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Control Under Stochastic Multiplicative
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Abstract—This paper studies the optimal control design
problem for linear discrete-time systems with stochastic
multiplicative uncertainties. These uncertainties are as-
sumed to be present in the control inputs and modeled
as independent and identically distributed (i.i.d.) random
processes. The optimal performance under study is defined
in the mean-square sense, referred to as the mean-square
optimal H2 performance. It is shown that the mean-square
optimal H2 control problem via state feedback can be
solved using a mean-square stabilizing solution to a mod-
ified algebraic Riccati equation (MARE). A necessary and
sufficient condition for the existence of this solution is pre-
sented, which constitutes a generalization of the solution
to the classic optimal H2 state feedback design problem,
whereas the latter can be obtained by solving an algebraic
Riccati equation (ARE). It is also proven that the optimal
control design problem can be cast as an eigenvalue prob-
lem (EVP). For the output feedback case with possible input
delays, we show that the mean-square optimal H2 control
problem also amounts to solving an MARE, when the plant
has no nonminimum phase zeros from the inputs to the
measurement outputs. That is, the global optimal solution
is obtained by solving an MARE incorporating the delays.
The implication is that in this case a separation principle
still holds.

Index Terms—AlgebraicRiccati equation,optimal control,
output feedback, stochastic multiplicative uncertainties.
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I. INTRODUCTION

OVER the last four decades, optimal control of linear time-
invariant (LTI) systems with stochastic multiplicative

uncertainties has attracted a great deal of research interest (see,
e.g., [2], [6], [9], [13], [17], [18], [25], [34], [40]). Several appli-
cations which appear in economic systems ([1], [8]), aerospace
engineering [20], floating point numerical calculation errors in
digital systems [34], etc., also motivate the research in this area.
Recent development in networked control shows that stochastic
multiplicative uncertainties can be used to effectively model
certain transmission losses in communication channels such as
packet drop-outs ([9], [10], [26], [35], [37]). This observation
has consequently motivated active research in both networked
control and stochastic control. The major technical difficulty
with optimal control under multiplicative uncertainties is that
the conventional tools for linear optimal control are inadequate
to cope with the inherent nonlinearities yielded by such un-
certainties. Many fundamental issues facing this problem are
still open.

Studies into LTI systems with stochastic multiplicative un-
certainties, typically modeled as independent and identically
distributed random processes, can be traced back to the 1960’s
(see e.g., [16], [19], [32]), in which one of the major research
issues is mean-square stability analysis. In [15], [16], [19], the
criterion of mean-square stability was presented for systems
given in state space models. On the other hand, Willems and
Blankenship [34] studied the mean-square stability problem
from a frequency-domain, input-output formulation for single-
input single-output (SISO) LTI systems. A necessary and suf-
ficient condition for mean-square stability, refered to as the
Mean-Square Small Gain Theorem in the literature (see, e.g.,
[18] and [24]), was obtained for SISO systems. This result was
extended to a more general version for multi-input multi-output
(MIMO) systems in [18], which formed a primary machinery in
the authors’ development of mean-square stabilizability condi-
tions in Part 1 of this paper [24].

In parallel, Wonham [32], [33] formulated an optimal linear
quadratic regulation (LQR) problem for LTI systems subject to
stochastic multiplicative uncertainties, and proved that the op-
timal state feedback can be constructed by obtaining a positive
semidefinite solution to a modified algebraic Riccati equation
(MARE). Using a numerical example, however, Wonham also
showed that the optimal state feedback may not stabilize the
system in the mean-square sense, when the noise variance
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becomes excessively large [33]. Willems and Willems [36]
subsequently employed the LQR approach to study the mean-
square stabilization problem for these stochastic uncertain sys-
tems. They found that when in the quadratic cost the state and
control input weighting matrices are both full-rank, a system
will be mean-square stabilizable via state feedback if and only
if the MARE admits a positive definite solution. Moreover, the
resulting optimal state feedback stabilizes the system in the
mean-square sense. Despite this significant discovery, a funda-
mental question has remained elusive and longstanding: In the
general case without the aforementioned full rank condition,
what is the necessary and sufficient condition for the existence
of the mean-square stabilizing solution to the MARE? Endeavor
on this fundamental problem has been met with only limited
successes. In [25], for a class of LTI systems with the stochastic
multiplicative uncertainties, the mean-square stabilizing solu-
tion to the MARE was obtained by solving a linear matrix
inequality (LMI). In [7] and [39], the problem was studied in
terms of mean-square stabilizability and a generalized observ-
ability of the stochastic uncertain systems, to which sufficient
conditions were presented in several special cases.

In the networked feedback control setting, Elia [9] revisited
the mean-square stabilization problem for MIMO LTI systems,
in which stochastic multiplicative noises are used to model
communication channel uncertainties. Sinopoli et. al. [26], [27]
studied Kalman filtering problems with packet loss in com-
munication channels, where the channel uncertainty caused
by packet loss is modeled as a stochastic multiplicative un-
certainty, and a filter design approach based on an MARE is
presented. Xiao et. al. [37] studied the stabilization problem for
networked systems with packet loss and presented an explicit
connection between mean-square stabilizability and signal-to-
noise ratios of communication channels. In a similar networked
control setting, the authors [23], [29] studied optimal track-
ing problems with stochastic multiplicative uncertainties. In
particular, in Part 1 of this paper [24], the authors studied
in great depth the stabilization problem with this stochastic
multiplicative uncertainty model and developed necessary and
sufficient conditions for mean-square stabilizability.

