
contributions presented in Part 2. In this companion sequel, we
study optimal control problems under the stochastic multiplica-
tive uncertainty formulation, which are formulated and solved
in a general, unified framework. While our interest in Part 1 is
mainly concentrated on developing fundamental understanding
in stabilization and stabilizability, Part 2 reinforces Part 1
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by developing computationally efficient methods for optimal
synthesis. Thus, unlike in the present paper, Part 2 tackles
optimal performance problems from a time-domain, state-space
perspective, which leads to optimal solutions cast in the form of
readily solvable GEVPs.

Partial results of this paper have been previously presented in
[26], [39], and [40].

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

A. Notation

We collect here the notation used throughout this two-part
series. For any complex number z, any vector u, and any matrix
A, we denote by z∗, u∗, and A∗ their conjugate and conjugate
transposes, respectively. For a pair of unitary vectors u, v of the
same dimension, we denote the principal angle between their
directions by∠(u, v)∈ [0, π/2], defined by cos∠(u, v) := |u∗v|.
We say that the two directions are orthogonal if ∠(u, v) = π/2,
and that they are parallel if ∠(u, v) = 0. For any square matrix
A, we denote its spectral radius by ρ(A) and trace by Tr(A).
The Hölder �2, �1, and �∞ induced norms of a matrix A = [aij ]
are denoted by ‖A‖, ‖A‖1, and ‖A‖∞, respectively, i.e.,

‖A‖1 = max
j

∑
i

|aij |, ‖A‖∞ = max
i

∑
j

|aij |

while its Frobenius norm is denoted by ‖A‖F =
√

Tr(A∗A).
We write A ≥ 0 if A is nonnegative definite, and A > 0 if
it is positive definite. For any transfer function matrix G(z),
we represent a state-space realization of G(z) by G(z) =[

A B
C D

]
. Let the open unit disc be denoted by D := {z ∈

C : |z| < 1}, the closed unit disc by D̄ := {z ∈ C : |z| ≤ 1},
the unit circle by ∂D, and the complements of D and D̄ by Dc

and D̄c, respectively. With respect to ∂D, we define for matrix
functions the Hilbert space L2 by

L2 :=

⎧⎪⎨
⎪⎩F : F (z) measurable in ∂D,

‖F‖2 =

⎛
⎝ 1

2π

π∫
−π

∥∥F (ejθ)
∥∥2
F
dθ

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭

which is endowed with the inner product

〈F,G〉 = 1

2π

π∫
−π

Tr
(
FH(ejθ)G(ejθ)

)
dθ.

It is well-known that L2 admits an orthogonal decomposition
into the subspaces

H2 :=

⎧⎪⎨
⎪⎩F : F (z) analytic in D̄

c,

‖F‖2 =

⎛
⎝sup

r>1

1

2π

π∫
−π

∥∥F (rejθ)
∥∥2
F
dθ

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭

Fig. 1. LTI system with stochastic multiplicative uncertainty.

=

⎧⎪⎨
⎪⎩F : F (z) analytic in D, F (0) = 0,

‖F‖2 =

⎛
⎝sup

r<1

1

2π

π∫
−π

∥∥F (rejθ)
∥∥2 dθ

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭.

Note that for any F ∈ H⊥
2 and G ∈ H2, 〈F,G〉=0. Define also

the Hardy space H∞={F : F (z) bounded and analytic in Dc}.
A subset of H∞, RH∞, is the set of all proper stable rational
transfer function matrices. Finally, we denote the expectation
operator by E{·}.

B. Structured Multiplicative Uncertainty

For consideration of stabilization problems, we focus on the
uncertain system depicted in Fig. 1; a more general setup appro-
priate for addressing performance issues will be given in Part 2.
In this configuration, P represents the plant and K the con-
troller, both of which are assumed to be LTI systems. The plant
uncertainty is represented by the static component Δ, such that

uq(k) = (I +Δ(k)) u(k)

Δ(k) = diag (Δ1(k), . . . ,Δm(k)) . (1)

In other words, the plant contains a diagonally structured, static
multiplicative uncertainty at its input. Throughout this paper
we make the following assumptions:

Assumption 1: {Δi(k)}, i = 1, . . . ,m, is a white noise
process with variance σ2

i .
Assumption 2: {Δi(k)} and {Δj(k)} are uncorrelated

processes for i �= j, i.e.,

E {Δi(k1)Δj(k2)} = 0 ∀ k1, k2 and i �= j.

Assumption 3: {Δi(k)}, i = 1, . . . ,m, is uncorrelated with
{d(k)}.

It is worth pointing out that these assumptions are stan-
dard in the earlier studies of random multiplicative noises
(see, e.g., [22]).

The structured uncertainty described by (1), together with
Assumptions 1–3, renders the system in Fig. 1 as one subject
to a structured stochastic multiplicative uncertainty. In the clas-
sical stochastic control setting, this uncertainty may result from
state-and input-dependent random noises [13], [22]. In addition,
it can also be applied to model uncertainties of communication
channels. In [10], Elia refers to this uncertainty as structured
bounded variance uncertainty, and showed that it provides a
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Fig. 2. Mean-square small gain theorem vs stochastic multiplicative un-
certainty.

rather general description for modeling erasure and possibly
fading communication channels. Independent lossy, memory-
less channels with i.i.d. stochastic processes, such as those
with packet drops and random delays modeled by Bernoulli
processes [10], [35], can be described using this uncertainty
description subject to a possible bias in the “nominal” plant,
which is induced by possible nonzero means of the processes.

C. Mean-Square Small Gain Theorem

By mean-square stability of the system in Fig. 1, we mean
that for any bounded initial states of the plant and controller, the
variances of these states will converge asymptotically to the zero
matrix when k → ∞. This notion of internal stability can be
characterized equivalently from an input-output perspective via
the following definition, appropriately tailored from [22], [45].

Definition 1: The system in Fig. 2 is said to be mean-
square input-output stable if for any input sequence {d(k)} with
bounded variance E{d(k)d∗(k)} < ∞, the variances of the
error and output sequences {e(k)}, {y(k)} are also bounded,
i.e., E{e(k)e∗(k)} < ∞ and E{y(k)y∗(k)} < ∞.

The following result, herein referred to as the mean-square
small gain theorem, is adapted from [22] (see also [13] and
[45]), which provides a necessary and sufficient condition
for mean-square input-output stability. This result will play a
pivotal role in our subsequent development.

Lemma 1 (Mean-Square Small Gain Theorem): Let T be
a stable LTI system, and Δ(k) be given by (1). Then under
Assumptions 1–3, the system in Fig. 2 is mean-square stable
if and only if

ρ(W ) < 1 (2)

where

W =

⎡
⎢⎣
‖T11‖22 · · · ‖T1m‖22

... · · ·
...

‖Tm1‖22 · · · ‖Tmm‖22

⎤
⎥⎦
⎡
⎢⎣
σ2
1

. . .
σ2
m

⎤
⎥⎦.

Note that for a SISO system, the mean-square stability con-
dition reduces to

σ2‖T ‖22 < 1 (3)

where σ2 is the variance of Δ(k).
With the uncertainty model (1), it is straightforward to show

via direct manipulation that the system in Fig. 1 can be re-
arranged to that in Fig. 2, with the transfer function matrix T (z)
given by the system’s complementary sensitivity function

T (z) = K(z)P (z) [I +K(z)P (z)]−1 .

Thus, under Assumptions 1–3, Lemma 1 can be applied at
once to determine the mean-square stability of the system. Let a
right and left coprime factorization of the plant transfer function
matrix P (z) be given by

P = LM−1 = M̃−1L̃

where L, M , L̃, M̃ ∈ RH∞ satisfy the double Bezout identity[
X̃ −Ỹ

−L̃ M̃

][
M Y
L X

]
=

[
M Y
L X

][
X̃ −Ỹ

−L̃ M̃

]
= I

(4)

for some X , Y , X̃ , Ỹ ∈ RH∞. It is well-known that every
stabilizing controller K can be parameterized as [49]

K = (Y −MR)(LR−X)−1

= (RL̃− X̃)−1(Ỹ −RM̃), R ∈ RH∞. (5)

In turn, every stable complementary sensitivity function T (z)
can be found as

T = −(Y −MR)L̃, R ∈ RH∞. (6)

In light of Lemma 1, the following condition for mean-square
stabilizability is immediate.

Lemma 2: LetΔbe given by(1). Then under Assumptions 1–3,
the system in Fig. 1 is mean-square stabilizable if and only if

ρmin = inf
R∈RH∞

ρ (W (R)) < 1 (7)

where

W(R)=

⎡
⎢⎢⎢⎢⎣
σ2
1

∥∥∥[(Y−MR)L̃
]
11

∥∥∥2
2

· · · σ2
m

∥∥∥[(Y−MR)L̃
]
1m

∥∥∥2
2

...
. . .

...

σ2
1

∥∥∥[(Y−MR)L̃
]
m1

∥∥∥2
2

· · · σ2
m

∥∥∥[(Y−MR)L̃
]
mm

∥∥∥2
2

⎤
⎥⎥⎥⎥⎦.

We note that the condition (7) is found in [10] and [44] as
well. As such, the solution to the minimization problem in (7)
also gives a necessary and sufficient condition for feedback
stabilization over the erasure channel under consideration in
[10], and the SNR-constrained channel in [44]. The solution
to this problem, however, requires synthesizing an optimal
R ∈ RH∞, which is currently unavailable and is a principal
objective of this paper.

III. SISO SYSTEMS

For a SISO system, the multiplicative uncertainty Δ given in
(1) is a scalar white noise process with variance σ2. It follows
from Lemma 2 that the closed-loop system in Fig. 1 is mean-
square stabilizable if and only if:

σ2 inf
R∈RH∞

∥∥∥(Y −MR)L̃
∥∥∥2
2
< 1. (8)

Thus, the mean-square stabilizability amounts to solving a stan-
dard H2 problem. In this section, we solve this problem explic-
itly and derive explicit conditions for mean-square stabilizability.
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A. Mean-Square Stabilizability Bounds

We consider general nonminimum phase plants with a time
delay. A discrete-time system contains a time delay of length
τ ≥ 0 if its relative degree is τ .

Theorem 1: Suppose that P (z) has a relative degree τ ≥ 0.
Let pi ∈ D̄

c, i = 1, . . . , n and sk ∈ D̄
c, k = 1, . . . , l be the

unstable poles and nonminimum phase zeros of P (z), respec-
tively. Then under Assumptions 1–3, the system in Fig. 1 is
mean-square stabilizable if and only if

σ2f ∗
ps

(
D∗

p

)τ−1
Qp(Dp)

τ−1fps < 1 (9)

where fps, Qp and Dp are given by

fps =

⎡
⎢⎣

f1(p1)L̃
−1
in (p1)

...
fn(pn)L̃

−1
in (pn)

⎤
⎥⎦, Dp =

⎡
⎢⎣

p1
. . .

pn

⎤
⎥⎦

Qp =

[(
|pi|2 − 1

) (
|pj |2 − 1

)
p∗ipj − 1

]

with

L̃in(z) =

l∏
k=1

z − sk
1− s∗kz

fi(z) =
n∏

j �=i

1− p∗jz

z − pj
, i = 1, . . . , n.

Proof: We first conduct an all-pass factorization M(z) =
Min(z)Mout(z), such that

M−1
in (z) =

n∏
i=1

1− p∗iz

z − pi

=
n∑

i=1

fi(pi)
1− |pi|2
z − pi

+M−1
in (∞). (10)

Next, factorize L̃(z) as L̃= L̃outL̃in. Let L̂out= L̃outz
τ . Then,

L̂−1
out∈RH∞. In view of the Bezout identity (4), we have MX̃−

Y L̂outL̃inz
−τ = 1, which gives rise to Y (pi)L̂out(pi) =

−pτi L̃
−1
in (pi). By conducting a partial fraction, we obtain

M−1
in (z)Y (z)L̂out(z) =

n∑
i=1

fi(pi)
|pi|2 − 1

z − pi
L̃−1
in (pi)p

τ
i + Z(z)

=

n∑
i=1

(
fi(pi)

|pi|2 − 1

z − pi
L̃−1
in (pi)p

τ
i

+ fi(pi)
|pi|2 − 1

pi
L̃−1
in (pi)p

τ
i

)

+

(
Z(z)−

n∑
i=1

fi(pi)

× |pi|2 − 1

pi
L̃−1
in (pi)p

τ
i

)

=

n∑
i=1

fi(pi)

(
|pi|2 − 1

)
z

pi(z − pi)

× L̃−1
in (pi)p

τ
i + Ẑ(z).

Here Z, Ẑ ∈ RH∞. It is clear that

Ẑ −MoutRL̂out ∈ H2
n∑

i=1

fi(pi)

(
|pi|2 − 1

)
z

pi(z − pi)
L̃−1
in (pi)p

τ
i ∈ H⊥

2 .

This leads us to∥∥∥(Y −MR)L̃
∥∥∥2
2
=
∥∥∥(Y −MR)L̂out

∥∥∥2
2

=‖M−1
in Y L̂out −MoutRL̂out‖

2

2

=

∥∥∥∥∥
n∑

i=1

fi(pi)

(
|pi|2 − 1

)
z

pi(z − pi)
L̃−1
in (pi)p

τ
i

∥∥∥∥∥
2

2

+ ‖Ẑ −MoutRL̂out‖22.

Since L̂−1
out ∈ RH∞, we have

inf
R∈RH∞

‖Z̃ −MoutRL̃out‖
2

2 = 0.

Consequently

inf
R∈RH∞

∥∥∥(Y −MR)L̃
∥∥∥2
2

=

∥∥∥∥∥
n∑

i=1

fi(pi)

(
|pi|2 − 1

)
z

pi(z − pi)
L̃−1
in (pi)p

τ
i

∥∥∥∥∥
2

2

.

The proof is then completed by noting that〈
1

z − pi
,

1

z − pj

〉
=

1

p∗ipj − 1
.

�
Theorem 1 provides a complete solution to the mean-square

stabilizability problem in the SISO case. Similar to earlier
results addressing different performance problem (see, e.g., [8],
[9], [18]), the theorem characterizes the minimal requirement for
mean-square stabilization in terms of the plant’s unstable poles,
nonminimum phase zeros, and relative degree. It is clear that
other than the effect by the unstable poles alone, the nonmini-
mum phase zeros may couple with the unstable poles to aggra-
vate the stabilizability condition, and that close proximity of
unstable poles and nonminimum phase zeros imposes a stringent
limit on the uncertainty variance. This result exhibits a rather
intricate dependence of the stabilizability condition on the plant
unstable poles and nonminimum phase zeros, which can be
partly attributed to the curse of output feedback. As to be shown
below, in the case of state feedback, which is void of nonmini-
mum phase effect, the condition can be simplified considerably,
similar to most of the networked feedback stabilization results.

The following theorem addresses individually the pole and
zero effects, allowing more explicit insights to be gained.

Theorem 2: Suppose that P (z) has relative degree τ ≥ 0.