In Part 2 of this paper we expand our inquiry even further, to
more challenging optimal performance problems for LTI sys-
tems subject to stochastic multiplicative uncertainties, which,
as stated above, can be considered both as optimal stochastic
control problems in the classical sense and as optimal control
problems in a networked control setting. Our development
thus serves a dual purpose: on one hand we develop optimal
feedback laws to achieve optimal performance for systems
with communication channels operating under stochastic mul-
tiplicative noises, while on the other hand, we attempt to solve
a longstanding optimal stochastic control problem subject to
stochastic multiplicative uncertainties. These two problems are
unified under the general framework of mean-square optimal
H2 control, where a generalizedH2 norm of an LTI system with
stochastic multiplicative uncertainties is defined in the mean-
square sense and minimization of the generalized H2 norm via
feedback control is considered.

The contributions of this paper can be summarized as fol-
lows. We first formulate the mean-square optimal H2 con-

trol problem under stochastic multiplicative uncertainties and
present a complete state feedback solution to this problem.
More specifically, we show that the optimal state feedback law
can be designed based on the mean-square stabilizing solution
to an MARE. Subsequently, a necessary and sufficient condi-
tion for the existence of the mean-square stabilizing solution to
the MARE is obtained explicitly. This result thus resolves the
longstanding open issue concerning the existence condition for
the mean-square stabilizing solution alluded to above. Interest-
ingly, when the stochastic multiplicative uncertainties are void,
the condition reduces to the well-known solution to the classical
optimal H2 state feedback problem (see, e.g., [38]). Moreover,
we show that the optimal state feedback design amounts to
solving an eigenvalue problem (EVP), which can be solved
using any LMI solver [3].

Another main result of this paper is a solution to the mean-
square optimal H2 control problem via output feedback. In its
full generality, the output feedback optimal design can be done
based on the solutions of two coupled algebraic Riccati equa-
tions. Serious technical difficulties arise due to this coupling.
However, under the assumption that the plant transfer function
from the inputs to the measurements is minimum phase, we
show that this coupling does not present a technical difficulty,
even when the plant may contain input delays, which can be
regarded as a special nonminimum phase behavior. In this case,
it turns out that the optimal output feedback controller is fully
determined by a delay-dependent MARE for state feedback
design. Accordingly, the optimal output feedback design can
be accomplished by constructing equivalently an optimal state
feedback design based on an auxiliary plant generated from
the original plant combined with the delay information. Stated
alternatively, a separation principle holds in the sense that the
optimal output feedback controller is an observer-like state
feedback controller with the state feedback gain fully deter-
mined by the solution to an optimal state feedback problem,
and the “observer” gain is given by a separate design.

The remainder of this paper is organized as follows. In
Section II, we formulate the mean-square optimal H2 control
problem. In Section III, we solve the mean-square optimal H2

control via state feedback. Section IV studies the mean-square
optimal H2 control via output feedback. The optimal output
design problem is solved for a minimum phase plant with
possible input delays. Section V concludes the paper.

Partial results of this paper have been previously presented in
[23], [29], and [30]. The notation of Part 2 follows that of Part 1
[24]. For ease of readability, Part 2 of this paper is attempted to
be sufficiently self-contained.

Notation: We denote a real n-dimensional vector space by
Rn; the transpose, inverse, Moore-Penrose generalized inverse
of a matrix by (·)T , (·)−1, (·)†, respectively; the spectral radius
of a matrix by ρ(·). For symmetric matrices X and Y , X > Y
(respectively, X ≥ Y ) mean that X − Y is positive definite
(respectively, positive semidefinite). Denote the l1 norm (or the
sum norm) of a vector by ‖ · ‖1 (see [14] for details), and the
expectation of a random variable by E{·}. RH∞ is the set of all
proper stable rational function matrices. Denote the H2 norm
of a proper stable rational function matrix by ‖ · ‖2 (see [5] and
[38] for details).
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Fig. 1. An LTI system with stochastic multiplicative uncertainty at the
control input.

II. PROBLEM FORMULATION

This paper studies an optimal control problem for discrete-
time LTI systems with stochastic multiplicative uncertainties.
The feedback system under study is shown in Fig. 1, where P is
the plant, K is a feedback controller, I is an identity matrix, and
Δ = diag{Δ1, . . . ,Δm} represents stochastic multiplicative
uncertainty with a diagonal structure. The control signal u is
“corrupted” by the stochastic uncertaintyΔ and the “corrupted”
control signal ud is used to drive the plant. The signals v, y
and z are the input, the measurement output, and the controlled
output, respectively. The state space model of the plant P is
given by

x(k + 1) =Ax(k) +B1v(k) +B2ud(k), x(0) = 0

z(k) =C1x(k)

y(k) =C2x(k) (1)

where x(k) is the state of the plant. Denote the error in
the control signal by d(k), which results from the stochastic
multiplicative uncertainties Δ1, . . . ,Δm, i.e.,

d(k) = ud(k)− u(k) = Δ(k)u(k). (2)

We shall consider both state feedback controller u(k) = Fx(k)
and output feedback controller

x̂(k + 1) =Acx̂(k) +Bcy(k)

u(k) =Ccx̂(k) +Dcy(k) (3)

respectively. We impose the following assumption throughout
the paper.

Assumption 1: The uncertainties {Δi(k)}, i = 1, 2, . . . ,m,
are independent and identically distributed (i.i.d) processes and
mutually uncorrelated with

E {Δi(k)} = 0, E {Δi(k1)Δi(k2)}=
{
σ2
i , k1=k2

0, k1 �=k2

E {Δi(k1)Δj(k2)} = 0 ∀ i �= j.

In addition, {Δi(k)}, i = 1, 2, . . . ,m, are uncorrelated with the
input signal {v(k)}.