(i) Suppose that P (z) has no nonminimum phase zero,
and let pi ∈ D̄c, i = 1, . . . , n be its unstable poles.
Then for τ = 0, 1, the system in Fig. 1 is mean-square
stabilizable if and only if

1

σ2
>

(
n∏

i=1

|pi|2(τ−1)

)(
n∏

i=1

|pi|2 − 1

)
. (11)
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(ii) Let p ∈ D̄c be the only unstable pole of P (z), and
sk ∈ D̄

c, k = 1, . . . , l be the nonminimum phase zeros
of P (z). Then the system in Fig. 1 is mean-square
stabilizable if and only if

1

σ2
> |p|2(τ−1)(|p|2 − 1)

l∏
k=1

|1− s∗kp

p− sk
|2. (12)

(iii) Let pi ∈ D̄c, i = 1, . . . , n and sk ∈ D̄c, k = 1, . . . , l be
the unstable poles and nonminimum phase zeros of
P (z), respectively. Then for the system in Fig. 1 to
be mean-square stabilizable, it is necessary that for all
i = 1, . . . , n

1

σ2
> |pi|2(τ−1)

(
|pi|2 − 1

) l∏
k=1

∣∣∣∣1− s∗kpi
pi − sk

∣∣∣∣
2

. (13)

Proof: For Case (i), we first consider τ = 0. Under the
assumption that P (z) has no nonminimum phase zero, we
have L̃−1 ∈ RH∞. It follows from the Bezout identity (4) that
M−1

in Y L̃ = MoutX̃ −M−1
in , which leads to

∥∥∥(Y −MR)L̃
∥∥∥2
2
=
∥∥∥M−1

in Y L̃−MoutRL̃
∥∥∥2
2

=
∥∥∥M−1

in −MoutX̃ +MoutRL̃
∥∥∥2
2

=
∥∥M−1

in (z)−M−1
in (0)

∥∥2
2

+
∥∥∥M−1

in (0)−MoutX̃ +MoutRL̃
∥∥∥2
2
.

As a result

inf
R∈RH∞

∥∥∥(Y −MR)L̃
∥∥∥2
2
=
∥∥M−1

in (z)−M−1
in (0)

∥∥2
2
.

Write

Min(z) =

n∏
i=1

Bi(z), Bi(z) =
z − pi
1− p∗iz

.

It follows that:

∥∥M−1
in (z)−M−1

in (0)
∥∥2
2

=

∥∥∥∥∥
n∏

i=1

B−1
i (z)−

n∏
i=1

B−1
i (0)

∥∥∥∥∥
2

2

=
∥∥B−1

n (z)−B−1
n (0)

∥∥2
2

+
∣∣B−1

n (0)
∣∣2 ∥∥∥∥∥

n−1∏
i=1

B−1
i (z)−

n−1∏
i=1

B−1
i (0)

∥∥∥∥∥
2

2

=

(
1− 1

|pn|2

)
+

1

|pn|2

∥∥∥∥∥
n−1∏
i=1

B−1
i (z)−

n−1∏
i=1

B−1
i (0)

∥∥∥∥∥
2

2

=1−
n∏

i=1

1

|pi|2
.

This establishes the case for τ = 0. For τ ≥ 1, we have
L̃(∞) = 0, and hence from the Bezout identity (4),M−1

in (∞)−
Mout(∞)X̃(∞) = 0. Thus

z
(
M−1

in (z)−M−1
in (∞)

)
∈ H⊥

2

z
(
M−1

in (∞)−MoutX̃
)
∈ H2.

This recognition leads to∥∥∥(Y −MR)L̃
∥∥∥2
2
=
∥∥∥M−1

in −MoutX̃ +MoutRL̃
∥∥∥2
2

=
∥∥(M−1

in (z)−M−1
in (∞)

)
+
(
M−1

in (∞)−MoutX̃+MoutRL̃
)∥∥∥2

2

=
∥∥z (M−1

in (z)−M−1
in (∞)

)
+ z

(
M−1

in (∞)−MoutX̃
)
+MoutRL̃z

∥∥∥2
2

=
∥∥z (M−1

in (z)−M−1
in (∞)

)∥∥2
2

+
∥∥∥z(M−1

in (∞)−MoutX̃
)
+MoutRL̃z

∥∥∥2
2
.

Since for τ = 1, L̃z is invertible in RH∞, it is immediate that

inf
R∈RH∞

∥∥∥(Y −MR)L̃
∥∥∥2
2

=
∥∥z (M−1

in (z)−M−1
in (∞)

)∥∥2
2

=

∥∥∥∥∥z
(

n∏
i=1

B−1
i (z)−

n∏
i=1

B−1
i (∞)

)∥∥∥∥∥
2

2

=

∥∥∥∥∥z
(

n−1∏
i=1

B−1
i (z)−

n−1∏
i=1

B−1
i (∞)

)∥∥∥∥∥
2

2

+

∣∣∣∣∣
n−1∏
i=1

B−1
i (∞)

∣∣∣∣∣
2

×
∥∥z (B−1

n (z)−B−1
n (∞)

)∥∥2
2

=

n−1∏
i=1

|pi|2 − 1 +

n−1∏
i=1

|pi|2
(
|pn|2 − 1

)

=
n∏

i=1

|pi|2 − 1

where the last equality was also established previously in [27].
Case (ii) follows directly from (9). To establish the necessary
condition in Case (iii), it suffices to observe, analogously as in
the proof for Theorem 1, that for any i = 1, . . . , n

inf
R∈RH∞

∥∥∥(Y −MR)L̃
∥∥∥2
2
≥
∥∥∥∥∥fi(pi)

(
|pi|2−1

)
z

pi(z−pi)
L̃−1
in (pi)p

τ
i

∥∥∥∥∥
2

2

= |pi|2(τ−1)
(
|pi|2−1

) l∏
k=1

∣∣∣∣1−s∗kpi
pi−sk

∣∣∣∣
2

.

The proof is thus completed. �
Of the above bounds, it is interesting to see that (11) repli-

cates a number of previous results [4], [10], [12], [28], [42], [46]
obtained under different channel model assumptions, which
provide fundamental bounds on, e.g., channel data rate, chan-
nel capacity, and channel SNR required for stabilization in a
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state feedback configuration. This condition thus reinforces the
previous results, by providing yet another viable case for which
the lower bound (11) is fundamental; the degree of instability
imposes a fundamental limit on the noise level allowable.
The bounds (12) and (13) strengthen this result further, which
demonstrate explicitly the effect due to nonminimum phase
zeros and time delays. It is seen herein that the difficulty of
stabilization increases exponentially with the delay length. Fur-
thermore, when in the extreme the plant undergoes nearly unsta-
ble pole-zero cancelation, stabilization will become impossible.

B. An Illustrative Example

We next use an example to illustrate our preceding results.
Example 1: The system

P (z) =
z − a

zr(z − 1.1)(z − 1.4)
, r ≥ 0.

has a relative degree τ = r + 1, and contains a variable zero at
z = a. We use the MATLAB command randn(·) to generate a
random Gaussian signal and normalize it to a zero-mean white
process {d(k)} such that E{d2(k)} = 0.05. The uncertainty Δ
is generated similarly. We compute E{y2(k)}. At each k, the
computation takes 20 000 iterations.

We first fix a = 0.5 and r = 0. In this case, the maximal
variance allowed for mean-square stabilization is found as
σ2
max = 0.7291, and the optimal controller attaining this bound

is obtained as

K(z) =
0.8766z − 0.8906

z − 0.5
.

It can be demonstrated that for σ2 marginally less and mar-
ginally greater than 0.7291, the output variance E{y2(k)} con-
verges and diverges, respectively; in other words, the closed-loop
system is and is not mean-square stable. For σ2 significantly
less (σ2 = 0.5) and greater (σ2 = 1) than 0.7291, Fig. 3(a)
and (b) show that this convergence and divergence becomes
more dramatic. Note that E{e2(k)} displays the same con-
vergence and divergence behavior, but is smaller in orders of
magnitude and is so omitted. With the same controller, we then
change r = 0 to r = 1. Fig. 4 shows that the closed-loop mean-
square stability is rather sensitive to this change, in spite of a
low noise variance (σ2 = 0.05). Indeed, for r = 1, E{y2(k)}
is seen to diverge rapidly. This is expected since the delay τ has
an exponential effect on σ2

max.
Next, we allow a to vary from a = 0 to a > 1, so that the

zero z = a can be minimum phase or nonminimum phase.
This case is meant to illustrate how a nonminimum phase zero
may couple with unstable poles to affect mean-square stability.
Fig. 5 shows how σ2

max varies with a, for τ = 1, 2, respectively.
Note that any value for σ2 below the σ2

max curve can guarantee
closed-loop mean-square stability, and hence is indicated as
mean-square stability (MSS) region. One can see that when
the zero z = a becomes nonminimum phase, σ2

max decreases
sharply. The zoom-in plot shows in particular that σ2

max drops
to zero at a = 1.1, 1.4, where the two unstable poles lie. On the
other hand, when the zero moves farther away from the poles,
σ2
max increases.

Fig. 3. Pole effect and sensitivity of stabilizability bound. (a) Mean-
square stable closed-loop system with σ2 = 0.5, r = 0. (b) Mean-
square unstable closed-loop system with σ2 = 1, r = 0.

IV. MIMO SYSTEMS

Lemma 2 makes it clear that to ascertain mean-square sta-
bilizability of a MIMO system, one generally must solve a
minimization problem for the spectral radius ρ(W (R)) over
the set of R ∈ RH∞. This poses a highly nontrivial task. While
for SISO systems the spectral radius reduces to the H2 norm
of the complementary sensitivity function, which defines a
convex function and hence is duly solved, this attribute is not
preserved to MIMO systems. Indeed, as our subsequent case
study shows, the MIMO case in general constitutes a non-
convex optimization problem.

In this section we extend our preceding results to MIMO
systems. For a MIMO plant P (z), a complex number p ∈ D̄c

is a plant unstable pole with an output direction vector η,
‖η‖ = 1 if η∗M(p) = 0. Similarly, a complex number s ∈ D̄

c

is a nonminimum phase zero of P (z) with an input direction
vector ζ, ‖ζ‖ = 1 if L̃(s)ζ = 0. In the sequel, for an all-pass

transfer function matrix Min(z) =

[
Ain Bin

Cin Din

]
, we use

the familiar realization of

M−1
in (z) =

[
Ain −BinD

−1
in Cin −BinD

−1
in

D−1
in Cin D−1

in

]
. (14)
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Fig. 4. Delay effect on mean-square stabilizability. (a) Mean-square
stable closed-loop system with σ2 = 0.05, r = 0. (b) Mean-square
unstable closed-loop system with σ2 = 0.05, r = 1.

Fig. 5. Zero effect on mean-square stabilizability.

We shall also write

Â = Ain −BinD
−1
in Cin. (15)

It is useful to point out that the eigenvalues of Â coincide with
the zeros of Min(z).

The following lemma (see, e.g., [1], [38]) will serve as
the technical basis in our subsequent developments. This al-
ternative characterization of ρ(W ) is rather similar to robust
control synthesis problems which also resort to scaled norm
minimization [17], [49].

Lemma 3: For any nonnegative matrix W

ρ(W ) = inf
Γ

‖ΓWΓ−1‖1 = inf
Γ

‖ΓWΓ−1‖∞ (16)

where the infimum is taken over the set of positive diagonal
matrices Γ = diag(γ2

1 , . . . , γ
2
m).

We shall first present a general stabilizability condition for
minimum phase systems and next address delay and non-
minimum phase systems. This organization will facilitate the
presentation since the results require rather different proofs.

A. Minimum Phase Plants

In this section we present a computationally efficient solution
to the mean-square stabilizability problem for minimum phase
plants. This result casts the necessary and sufficient stabilizabil-
ity condition as the solution to a parameterized algebraic Ricatti
equation (ARE), which is solvable as a GEVP problem.

Theorem 3: Suppose that P (z) is minimum phase and
has relative degree zero. Let M = MinMout be an inner-outer

factorization of M , with Min(z) =

[
Ain Bin

Cin Din

]
being an

inner of M(z). Then under Assumptions 1–3

ρmin = inf
{
μ : σ2

i e
∗
iD

∗−1
in B∗

inÂ
∗−1XÂ−1BinD

−1
in ei

< μe∗iΓei, i = 1, . . . ,m} (17)

where X > 0 is the solution to the ARE

A∗
inXAin−X+C∗

inΓCin−(A∗
inXBin+C∗

inΓDin)

× (B∗
inXBin+D∗

inΓDin)
−1(B∗

inXAin+D∗
inΓCin)=0.

(18)

Furthermore

ρmin=inf

{
μ :

(
m∑
i=1

γiXi

)
− 1

μ
γiσ

2
i Â

−1BinD
−1
in ei

· e∗iD∗−1
in B∗

inÂ
∗−1>0, γi>0, i=1, . . . ,m

}
(19)

where Xi ≥ 0, i = 1, . . . ,m is the solution to the Lyapunov
equation

Xi − ÂXiÂ
∗ +BinD

−1
in eie

∗
iD

∗−1
in B∗

in = 0. (20)

The system in Fig. 1 is mean-square stabilizable if and only if
ρmin < 1.

Proof: We first note from Lemmas 2 and 3 that

ρ(W (R)) = inf
Γ

∥∥ΓW (R)Γ−1
∥∥
1

= inf
Γ

max
i

σ2
i

∥∥∥Γ 1
2 (Y −MR)L̃ei

∥∥∥2
2
γ−2
i . (21)

Then for any Γ = diag(γ2
1 , . . . , γ

2
m), γi > 0, i = 1, . . . ,m,

the transfer function matrix Γ1/2Min can be factorized as
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Γ1/2Min=MΓinMΓout, where MΓin=

[
AΓin BΓin

CΓin DΓin

]
is

inner with the realization [21]

MΓin

=

[
Ain+BinF Bin (D

∗
inΓDin+B∗

inXBin)
− 1

2

Γ
1
2Cin+Γ

1
2DinF Γ

1
2Din (D

∗
inΓDin+B∗

inXBin)
− 1

2

]

with X > 0 being the solution to the ARE (18) and

F = − (B∗
inXBin +D∗

inΓDin)
−1 (B∗

inXAin +D∗
inΓCin) .

Using the Bezout identity (4), it follows that for any i =
1, . . . ,m:∥∥∥Γ 1

2 (Y −MR)L̃ei

∥∥∥2
2
γ−2
i

=
∥∥∥M−1

Γinei − (MΓoutMoutX̃ −MΓoutMoutRL̃)eiγ
−1
i

∥∥∥2
2

=
∥∥(M−1

Γin(z)−M−1
Γin(0))ei

∥∥2
2

+
∥∥∥(γiM−1

Γin(0)−MΓoutMoutX̃+MΓoutMoutRL̃)ei

∥∥∥2
2
γ−2
i .

We proceed to calculate theL2 norm of (M−1
Γin(z)−M−1

Γin(0))ei,
which, according to (14), has the realization as shown at the
bottom of the page. It follows from an standard exercise [49]
that:

∥∥(M−1
Γin(z)−M−1

Γin(0)
)
ei
∥∥2
2

= e∗iD
∗−1
in B∗

inÂ
∗−1XÂ−1BinD

−1
in eiγ

−2
i

where X is the solution to the Lyapunov equation

X − Â∗XÂ+ C∗
ΓinD

∗−1
ΓinD

−1
ΓinCΓin = 0. (22)

It is readily recognized that this equation coincides with the
ARE (18). Next, we note that

γiM
−1
Γin(0)ei = −D−1

ΓinCΓinÂ
−1BinD

−1
in ei

+ (D∗
inΓDin +B∗

inXBin)
1
2 D−1

in ei.

Since L̃ has relative degree zero, this implies that for all i =
1, . . . ,m

inf
R∈RH∞

∥∥∥(γiM−1
Γin(0)−MΓoutMoutX̃

+ MΓoutMoutRL̃
)
ei

∥∥∥
2
= 0

holds for the same optimal R ∈ RH∞. As a consequence

inf
R∈RH∞

ρ (W (R))= inf
R∈RH∞

inf
Γ

max
i

σ2
i

∥∥∥Γ 1
2 (Y−MR)L̃ei

∥∥∥2
2
γ−2
i

= inf
Γ

inf
R∈RH∞

max
i

σ2
i

∥∥∥Γ 1
2 (Y−MR)L̃ei

∥∥∥2
2
γ−2
i

= inf
Γ

max
i

σ2
i

∥∥(M−1
Γin(z)−M−1

Γin(0)
)
ei
∥∥2
2
.

Alternatively, we may write the last equality as

ρmin= inf
Γ

{
μ :σ2

i e
∗
iD

∗−1
in B∗

inÂ
∗−1XÂ−1BinD

−1
in eiγ

−2
i ≤ μ,

i = 1, . . . ,m
}

= inf
Γ

{
μ :σ2

i e
∗
iD

∗−1
in B∗

inÂ
∗−1XÂ−1BinD

−1
in ei ≤ μe∗iΓei,

i = 1, . . . ,m
}
.