For simplicity, we also assume that the plant P is strictly
proper. Our results, nevertheless, can be extended to the case
where z contains feed-through terms ud and v. On the other
hand, when the measurement y in the plant (1) includes the
term ud, extra assumptions are needed to avoid certain technical
difficulties (see [9] and Remark 1 for details).

Fig. 2. The closed-loop system with stochastic multiplicative uncer-
tainty.

A. Mean-Square Stability

In this subsection, we give the definitions of mean-square
stability and mean-square stabilizability as well as a prelimi-
nary result on mean-square stability. To this end, we reconfigure
the system in Fig. 1 as the system in Fig. 2. The signals v, z
and u are the same as in Fig. 1 and d is defined in (2). Here
Δ represents the diagonal stochastic multiplicative uncertainty,
and P (K) is the nominal closed-loop system, i.e., the closed-
loop system of the plant P with a feedback controller K in
Fig. 1 when the stochastic uncertainty Δ is void. With the error
signal given in (2), we may rewrite the plant model as

x(k + 1) =Ax(k) +B1v(k) +B2d(k) +B2u(k)

z(k) =C1x(k)

y(k) =C2x(k). (4)

Denote the transfer function of P (K) from {v, d} to {z, u} by
Ge and partition it as follows:

Ge =

⎡
⎢⎢⎣
Gz0 Gz1 · · · Gzm

G10 G11 · · · G1m

· · · · · ·
Gm0 Gm1 · · · Gmm

⎤
⎥⎥⎦ (5)

where Gz0 maps v to z, Gzi maps the ith component di of d to
z, Gi0 maps v to the ith component of u and Gij maps the jth
component dj of d to the ith component of u, i = 1, 2, . . . ,m.
For convenience, denote the ith block-column of Ge by Gi−1,
i.e., Ge = [G0 G1 · · · Gm].

Definition 1: The closed-loop system in Fig. 2 is said to
be mean-square stable if K stabilizes P and in addition, for
zero input and any initial state, the covariance of the state
E{x(k)x(k)T } is bounded for all k and converges to zero
asymptotically.

Definition 2: The plant (1), (2) is said to be mean-square
stabilizable via state feedback (or via output feedback) if there
exists a state feedback law u(k) = Fx(k) [respectively, an
output feedback law (3)] such that the resulting closed-loop
system is mean-square stable.

Denote

G =

⎡
⎣G11 · · · G1m

· · ·
Gm1 · · · Gmm

⎤
⎦ (6)

Ĝ =

⎡
⎢⎣
‖G11‖22 · · · ‖G1m‖22

. . .
‖Gm1‖22 · · · ‖Gmm‖22

⎤
⎥⎦ (7)
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and Σ = diag{σ2
1 , . . . , σ

2
m}.

Lemma 1—(see [18]): Suppose the nominal closed-loop
system Ge of the system shown in Fig. 2 is stable. Then, the
system is mean-square stable if and only if the spectral radius
of the matrix ĜΣ is less than one, i.e., ρ(ĜΣ) < 1.

B. Mean-Square H2 Norm and Optimal H2 Control

Suppose the feedback controller K stabilizes the plant (1),
(2) in the mean-square sense, i.e., the closed-loop system in
Fig. 2 is mean-square stable. Assume that the input sequence
{v(k)} is an i.i.d. process with zero mean and that the covari-
ance matrix is an identity matrix. In addition, assume that the
initial state of the plant is zero. The mean-square H2 norm of
the system is defined as the square root of the averaged power
of the output signal z. Denote this averaged power by JH2

, i.e.,

JH2
= E

{
lim
k→∞

1

k + 1

k∑
i=0

z(i)T z(i)

}
. (8)

Note that the controlled output z is related to the input noise
v and the stochastic uncertainty Δ. The expectation in (8)
thus operates jointly over the distributions of v and Δ. In the
classic optimal H2 theory, JH2

given by (8) is the square of
the standard H2 norm of an LTI system in the absence of the
uncertainty Δ (see, e.g., [38]). In that case, the expectation in
(8) is taken solely over v.

Let K be the set of all possible controllers stabilizing the
closed-loop system in Fig. 2 in the mean-square sense. For any
given K ∈ K, denote the function JH2

by JH2
(K). Then the

optimal performance of interest in this paper is given by

Jopt = inf
K∈K

JH2
(K) = inf

K∈K
inf
σ0

{
1

σ2
0

: JH2
(K) <

1

σ2
0

}
. (9)

This ushers in the mean-square optimal H2 control problem,
the central problem to be tackled in the sequel.

Mean-Square Optimal H2 Control Problem: The objective
of this problem is to find an optimal controller Kopt to stabilize
the plant (1), (2) in the mean-square sense and to minimize the
performance cost JH2

, i.e.,

Kopt = arg inf
K∈K

JH2
(K).

We have the following characterization of the mean-square
H2 norm.

Lemma 2: Suppose the plant in (1) and (2) satisfies
Assumption 1. Let the controller K stabilize the plant P in the
mean-square sense. Then

JH2
= ‖Gz0‖22 + ‖Gz1‖22 · · · ‖Gzm‖22Σ(I − ĜΣ)−1

×

⎡
⎢⎣
‖G10‖22

...
‖Gm0‖22

⎤
⎥⎦ . (10)

Proof: See Appendix A. �
It is clear that when the uncertainties are absent (equivalently,

σi = 0, i = 1, . . . ,m), JH2
reduces to the standard H2 cost

‖Gz0‖22 in the conventionalH2 control problem (see, e.g., [38]).

Fig. 3. Mean-square performance problem transformed to mean-
square stabilization problem.