This establishes (17). To prove (19), we calculate D−1
ΓinCΓin,

which is found to be

D−1
ΓinCΓin = −(B∗

inXBin +D∗
inΓDin)

−1/2 B∗
inXÂ.

Thus, the Lyapunov equation (22) can be rewritten as

X − Â∗XÂ+ Â∗XBin

× (B∗
inXBin +D∗

inΓDin)
−1 B∗

inXÂ = 0

and further as

X − Â∗ (X −XBin (B
∗
inXBin

+ D∗
inΓDin)

−1 B∗
inX

)
Â = 0.

Employing the Sherman-Morrison-Woodbury formula [14], we
have

X −XBin (B
∗
inXBin +D∗

inΓDin)
−1 B∗

inX

=
(
X−1 +Bin (D

∗
inΓDin)

−1 B∗
in

)−1

.

Consequently, the Lyapunov equation (22) can be written as

X − Â∗
(
X−1 +Bin (D

∗
inΓDin)

−1 B∗
in

)−1

Â = 0

or equivalently

X−1 − ÂX−1Â∗ +BinD
−1
in Γ−1D∗−1

in B∗
in = 0. (23)

Let Xi be the solution to (20). Then it is readily seen that the so-
lution to (23), and equivalently that to the ARE (18), is given by

X =

(
m∑
i=1

γ−2
i Xi

)−1

.

(
M−1

Γin(z)−M−1
Γin(0)

)
ei =

[
AΓin −BΓinD

−1
ΓinCΓin −(AΓin −BΓinD

−1
ΓinCΓin)

−1BΓinD
−1
Γinei

D−1
ΓinCΓin 0

]

=

[
Â −Â−1BinD

−1
in Γ− 1

2 ei
D−1

ΓinCΓin 0

]
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Substitute X into the inequalities in (17). Then by a repeated
use of Schur complement [14], the inequalities in (17) are found
to be equivalent to(

m∑
i=1

γ−2
i Xi

)
− 1

μ
γ−2
i σ2

i Â
−1BinD

−1
in eie

∗
iD

∗−1
in B∗

inÂ
∗−1 > 0.

The proof is now completed by setting γ−2
i to γi. �

Further analysis and discussion on Theorem 3 are deferred to
the next subsection, together with those for Theorem 4.

B. Delay Effects

We now generalize Theorem 3 to delay systems. For this
purpose, we consider plants with input delays, which can be
described by delays in the transfer function matrix L̃(z)

L̃(z) = L̃out(z)

⎡
⎢⎣
z−τ1

. . .
z−τm

⎤
⎥⎦

τi ≥ 0, i = 1, . . . ,m. (24)

Here we assume that L̃−1
out(z) ∈ RH∞.

Theorem 4: Suppose that P (z) has no zero in D̄c except
at the point of infinity, and that L̃ is given in (24). Let M =
MinMout be an inner-outer factorization of M , with Min(z) =[

Ain Bin

Cin Din

]
being an inner of M(z). Then under

Assumptions 1–3

ρmin = inf
{
μ : σ2

i e
∗
iD

∗−1
in B∗

in(Â
∗)

τi−1
XÂτi−1BinD

−1
in ei

< μe∗iΓei, i = 1, . . . ,m
}

(25)

where X > 0 is the solution to the ARE (18). Furthermore

ρmin= inf

⎧⎨
⎩μ :

(
m∑
i=1

γiXi

)
− 1

μ
γiσ

2
i Â

τi−1BinD
−1
in ei

· e∗iD∗−1
in B∗

in(Â
∗)

τi−1
>0, γi>0, i=1, . . . ,m

⎫⎬
⎭ (26)

where Xi is the solution to the Lyapunov equation (20). The
system in Fig. 1 is mean-square stabilizable if and only if
ρmin < 1.

Proof: See Appendix A. �
It is important to note that the stabilizability conditions in

Theorem 3 and Theorem 4 are both a GEVP problem, which
can be efficiently solved using LMI optimization techniques [2],
[3] with a line search method. Thus, while unable to provide
an analytical solution as in the case of SISO systems, these re-
sults nonetheless furnish necessary and sufficient conditions for
mean-square stabilizability, and from a computational stand-
point, resolve the output feedback mean-square stabilizability
problem for MIMO systems with no finite nonminimum phase
zeros. Inadvertently, this also solves the state feedback mean-
square stabilizability problem, as implicated by the fact that the
solutions depend only on the matrices Ain, Bin, Din. Indeed, in
using state feedback, the controlled plant is effectively rendered
minimum phase. It is worth noting that since the eigenvalues of

Â coincide with the plant unstable poles, Theorem 4 shows that
the mean-square stabilizability condition becomes proportion-
ally more demanding as the delays in the plant increase. It is
also useful to point out that in addition to the locations of the
plant unstable poles, the realizations of the inner factorMin also
depend on their directions, and as such, so do the stabilizability
conditions. In particular, when BinD

−1
in ei = 0, the Lyapunov

equation (20) yields the trivial solution Xi = 0, and hence the
ith inequality in (19) is rendered moot; in other words, σ2

i can
be arbitrary and the uncertainty Δi has no effect on the closed-
loop stability.

In what follows we analyze in further depth the dependence
of the stabilizability on the pole directions, by resorting to
limiting case studies. We shall consider first the case that P (z)
has a single unstable pole p ∈ D̄c with output direction vector η.
For a given η, we introduce the index set

I = {1 ≤ i ≤ m : η∗ei �= 0} .

More generally, in the case of multiple poles pj ∈ D̄c with
pole direction vectors ηj , j = 1, . . . , n, we define with respect
to ηj the set

Ij =
{
1 ≤ i ≤ m : η∗jei �= 0

}
and with respect to ei

Ji =
{
1 ≤ j ≤ n : η∗jei �= 0

}
.

Corollary 1: Suppose that P (z) has no zero in Dc and
that L̃ is given in (24). Suppose also that P (z) has a single
unstable pole p ∈ D̄c with output direction vector η. Then
under Assumptions 1–3, the system in Fig. 1 is mean-square
stabilizable if and only if∑

i∈I

1

|p|2(τi−1)σ2
i

> |p|2 − 1. (27)

Proof: It follows from [7] that an all-pass factor Min can
be constructed as:

Min(z) =

⎡
⎣ 1

p∗

√
|p|2−1

p∗ η∗√
|p|2−1

p∗ η I −
(
1 + 1

p∗

)
ηη∗

⎤
⎦ .

With this realization, it can be verified by a direct calculation
that the ARE (18) admits the solution

X =
1

η∗Γ−1η
.

Thus, by invoking Theorem 4, we obtain

ρmin = inf
Γ

max
i

(
|p|2 − 1

)
σ2
i

|p|2(τi−1)|η∗ei|2γ−2
i

η∗Γ−1η

=
(
|p|2 − 1

)
inf
Γ

max
i∈I

σ2
i

|p|2(τi−1)|η∗ei|2γ−2
i∑

i∈I
|η∗ei|2γ−2

i

.

The infimum is found at such γi, i ∈ I that for i �= j, i, j ∈ I

σ2
i

|p|2(τi−1)|η∗ei|2γ−2
i∑

i∈I
|η∗ei|2γ−2

i

= σ2
j

|p|2(τj−1)|η∗ej|2γ−2
j∑

i∈I
|η∗ei|2γ−2

i
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which gives rise to the solution

ρmin =
(
|p|2 − 1

) 1∑
i∈I

1
|p|2(τi−1)σ2

i

.

This completes the proof. �
Corollary 1 gives a glimpse into the relevance of pole direc-

tions on mean-square stabilizability, which is seen to depend
on the alignment between the pole direction and the Euclidean
basis. Evidently, if η∗e = 0 for some i, then the uncertainty Δi

has no influence on the stabilizability condition (27), reaffirm-
ing the above observation on the scenarioBinD

−1
in ei = 0. When

in the networked control setting Δi is interpreted as the noise in
the i-th channel, this means that the pole direction is orthogonal
to the channel and the noise in that channel casts no effect.

The following two limiting cases of multiple poles provide
additional insight. For simplicity, we restrict our attention to
plants with relative degree zero and one.

Corollary 2: Suppose that P (z) has no zero in Dc and has
relative degree τ = 0, 1.

(i) Let pi ∈ D̄c, i = 1, . . . , n, be the unstable poles of P (z)
with parallel directions spanned by a pole direction
vector η. Then

ρmin =
1∑

i∈I

1
σ2
i

(
n∏

i=1

|pi|2(τ−1)

)(
n∏

i=1

|pi|2 − 1

)
.

(ii) Let pi ∈ D̄c, i = 1, . . . , n, n ≤ m, be the unstable poles
of P (z) with orthogonal directions spanned by ηi. Then

ρmin = max
i

∑
j∈Ji

|pj |2(τ−1)
(
|pj |2 − 1

)
∑
i∈Ij

1
σ2
i

. (28)

Proof: We prove the corollary for τ = 1; the case τ = 0
follows analogously and hence is omitted. Without loss of
generality, for the n parallel pole directions, we may assume
that the pole direction vectors ηi = η, for some unitary vector
η such that η∗M(pi) = 0, i = 1, . . . , n. In this case, an all-pass
factor of Γ1/2M(z) can be found as [6], [43]

MΓin(z) = [ηΓ UΓ]

⎡
⎣ n∏

i=1

z−pi

1−p∗
i z

0

0 I

⎤
⎦[η∗Γ

U ∗
Γ

]
(29)

where ηΓ = Γ−(1/2)η/‖Γ−(1/2)η‖, and [ηΓ UΓ] is a unitary
matrix. For a plant with relative degree one, it follows from the
proof of Theorem 3 that:

ρmin = inf
Γ

max
i

σ2
i

∥∥(M−1
Γin(z)−M−1

Γin(∞)
)
ei
∥∥2
2

= inf
Γ

max
i

σ2
i |η∗Γei|

2

∥∥∥∥∥
n∏

i=1

1− p∗iz

z − pi
−

n∏
i=1

(−p∗i)

∥∥∥∥∥
2

2

= inf
Γ

max
i

(
n∏

i=1

|pi|2 − 1

)
σ2
i

|η∗ei|2γ−2
i

n∑
i=1

|η∗ei|2γ−2
i

.

The rest of the proof for (i) then follows as in that for Corollary 1.
To establish Corollary 2-(ii), it suffices to note that with mu-
tually orthogonal pole directions ηi, i = 1, . . . , n, an all-pass
factor of Γ1/2M(z) can be constructed as [6]

MΓin(z) =

⎡
⎢⎢⎢⎣

η̂∗

...
η̂∗n
Û ∗

⎤
⎥⎥⎥⎦
∗⎡
⎢⎢⎢⎣

z−p1

1−p∗
1z

. . .
z−pn

1−p∗
nz

I

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

η̂∗

...
η̂∗n
Û ∗

⎤
⎥⎥⎥⎦

where η̂i = Γ−(1/2)ηi/‖Γ−(1/2)ηi‖, and [η̂1 · · · η̂n Û ] is a uni-
tary matrix. Similarly, we obtain

ρmin = inf
Γ

max
i

σ2
i

∥∥(M−1
Γin(z)−M−1

Γin(∞)
)
ei
∥∥2
2

= inf
Γ

max
i

σ2
i

n∑
j=1

∣∣η̂∗jei∣∣2
∥∥∥∥1− p∗jz

z − pj
+ p∗j

∥∥∥∥
2

2

= inf
Γ

max
i

σ2
i

∑
j∈Ji

(
|pj |2 − 1

) ∣∣η∗jei∣∣2 γ−2
i∑

i∈Ij

∣∣η∗jei∣∣2 γ−2
i

. (30)

Define

xi = σ2
i

∑
j∈Ji

(
|pj |2 − 1

) ∣∣η∗jei∣∣2 γ−2
i∑

i∈Ij

∣∣η∗jei∣∣2 γ−2
i

.

It follows that the minimax problem in (30) achieves the mini-
mum at xi = xk for i �= k, i, k ∈ Ij , subject to the constraint:∑

i∈Ij

xi

σ2
i

=
∑
j∈Ji

(
|pj |2 − 1

)
.

This leads to the solution (28), thus completing the proof. �
Hence, when in the extreme their directions are parallel,

the unstable poles contribute to the difficulty to stabilization
collectively as if in a SISO system. In contrast, when the direc-
tions are orthogonal, the poles tend to affect the stabilizability
individually in an additive manner.

C. Nonminimum Phase Zeros

Unlike for minimum phase plants, stabilization of nonmin-
imum phase plants via output feedback proves fundamentally
more difficult. In this section we provide a case study which
helps illustrate this difficulty. Our first result is a characteri-
zation of mean-square stabilizability for plants containing one
nonminimum phase zero.

Theorem 5: Suppose that P (z) has relative degree τ = 0, 1.
Suppose also that P (z) has one unstable pole p ∈ D̄

c with
output direction vector η, and one nonminimum phase zero
s ∈ D̄c with input direction vector ζ. Then

ρmin = |p|2(τ−1)
(
|p|2 − 1

)

× inf
Γ

⎛
⎜⎜⎝
|η∗ζ|2

(∣∣∣ 1−p∗s
p−s

∣∣∣2 − 1

)
∥∥∥Γ− 1

2 η
∥∥∥2
1

∥∥∥Σ− 1
2Γ

1
2 ζ
∥∥∥2 +

∥∥∥Γ− 1
2Σ

1
2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

⎞
⎟⎟⎠ . (31)
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Fig. 6. The minimum χ(γ2, γ3) = infR∈RH∞ ρ(W (R)). (a) ∠(η, ζ) = π/2. (b) ∠(η, ζ = π/4. (c) ∠(η, ζ) = 0.

Furthermore

1∑
i∈I

1
σ2
i

|p|2(τ−1)
(
|p|2 − 1

)
≤ ρmin

≤
∣∣∣∣1− p∗s

p− s

∣∣∣∣
2

1∑
i∈I

1
σ2
i

|p|2(τ−1)
(
|p|2 − 1

)
(32)

and the lower bound is achieved when ∠(η, ζ) = π/2.
Proof: See Appendix B. �

It is clear from Theorem 5 that the presence of nonmini-
mum phase zeros will generally worsen a plant’s mean-square
stabilizability. The nonminimum phase effect, while invariably
present in SISO systems, will however vanish when the zero
direction is perpendicular to the pole direction. Such is also the
case, for example, when the pole direction vector is an Euclid-
ean basis vector, regardless of the zero direction vector. This
characteristic sheds light into the intricacy in how nonminimum
phase zeros may affect stabilizability, a complication one does
not observe in the case of state feedback. The example given in
the next subsection reinforces further this observation.

D. A MIMO Example

The following example demonstrates that in the presence
of nonminimum phase zeros, the mean-square stabilizability
problem is in general not a convex optimization problem, thus
underlying the difficulty to find a necessary and sufficient
stabilizability condition.

Example 2: Consider a plant with relative degree one, given as

P (z) =

⎡
⎣ 50+a

z 0 − 26+25a
z

1
z − 1

z 0
0 0 z−3.5

z2

⎤
⎦

×
(
13×3 ⊗

1

3

1− 3/2z

z − 3/2
+ I − 13×3 ⊗

1

3

)
(33)

where 13×3 is a 3 × 3 matrix with all elements equal to one.
This plant has an unstable pole p = 1.5 with output direction
vector η = (1/

√
3)[1, 1, 1]∗, and a nonminimum phase zero

s = 3.5 with input direction vector ζ = (1/
√
2 + a2)[1, 1, a]∗.

Fig. 7. infγ2 χ(γ2, γ3). (a) ∠(η, ζ) = π/4. (b) ∠(η, ζ) = 0.