Remark 1: The key feature of the closed-loop system in
Fig. 2 which is used in the proof of Lemma 2 is that Δi(k)
is uncorrelated with ui(k) for i = 1, . . . ,m, k = 1, 2, . . . ,∞.
This holds when the parameter matrix of ud in the measurement
output equation is equal to zero matrix, and is a strict upper or
lower triangular matrix (more details see [9]). Once Lemma 2
holds, the results in this work can be extended to these cases
when z and y include feed-through terms ud and v, without
technical difficulties.

Now, let

Ĝe =

⎡
⎢⎢⎣
‖Gz0‖22 ‖Gz1‖22 · · · ‖Gzm‖22
‖G10‖22 ‖G11‖22 · · · ‖G1m‖22

· · · · · ·
‖Gm0‖22 ‖Gm1‖22 · · · ‖Gmm‖22

⎤
⎥⎥⎦ . (11)

The lemma below follows from straightforward algebraic ma-
nipulations, which can also be established following [18].

Lemma 3: Suppose that the plant in (1) and (2) satisfies
Assumption 1 and K stabilizes the plantP . Then for any σ0> 0

JH2
<

1

σ2
0

and ρ(ĜΣ) < 1 (12)

if and only if

ρ(ĜeΣe) < 1

where Σe � diag{σ2
0 , σ

2
1 , . . . , σ

2
m}.

Thus in the same spirit as in [18], Lemma 3 shows that the
mean-square performance problem can be reformulated as a
mean-square stabilization problem for the augmented system
Ge, with the mean-square stability determined by the condition
ρ(ĜeΣe) < 1, in light of Lemma 1. This recognition underlies
our essential technical approach in solving the optimal mean-
squareH2 control problem. Fig. 3 illustrates this transformation.

III. MEAN-SQUARE OPTIMAL H2 CONTROL

VIA STATE FEEDBACK

The section studies the mean-square optimal H2 control via
state feedback. Our objective is to find an optimal state feed-
back law for the plant (1), (2) such that the resulting closed-loop
system is mean-square stable and its mean-square H2 norm
(or the performance cost JH2

) is minimized. From Lemma 3
and the characterization (9), it is clear that this amounts to
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finding an optimal state feedback such that it stabilizes the plant
in the mean-square sense and additionally

Kopt = arg inf
K∈K

inf
σ0

{
1

σ2
0

: JH2
(K) <

1

σ2
0

}

= arg inf
K∈K

inf
σ0

{
1

σ2
0

: ρ(ĜeΣe) < 1

}
. (13)

In this optimal controller design problem, the spectral radius
ρ(ĜeΣe) of the matrix ĜeΣe plays a key role. To study this,
we note that ĜeΣe is a positive matrix (i.e., all of its entries are
nonnegative) and give a preliminary result on positive matrices.

Lemma 4—(see [14]): For any square positive matrix T , its
spectral radius is given by

ρ(T ) = inf
Γ

max
j

∑
i

γ2
i tij

1

γ2
j

where Γ = diag{γ2
1 , . . . , γ

2
m} > 0 and tij is the {i, j}th entry

of the matrix T .
Applying Lemma 4 to the optimal design constraint

ρ(ĜeΣe) < 1

we obtain that for any σ0 satisfying infK JH2
< 1/σ2

0, there
exists Γ̂e = {1,Γ}, Γ = {γ2

1 , . . . , γ
2
m} > 0 such that∥∥∥Γ̂eĜeΣeΓ̂

−1
e ei

∥∥∥
1
< 1, i = 1, . . . ,m+ 1 (14)

where ei is the ith column of the (m+ 1)× (m+ 1) identity
matrix.

From the definition of the H2 norm (see [38]), the constraint
(14) in the optimal feedback design can be written as∥∥∥Γ 1

2
e Gi

∥∥∥2
2

σ2
i

γ2
i

< 1, i = 0, 1, . . . ,m, γ0 = 1 (15)

where Γe = diag{I,Γ} and I is an identity matrix with a
compatible size.

In the state feedback case, according to (15), we obtain the
following lemma:

Lemma 5: A state feedback law

u(k) = Fx(k) (16)

stabilizes the plant (1), (2) in the mean-square sense with
JH2

< 1/σ2
0 for a given σ0 > 0 if and only if there exists Γ > 0

such that∥∥∥∥
[
C1

Γ
1
2F

]
(zI −AF )B1

∥∥∥∥
2

2

σ2
0 < 1∥∥∥∥

[
C1

Γ
1
2F

]
(zI −AF )B2i

∥∥∥∥
2

2

σ2
i

γ2
i

< 1, i = 1, . . . ,m (17)

where AF = A+B2F and B2i is the ith column of B2.
Lemma 5 shows that in the optimal state feedback design, the

design constraint ρ(ĜeΣe) < 1 is equivalent to (17). Hence, we
re-formulate the optimal state feedback design problem in (13).
The mean-square optimal H2 control via state feedback is
to find

Fopt = arg inf
F,σ0

{
1

σ2
0

: subject to (17)

}
.

Next, we review the standard optimal H2 state feedback
design for the following auxiliary plant (without stochastic
multiplicative uncertainties):

xΓ(k + 1) =AxΓ(k) +B1v(k) +B2u(k)

zΓ(k) =

[
C1

0

]
xΓ(k) +

[
0

Γ
1
2

]
u(k) +Dv(k). (18)

Lemma 6: For the plant (18), the discrete algebraic Riccati
equation (DARE)

XΓ=ATXΓA−ATXΓB2

(
Γ+BT

2 XΓB2

)−1
BT

2 XΓA+CT
1 C1

(19)

has a stabilizing solution1 XΓ if and only if (A,B2) is sta-
bilizable and (A,C1) has no unobservable poles on the unit
circle. Moreover, XΓ is the unique stabilizing solution and the
largest positive semidefinite solution to the DARE (19). This
stabilizing solution XΓ is a positive definite matrix if (A,C1) is
observable. The minimum H2 norm of the closed-loop transfer
function from v to z via state feedback u(k) = FxΓ(k) is
given by

min
F

∥∥∥∥
[
C1

Γ
1
2F

]
(zI −A−B2F )−1B1 +D

∥∥∥∥
2

2

= tr
{
BT

1 XΓB1

}
+ tr{DTD} (20)

and the associated optimal state feedback gain is given by

FΓ = −
(
Γ +BT

2 XΓB2

)−1
B2XΓA. (21)

The first part of the lemma above follows [5], [38] and the
second part comes from Theorem 6.4.1 in [5].