As such, ∠(η, ζ) = (a+ 2)/
√
3a2 + 6. Let σ2

1 = 9/4, σ2
2 = 4,

σ2
3 = 25/4. With no loss of generality, take γ1 = 1 and define

χ(γ2, γ3) = |p|2(τ−1)
(
|p|2 − 1

)

×

⎛
⎜⎜⎝
|η∗ζ|2

(∣∣∣1−p∗s
p−s

∣∣∣2 − 1

)
∥∥∥Γ− 1

2 η
∥∥∥2
1

∥∥∥Σ− 1
2Γ

1
2 ζ
∥∥∥2 +

∥∥∥Γ− 1
2Σ

1
2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

⎞
⎟⎟⎠ .

Fig. 6 shows how χ(γ2, γ3) varies with γ2, γ3 for the different
pole and zero direction alignments corresponding to ∠(η, ζ) =
π/2, π/4, 0. For the case ∠(η, ζ) = π/2, it is shown in the
proof of Theorem 5 that the minimization of χ(γ2, γ3) can be
converted, via a one-to-one transformation, into one of convex
minimization. It is thus unsurprising that χ(γ2, γ3) has a unique
minimum. On the other hand, for ∠(η, ζ) = π/4, 0, χ(γ2, γ3)
has more than one local minimum, which is seen even more
clearly in Fig. 7, by focusing on the dependence of χ(γ2, γ3)
on γ3. This partly explains the difficulty to compute ρmin. Note
also that as a function of ∠(η, ζ), the example shows that ρmin

is not a monotone function, contrary to one’s intuition.

V. CONCLUSION

In Part 1 of this paper we have studied the stabilizability
of LTI systems in the presence of stochastic multiplicative
uncertainties. We derived fundamental conditions for mean-
square stabilizability, which provide necessary and sufficient
conditions for a system to be stabilizable via output feedback.
For SISO systems, an explicit, analytical bound is derived on
the uncertainty variance. This bound yields the fundamental
limit required for stabilization, imposed by the plant’s unsta-
ble poles, nonminimum phase zeros, as well as time delays.
For MIMO systems, we derived a computationally efficient
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necessary and sufficient condition for minimum phase systems
with possible delays, which coincidentally furnishes a solution
to state-feedback mean-square stabilizability problem as well.
This condition amounts to solving a GEVP problem which is
readily solvable using LMI optimization techniques. Further
investigation into limiting cases shows that in a MIMO system,
the stabilizability condition is sensitive to the directions of the
unstable poles and nonminimum phase zeros and may vary
widely depending on the alignment between these directions.

In Part 2 we aim to develop synthesis methods for optimal
control subject to stochastic multiplicative uncertainties, wherein
the stabilization and optimal performance problems are formu-
lated and tackled in a general framework unified under the mean-
square small gain theorem. With a design-oriented perspective,
computationally efficient solutions are particularly sought after
and indeed obtained by making use of state-space descriptions.
Hence, together with the stabilizability conditions given herein,
this two-part paper provides a rather full exposition of optimal
control under structured multiplicative uncertainties. When
interpreted in the networked control setting, our results in
Part 2 solve a number of optimal performance problems with
channels operating under random multiplicative noises. This
should be especially welcomed, for performance issues of
networked control systems have seldom been investigated.

APPENDIX A
PROOF OF THEOREM 4

We begin with (16) and subsequently (21), whereas the latter
gives rise to∥∥∥Γ 1

2 (Y −MR)L̃ei

∥∥∥2
2
γ−2
i

=
∥∥z(M−1

Γin(z)−M−1
Γin(∞)

)
ei
∥∥2
2
+
∥∥∥(γiM−1

Γin(∞)

−MΓoutMoutX̃ +MΓoutMoutRL̃
)
ei

∥∥∥2
2
γ−2
i .

Following analogously the proof of Theorem 3, we find that:∥∥z (M−1
Γin(z)−M−1

Γin(∞)
)
ei
∥∥2
2

= e∗iD
∗−1
in B∗

inXBinD
−1
in eiγ

−2
i

where X is the solution to the ARE (18). Note also that

γiM
−1
Γin(∞)ei = (D∗

inΓDin +B∗
inXBin)

1
2 D−1

in ei.

Let the impulse response sequence of MΓoutMoutX̃ei be de-
noted as {fk}; that is

MΓout(z)Mout(z)X̃(z)ei =

∞∑
k=0

fkz
−k.

Since L̃ei has relative degree τi, the impulse response sequence
of MΓoutMoutRL̃ei is equal to zero for k = 0, 1, . . . , τi − 1.
Furthermore, since γiM

−1
Γin(∞)−MΓout(∞)Mout(∞)X̃(∞)=

0, we have∥∥∥(γiM−1
in (∞)−MΓoutMoutX̃ +MΓoutMoutRL̃

)
ei

∥∥∥2
2

=

τi−1∑
k=1

‖fk‖2 +
∥∥∥∥∥

∞∑
k=τi

fkz
−k −MΓoutMoutRL̃ei

∥∥∥∥∥
2

2

.

Evidently

inf
R∈RH∞

∥∥∥∥∥
∞∑

k=τi

fkz
−k −MΓoutMoutRL̃ei

∥∥∥∥∥
2

2

= 0.

As such

inf
R∈RH∞

∥∥∥Γ 1
2 (Y −MR)L̃ei

∥∥∥2
2
γ−2
i

=

τi−1∑
k=1

‖fk‖2γ−2
i + e∗iD

∗−1
in B∗

inXBinD
−1
in eiγ

−2
i . (34)

We next seek to determine the impulse response sequence
{fk} for k = 1, . . . , τi − 1. For this purpose, denote the
impulse response sequences of MΓin(z) and M−1

Γin(z)ei by
{gk} and {hk}, respectively. From the Bezout identity
MΓinMΓoutMoutX̃ei − Γ1/2Y L̃ei = γiei, and the fact that
L̃ei has relative degree τi, it follows at once that:⎡

⎢⎢⎢⎣
g0
g1 g0
...

...
gτi−1 gτi−2 · · · g0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

f0
f1
...

fτi−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
γiei
0
...
0

⎤
⎥⎥⎥⎦.

On the other hand, since MΓinM
−1
Γinei = ei, we have fk =

γihk, k = 0, 1, . . . , τi − 1, where {hk}, as the impulse re-
sponse sequence of M−1

Γin(z)ei, is found to be

hk = −D−1
ΓinCΓinÂ

k−1BΓinD
−1
Γinei

= −D−1
ΓinCΓinÂ

k−1BinD
−1
in eiγ

−1
i .

Thus

τi−1∑
k=1

‖fk‖2γ−2
i = γ−2

i

τi−1∑
k=1

e∗iD
∗−1
in B∗

inÂ
∗k−1
in C∗

ΓinD
∗−1
Γin

·D−1
ΓinCΓinÂ

k−1
in BinD

−1
in ei. (35)

In view of the Lyapunov equation (22), we then obtain

τi−1∑
k=1

‖fk‖2 =

τi−1∑
k=1

e∗iD
∗−1
in B∗

inÂ
∗k−1
in (Â∗XÂ−X)

· Âk−1
in BinD

−1
in ei

=

τi−1∑
k=1

e∗iD
∗−1
in B∗

inÂ
∗k
inXÂk

inBinD
−1
in ei

−
τi−1∑
k=1

e∗iD
∗−1
in B∗

inÂ
∗k−1
in XÂk−1

in BinD
−1
in ei

= e∗iD
∗−1
in B∗

inÂ
∗τi−1
in XÂτi−1

in BinD
−1
in ei

− e∗iD
∗−1
in B∗

inXBinD
−1
in ei.

The proof is completed by combining the last equality with (34).
�
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APPENDIX B
PROOF OF THEOREM 5

We examine the characterization

ρ(W (R)) = inf
Γ

∥∥ΓW (R)Γ−1
∥∥
∞

= inf
Γ

max
j

∥∥∥e∗jΓ 1
2 (Y −MR2)L̃Γ

− 1
2Σ

1
2

∥∥∥2
2

and prove the case τ = 1. The theorem can be established
analogously for τ = 0. Consider the simplicial set

Λ =

{
diag(λ1, . . . , λm) :

m∑
i=1

λi = 1,

λi ≥ 0, i = 1, . . . ,m

}
.

It is easy to see that

inf
Γ

∥∥ΓW (R)Γ−1
∥∥
∞

= inf
Γ

max
Λ∈Λ

m∑
j=1

λj

∥∥∥e∗jΓ 1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2
.

Accordingly

inf
R∈RH∞

ρ (W (R))

= inf
R∈RH∞

inf
Γ

max
Λ∈Λ

m∑
j=1

λj

∥∥∥e∗jΓ 1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2

= inf
Γ

inf
R∈RH∞

max
Λ∈Λ

m∑
j=1

λj

∥∥∥e∗jΓ 1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2
.

Since
∑m

j=1 λj‖e∗jΓ1/2(Y −MR)L̃Γ−(1/2)Σ1/2‖2
2

is convex
in R and affine in Λ, we may exchange the infimum and the
maximization [36], [37], so as to obtain

ρmin = inf
Γ

max
Λ∈Λ

inf
R∈RH∞

m∑
j=1

λj

∥∥∥e∗jΓ 1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2

= inf
Γ

max
Λ∈Λ

inf
R∈RH∞

∥∥∥Λ 1
2Γ

1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2
.

We then proceed to solve the minimization problem over
R ∈ RH∞. Toward this end, we conduct all-pass factoriza-
tions Λ1/2Γ1/2M = M̂inM̂out and L̃Γ−(1/2)Σ1/2 = L̂outL̂in,
respectively, so that

M̂in(z) = [ηΛ UΛ]

[ z−p
1−p∗z 0

0 I

] [
η∗Λ
U ∗
Λ

]

L̂in(z) = [ζΣ VΣ]

[
z−s

1−s∗z 0
0 I

] [
ζ∗Σ
V ∗
Σ

]

where

ηΛ =
Λ− 1

2Γ− 1
2 η∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥ , ζΣ =

Σ− 1
2Γ

1
2 ζ∥∥∥Σ− 1

2Γ
1
2 ζ
∥∥∥

and [ηΛ UΛ], [ζΣ VΣ] are both unitary matrices. It follows that:∥∥∥Λ 1
2Γ

1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2

=
∥∥∥(M̂−1

in (z)− M̂−1
in (∞)

)
Λ

1
2Γ

1
2 Y (p)L̂out(p)

∥∥∥2
2

+ ‖Q− M̂outRL̂out‖
2

2

form some Q ∈ RH∞. Hence

inf
R∈RH∞

∥∥∥Λ 1
2Γ

1
2 (Y −MR)L̃Γ− 1

2Σ
1
2

∥∥∥2
2

=
∥∥∥(M̂−1

in (z)− M̂−1
in (∞)

)
Λ

1
2Γ

1
2Y (p)L̂out(p)

∥∥∥2
2

=

∥∥∥∥1− |p|2
z − p

ηΛη
∗
ΛΛ

1
2Γ

1
2 Y (p)L̂out(p)

∥∥∥∥
2

2

=
(
|p|2 − 1

) ∥∥∥η∗ΛΛ 1
2Γ

1
2Y (p)L̂out(p)

∥∥∥2
2
.

From the Bezout identity (4), however, we have

η∗ΛΛ
1
2Γ

1
2 Y (p)L̂out(p) = − η∗∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥Γ

− 1
2Σ

1
2 L̂−1

in (p).

This leads to∥∥∥η∗ΛΛ 1
2Γ

1
2Y (p)L̂out(p)

∥∥∥2
2

=

∥∥∥∥∥∥
η∗Γ− 1

2Σ
1
2∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥
(
1− s∗p

p− s
ζΣ + VΣ

)∥∥∥∥∥∥
2

2

=
η∗Γ− 1

2Σ
1
2∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥
((∣∣∣∣1− s∗p

p− s

∣∣∣∣
2

− 1

)
ζΣζ

∗
Σ + I

)

× Σ
1
2Γ− 1

2 η∥∥∥Λ− 1
2Γ− 1

2 η
∥∥∥

=

⎛
⎜⎜⎝

|η∗ζ|2
(∣∣∣1−s∗p

p−s

∣∣∣2 − 1

)
∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥2 ∥∥∥Σ− 1

2Γ
1
2 ζ
∥∥∥2 +

∥∥∥Σ 1
2Γ− 1

2 η
∥∥∥2∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥2
⎞
⎟⎟⎠

and consequently to

ρmin=inf
Γ

max
Λ∈Λ

⎛
⎜⎜⎝
|η∗ζ|2

(∣∣∣ 1−s∗p
p−s

∣∣∣2 − 1

)
∥∥∥Σ− 1

2Γ
1
2 ζ
∥∥∥2 +

∥∥∥Σ 1
2Γ− 1

2 η
∥∥∥2
⎞
⎟⎟⎠

· |p|2 − 1∥∥∥Λ− 1
2Γ− 1

2 η
∥∥∥2 . (36)

Next, we seek to find max
Λ∈Λ

(1/‖Λ−(1/2)Γ−(1/2)η‖2), or equiva-

lently, 1/(min
Λ∈Λ

‖Λ−(1/2)Γ−(1/2)η‖2). For this purpose, consider

the function

f(Λ, κ) =
∥∥∥Λ− 1

2Γ− 1
2 η
∥∥∥2 + κ(λ1 + · · ·+ λm − 1)

=

m∑
i=1

|η∗ei|2

λiγ2
i

+ κ(λ1 + · · ·+ λm − 1).

Setting the partial derivatives of f(Λ, κ) to zero, we obtain

−
(
|η∗ei|2

γ2
i

)
1

λ2
i

+ κ = 0.
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Together with the equation
∑m

i=1 λi=1, this yields the solution

λi =

(
|η∗ei |
γi

)
m∑
i=1

(
|η∗ei |
γi

)

min
Λ∈Λ

∥∥∥Λ− 1
2Γ− 1

2 η
∥∥∥2 =

(
m∑
i=1

|η∗ei|
γi

)2

=
∥∥∥Γ− 1

2 η
∥∥∥2
1

Thus, (31) is established. To prove the inequalities in (32), we
claim that

inf
Γ

∥∥∥Σ 1
2Γ− 1

2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

=
1∑

i∈I

1
σ2
i

.

Toward this end, let us introduce the variables

xi =

(
|η∗ei |
γi

)
∥∥∥Γ− 1

2 η
∥∥∥
1

, i = 1, . . . ,m.

It is clear that xi=0 for i �∈I , and that
∑

i∈Ixi=1. Furthermore∥∥∥Σ 1
2Γ− 1

2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

=
∑
i∈I

σ2
i x

2
i .

Solving this constrained minimization problem, we are led to

inf
Γ

∥∥∥Σ 1
2Γ− 1

2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

=min

{∑
i∈I

σ2
i x

2
i :
∑
i∈I

xi=1, xi≥0, i∈I

}

=
1∑

i∈I

1
σ2
i

.

The lower bound in (32) then follows trivially, which is
achieved when cos∠(η, ζ) = 0. To establish the upper bound,
we note that∥∥∥Σ 1

2Γ− 1
2 η
∥∥∥2 ∥∥∥Σ− 1

2Γ
1
2 ζ
∥∥∥2 =

∥∥∥(Σ− 1
2Γ

1
2 ζ
)(

Σ
1
2Γ− 1

2 η
)∗∥∥∥

≥ ρ2
((

Σ− 1
2Γ

1
2 ζ
)(

Σ
1
2Γ− 1

2 η
)∗)

= |η∗ζ|2.

This means that

|η∗ζ|2
(∣∣∣ 1−p∗s

p−s

∣∣∣2 − 1

)
∥∥∥Γ− 1

2 η
∥∥∥2
1

∥∥∥Σ− 1
2Γ

1
2 ζ
∥∥∥2 +

∥∥∥Γ− 1
2Σ

1
2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

≤
∣∣∣∣1− p∗s

p− s

∣∣∣∣
2

∥∥∥Γ− 1
2Σ

1
2 η
∥∥∥2∥∥∥Γ− 1

2 η
∥∥∥2
1

.

The proof is now completed. �
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