To generalize this lemma to the mean-square optimal H2

state feedback design for the plant (1), (2), consider the follow-
ing MARE:

X=ATXA−ATXB2

[
Φ(X)Σ+BT

2 XB2

]−1
BT

2 XA+CT
1 C1

(22)

with Φ(X) = diag{BT
21XB21, . . . , B

T
2mXB2m}. A solution

X to the MARE (22) is called a mean-square stabilizing
solution if the closed-loop system of the plant (1), (2) with the
state feedback (16) is mean-square stable, where

F = −
[
Φ(X)Σ +BT

2 XB2

]−1
BT

2 XA. (23)

We have the following result.
Lemma 7: The plant (1), (2) is mean-square stabilizable via

state feedback and the closed-loop system has JH2
< 1/σ2

0 for
a given σ0 > 0 if and only if there exist XΓ > 0,Γ > 0, FΓ

such that

XΓ>(A+B2FΓ)
TXΓ(A+B2FΓ)+CT

1 C1+FT
Γ ΓFΓ (24)

tr
{
BT

1 XΓB1

}
<

1

σ2
0

, BT
2iXΓB2i<

1

σ2
i

eTi Γei, i=1, . . . ,m.

(25)

1The solution XΓ to (19) is said to be a stabilizing solution if A+ B2FΓ is
stable with FΓ in (21).
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Proof: See Appendix B. �
We are now ready to state the first two main results of this

paper, one on mean-square stabilisability and one on mean-
square H2 performance control.

Theorem 1: Suppose the plant (1), (2) satisfies Assumption 1.
The MARE (22) has a mean-square stabilizing solutionX if and
only if the plant (1), (2) is mean-square stabilizable and (A,C1)
has no unobservable poles on the unit circle. In addition, this
solution X is the unique mean-square stabilizing solution and
the largest positive semidefinite solution to the MARE.

Proof: See Appendix C. �
Theorem 2: Suppose the plant(1), (2) satisfies Assumption 1,

(A,B2) is stabilizable and (A,C1) has no unobservable poles
on the unit circle. Then the plant is mean-square stabilizable if
and only if the largest solution2 X to the MARE (22) is positive
semidefinite. When the above holds, the minimum performance
cost JH2

of the closed-loop achievable via linear state feedback
is given by

inf
F

JH2
= tr

{
BT

1 XB1

}

and the optimal state feedback gain Fopt is given by (23).
Proof: See Appendix D. �

In the case when the matrix CT
1 C1 has full rank, the optimal

state feedback design problem was solved in [32], [33] and [36].
However, there appears a peculiarity in this design problem,
which is illustrated in Example 1 later, in the case when the
matrix CT

1 C1 is not a full rank matrix. This has attracted
many research efforts (see, e.g., [39] and references therein).
Theorem 1 presents a complete answer to this problem, i.e., the
necessary and sufficient condition for which the largest positive
semidefinite solution to the MARE (22) can be used to design
the mean-square optimal H2 state feedback law in the latter
case. It would be interesting to notice that, when the stochastic
uncertainties in the plant are void, the mean-square optimal
H2 control problem reduces to a standard optimal H2 control
problem. In this case, the necessary and sufficient condition
for the existence of the mean-square stabilizing solution to
the MARE (22), which degenerates to a DARE, becomes that
(A,B2) is stabilizable and (A,C1) has no unobservable poles
on the unit circle. This is a well-known result in the classic
optimal H2 control (see for example [5] and [38]).

Compared with the existing results (see for example [36] and
[39]), Theorem 2 gives a more precise description for the mean-
square stabilizability of the plant (1), (2) in terms of the plant
model and the solution to the MARE (22).

Now we offer a numerically efficient algorithm for solving
the mean-square optimal state feedback gain.

Theorem 3: Suppose the plant (1), (2) satisfies Assumption 1
and (A,C1) has no unobservable poles on the unit circle. Then,
the MARE (22) has a mean-square stabilizing solution X if
and only if the following linear matrix inequality problem,

2X being the largest solution means that X ≥ X̃ for any other solution X̃ .

called the EVP problem (see [3] for definition), has a positive
semidefinite solution S:

inf
S,Z,V,π1,...,πm

tr{Z} (26)

subject to⎡
⎢⎢⎣

S SAT + V TBT
2 V T SCT

1

AS +B2V S 0 0
V 0 Π 0

C1S 0 0 I

⎤
⎥⎥⎦ > 0 (27)

[
Z BT

1

B1 S

]
> 0,

[ πi

σ2
i

πiB
T
2i

πiB2i S

]
> 0, i = 1, . . . ,m

Π = diag{π1, π2, . . . , πm} > 0. (28)

Moreover, when the solutions exist, the minimum performance
cost JH2

, the mean-square stabilizing solution X to the MARE
(22) and the optimal state feedback gain are given by

inf
F

JH2
= tr

{
BT

1 S
†
optB1

}
, X = S†

opt, F = VoptS
†
opt

respectively, where Sopt and Vopt are the optimal solution to
the EVP problem (26)–(28).

Proof: The proof is the latter part of that for Theorem 1.
�

The following example illustrates the peculiarity of unob-
servable poles on the unit circle in the mean-square optimal H2

control problem. The algorithm in minimizing the performance
cost JH2

is also illustrated using this example.
Example 1: Consider the plant (1), (2) with parameters as

follows:

A =

⎡
⎣1 0 0
1 −1 1
0 0 2

⎤
⎦ , B1 =

⎡
⎣11
1

⎤
⎦ , B2 =

⎡
⎣1 0
1 1
0 1

⎤
⎦

C1 =
[
1 0 1

]
.

The variances σ2
1 and σ2

2 of the stochastic multiplicative un-
certainties Δ1 and Δ2 are equal to 0.01. The largest positive
semidefinite solution to MARE (22) and the optimal state
feedback (23) are given by, respectively

X =

⎡
⎣1.0082 0 1.0038

0 0 0
1.0038 0 1.0335

⎤
⎦

F =

[
−0.8096 0 −0.3755
−0.1831 0 −1.6192

]
.

The poles of the resulting nominal closed-loop system are −1,
0.0066, 0.5646. Note that the unobservable pole of (A,C1) is
−1. The state feedback gain F designed by the solution X can
not relocate this pole.

On the other hand, when C1 = [1, 1, 1], (A,C1) has no
unobservable poles on the unit circle. The largest solution to
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Fig. 4. The numerical solutions of the minimum performance cost JH2
.

the MARE (22) and the optimal state feedback (23) are

X =

⎡
⎣1.0333 0.9876 1.0014
0.9876 1.0214 1.0058
1.0014 1.0058 1.1277

⎤
⎦

F =

[
−0.8262 0.3086 −0.0343
−0.1661 0.1874 −1.465

]
.

The poles of the resulting nominal closed-loop system are
−0.3439, 0.0189, 0.5298. Moreover, according to Theorem 3,
we obtain that the minimum performance cost infF JH2

of
the resulting closed-loop system is 9.1719. On the other hand,
according to (8), the performance cost JH2

is calculated
by using the output z of the resulting closed-loop system.
Fig. 4 shows the simulation results with steps from 103 to 107,
respectively. The numerical results are convergent to the theo-
retic result when simulation steps are increasing.

Notice in this example that the two plants have the same state
space equation (which is mean-square stabilizable) but different
output equations. We have obtained the largest positive semi-
definite solutions to the MAREs for the two plants, respectively.
In the former case, the state feedback designed by the positive
semidefinite solution to the MARE associated with the first
plant can not stabilize this plant (i.e., the resulting closed-loop
system has a pole on the unit circle) while in the latter case, the
state feedback designed by the positive semidefinite solution
to the MARE associated with the second plant stabilizes the
second plant in the mean-square sense. This difference results
from the unobservable pole of the plant on the unit circle.

Before completing this section, we give a generalized version
of Theorems 1 and 2 to systems also with state-dependent
stochastic multiplicative uncertainties. More specifically, we
consider a generalized version of the plant (1) as follows:

x(k+1) =

(
A+

ms∑
i=1

AiΔsi(k)

)
x(k)+B1v(k)+B2uq(k)

z(k) =C1x(k) (29)

where Δsi, i = 1, . . . ,ms, are the state-dependent stochastic
multiplicative uncertainties.

Assumption 2: For the plant (29), the following conditions
hold:

1) The stochastic uncertainties Δsi, i = 1, . . . ,ms, are mu-
tually independent i.i.d. processes with zero mean and

variances σsi, respectively, and these noises are indepen-
dent of v and all Δj , j = 1, . . . ,m.

2) The matrices Ai i = 1, . . . ,ms have rank one, Ai =
BsiCsi, Bsi and Csi are a column vector and a row
vector, respectively, i = 1, . . . ,ms.

Theorem 4: Consider the generalized plant (29) with (2)
satisfying Assumption 1 and 2. The MARE (30) has a unique
mean-square stabilizing solution X

X = ATXA+

ms∑
i=1

σ2
siA

T
i XAi + CT

1 C1

−ATXB2

[
Φ(X)Σ +BT

2 XB2

]−1
BT

2 XA (30)

with Φ(X) = diag{BT
21XB21, . . . , B

T
2mXB2m} if and

only if the plant (29) is mean-square stabilizable and
(A, [CT

1 CT
s1 · · · CT

sms
]
T
) has no unobservable poles on the

unit circle. In addition, X is a positive semidefinite matrix and
the largest solution to the MARE (30). When the above holds,
the mean-square optimal H2 control via state feedback (16) is
given by (23) with X being the unique mean-square stabilizing
solution to (30), and the minimum performance cost is
given by

inf
F

JH2
= tr

{
BT

1 XB1

}
.

Proof: See Appendix E. �

IV. MEAN-SQUARE OPTIMAL H2 CONTROL

VIA OUTPUT FEEDBACK

We now generalize the optimal design approach in
Theorems 1–3 to output feedback design with possible input de-
lays. It turns out that the general case is very difficult to deal
with. For this reason, we restrict ourselves to minimum-phase
plants with fixed input delay steps.

Suppose that the plant (1), (2) has input delay steps r0 − 1,
r1 − 1, . . . , rm − 1 in the input channels for the input signal
v and the control signals ud1, . . . , udm, respectively, where
ri ≥ 1, i = 0, 1, . . . ,m. The transfer function Gy of the plant
from (v, ud) to y is cascaded by the original plant C2(zI −
A)−1[B1 B2] and the channel with fixed delay steps, i.e.,

Gy = C2(zI −A)−1[B1 B2]

× diag{z−r0+1I, z−r1+1, . . . , z−rm+1}. (31)

It is clear that the transfer function Gy has all the zeros of the
original plant and that the input delay steps change the relative
degrees of the columns in the transfer function or the zeros in
infinite only. We add the following assumption:

Assumption 3: The transfer function of the original plant
C2(zI −A)−1[B1 B2] is minimum phase. The transfer func-
tion from v to y has relative degree r0 ≥ 1 and the transfer func-
tion from the i-th component of ud to y has relative degree ri ≥
1, i.e., C2A

jB1 = 0, j = 0, . . . , r0 − 2, the matrix C2A
r0−1B1

has full column rank, C2A
jB2i = 0, j = 0, . . . , ri − 2 and

C2A
ri−1B2i �= 0, i = 1, . . . ,m, respectively, and

Ψ = [Ar0−1B1 Ar1−1B21 · · · Arm−1B2m] (32)
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has full column rank.
Remark 2: Assumption 3 means that the transfer function

Gydiag{zr0I, zr1 , . . . , zrm} is left invertible in RH∞. But we
do not impose any constraint on the transfer function from
(v, ud) to z for the plant. Moreover, the plants which satisfy
Assumption 3 are slightly more general than those plants given
by (31) since these plants have given relative degrees but may
not have the component diag{z−r0+1I, z−r1+1, . . . , z−rm+1}.

Suppose that Assumption 1 holds for the plant (1), (2).
We consider all possible output feedback controllers in the
form of (3) which can stabilize this plant in the mean-square
sense. Following the discussion in Section III, the mean-square
optimalH2 control design is to find the optimal output feedback
law Kopt in (13) among all possible mean-square stabilizing
output feedback controllers (3) subject to the constraint (15).

Note that the set of inequalities in (15) can be expressed as

max
Λe

J̄H2
< 1, with J̄H2

=

m∑
i=0

λ2
i

∥∥∥Γ 1
2
e Gi+1

∥∥∥2
2

σ2
i

γ2
i

< 1 (33)

where γ0 = 1, tr{Λe} = 1 with Λe = diag{λ2
0, λ

2
1, . . . , λ

2
m}.

To solve this optimal design problem, the following auxiliary
plant with given parameters Γe and Λe is considered:

x̄Γ(k + 1) =Ax̄Γ(k) + B1σ0λ0v(k)

+B2Σ
1
2Γ− 1

2Λ
1
2 d(k) +B2u(k)

z̄Γ(k) =

[
C1

0

]
x̄Γ(k) +

[
0

Γ
1
2

]
u(k)

ȳΓ(k) =C2x̄Γ(k). (34)

The performance cost J̄H2
given in (33) is the square of H2

norm of the plant (34) with an output feedback controller in the
form (3). For the given Γ and Λe, the optimal feedback control
design in minimizing the performance cost J̄H2

is the standard
optimal H2 control problem via output feedback, which is
solved from the stabilizing solutions XΓ and YΓ to the DARE
(19) and following DARE (35), respectively

AYΓA
T −YΓ−AYΓC

T
2

(
C2YΓC

T
2

)†
C2YΓA

T

+B1σ
2
0λ

2
0B

T
1 +B2Γ

−1ΣΛBT
2 =0. (35)

Assumption 4: For the plant (1) (or (34)), it is assumed that

1) (A,B2) is stabilizable and (A,C1) has no unobservable
poles on the unit circle;

2) (A,C2) is detectable and (A, [B1 B2]) has no unstabiliz-
able poles on the unit circle.

Lemma 8—(see [31]): For the auxiliary plant (34), the
following statements are true:

1) The DARE (19) has a unique stabilizing solution XΓ if
and only if Assumption 4.1 holds;

2) The DARE (35) has a unique stabilizing solution YΓ if
and only if Assumption 4.2 holds.

In addition, XΓ and YΓ are positive semidefinite matrices.
The optimal output feedback controller K for the auxiliary

plant (34) is given by

[
Ac Bc

Cc Dc

]

=

[
A+B2FΓ+LΓC2 −B2L0ΓC2 LΓ−B2L0Γ

LΓC2 − FΓ L0Γ

]
(36)

where

FΓ = −
(
Γ +BT

2 XΓB2

)−1
BT

2 XΓA (37)

LΓ = −AYΓC
T
2

(
C2YΓC

T
2

)†
L0Γ = − FΓYΓC

T
2

(
C2YΓC

T
2

)†
. (38)

The corresponding minimum performance cost for the plant
(34) with this output feedback is given by

inf
K

J̄H2
=σ2

0λ
2
0tr
{
BT

1 XΓB1

}
+ tr

{
BT

2 XΓB2Γ
−1ΣΛ

}
+ tr

{
ZFΓYΓF

T
Γ Z
}

− tr
{
ZFΓYΓC

T
2

(
C2YΓC

T
2

)†
C2YΓF

T
Γ Z
}

(39)

where Z = (Γ +BT
2 XΓB2)

1/2
.

The lemma above shows that the optimal output feedback
K for the given Γ and Λe includes three parameters FΓ, LΓ

and L0Γ, determined by two equations (19) and (35) which are
highly coupled through Γ and Λe. This causes a huge diffi-
culty in the mean-square optimal H2 control design via output
feedback. However, we show below that, under Assumption 3,
solutions can be simplified. The key observation is that under
Assumption 3, the coupling between two DAREs becomes very
weak. It turns out that the optimal output feedback for the aux-
iliary plant (34) is a much simpler than that given by Lemma 8.

Lemma 9: Suppose the plant (1) satisfies Assumptions 3
and 4. Then, for given Γ and Λe, the stabilizing solution to the
DARE (35) is given by

YΓ =

r0−1∑
i=0

AiB1σ
2
0λ

2
0B

T
1 A

T i

+

m∑
j=1

rj−1∑
i=0

AiB2jσ
2
jλ

2
jγ

−2
j BT

2jA
T i
. (40)

Moreover, YΓ is the unique stabilizing solution to the
DARE (35), i.e., YΓ ≥ 0 and A+ LΓC2 is stable with LΓ =
−AYΓC

T
2 (C2YΓC

T
2 )

†.
Proof: The fact that (40) is a positive semidefinite so-

lution to (35) follows by direct substitution. The stabilizing
property and uniqueness come from [28] and [31] under the
given assumptions. �

Remark 3: In the case when the plant (1) has relative degrees
one, i.e., without input delays, the stabilizing solution to the
DARE (35) given by Lemma 9 is written as follows:

YΓ = B1σ
2
0λ

2
0B

T
1 +B2Γ

−1ΣΛBT
2 . (41)



SU et al.: CONTROL UNDER STOCHASTIC MULTIPLICATIVE UNCERTAINTIES: PART II, OPTIMAL DESIGN FOR PERFORMANCE 1293

On the other hand, compared with the DARE (35), the DARE
associated with optimal H2 design would be more complicated
when the measurement y includes the feed-forward term from
the input signal v. For left-invertible plants, the solution to this
DARE is a zero matrix (see [22]). The result in the remainder
part holds in these cases.

Using Lemma 9, the minimum performance cost for the
closed-loop system studied in Lemma 8 and the parameters
FΓ, LΓ, L0Γ of the optimal controller are given in the following
result.

Lemma 10: Suppose the plant (34) satisfies Assumptions 3
and 4. For the given Γ and Λe, the control parameters FΓ, LΓ

andLΓ0 of the optimalH2 output feedback are given by (37) and

LΓ = −AΨ(C2Ψ)†, LΓ0 = −FΓΨ(C2Ψ)†. (42)

The minimum performance cost for the resulting closed-loop
system is given by

inf
K

J̄H2
=

m∑
i=0

σ2
i λ

2
i γ

−2
i φ̄i(XΓ) (43)

where γ0 = 1 and

φ̄0(XΓ) = tr
{
BT

1 A
T r0−1

XΓA
r0−1B1

}

+

r0−2∑
j=0

tr
{
BT

1 A
T j

CT
1 C1A

jB1

}
(44)

φ̄i(XΓ) =BT
2iA

T ri−1
XΓA

ri−1B2i

+

ri−2∑
j=0

BT
2iA

T j
CT

1 C1A
jB2i, i = 1, . . . ,m. (45)

Proof: See Appendix F. �
It is shown in Lemma 10 that for the given Γ and Λe, the

optimal parameters LΓ and LΓ0
in the observer-like part are de-

termined by the plant model and the optimal state feedback FΓ.
Moreover, these optimal parameters are not related to the para-
meterΛe. Thus, the optimal output feedback controller given by

Lemma 10 minimizes all components ‖Γ1/2
e Gi+1‖

2

2(σ
2
i /γ

2
i ),

i = 0, 1, . . . ,m in the performance cost J̄H2
. Now, the key

issue in the mean-square optimal output feedback design is to
find the optimal state feedback FΓ and associated parameter
matrix Γ subject to the design constraint (15).

To this end, we study the mean-square optimal H2 state
feedback problem for a new auxiliary plant with stochastic
multiplicative uncertainties below

x̃(k + 1) =Ax̃(k) +Ar0−1B1v(k)

+ [Ar1−1B21 · · ·Arm−1B2m]d(k) +B2u(k)
(46)

z̃(k) =

[
C1

0

]
x̃(k) +

[
D1

0

]
v(k) +

[
0

D2

]
d(k)

d(k) =Δ(k)u(k) (47)

where Δ(k) = diag{Δ1, . . . ,Δm}, Δi, i = 1, . . . ,m, are sto-
chastic multiplicative uncertainties satisfying Assumption 1,
v(k) is an i.i.d input noise as studied in Section II

DT
1 D1 =

r0−2∑
j=0

BT
1 A

T j
CT

1 C1A
jB1

D2 = diag

⎧⎪⎨
⎪⎩
⎛
⎝r1−2∑

j=0

BT
21A

T j
CT

1 C1A
jB21

⎞
⎠

1
2

, . . . ,

⎛
⎝rm−2∑

j=0

BT
2mAT j

CT
1 C1A

jB2m

⎞
⎠

1
2

⎫⎪⎬
⎪⎭ .

Lemma 11: Suppose the plant (46), (47) satisfies
Assumption 1. The following MARE:

ATXA−X −ATXB2

[
Φ̄(X)Σ +BT

2 XB2

]−1
BT

2 XA

+ CT
1 C1 = 0 (48)

with Φ̄(X) = diag{φ̄1(X), . . . , φ̄m(X)} and φ̄i(·) in (45), has
a mean-square stabilizing solution if and only if this plant
is mean-square stabilizable and (A,C1) has no unobservable
poles on the unit circle. In addition, this solution is the unique
mean-square stabilizing solution and the largest positive semi-
definite solution to the MARE (48).

Proof: See Appendix G. �
Lemma 12: Suppose the plant (46), (47) satisfies

Assumption 1 and (A,C1) has no unobservable poles on
the unit circle. Then, the plant is mean-square stabilizable if
and only if the MARE (48) has a positive semidefinite solution.
When the above holds, the mean-square optimal H2 state
feedback gain Fopt is given by

Fopt = −
[
Φ̄(X)Σ +BT

2 XB2

]−1
BT

2 XA (49)

and the minimum performance cost for the resulting closed-
loop system is given by

min
F

JH2
= tr

{
BT

1 A
T r0−1

XAr0−1B1

}

+

r0−2∑
j=0

tr
{
BT

1 A
T j

CT
1 C1A

jB1

}
. (50)

The proof follows that of Theorem 2 and is omitted.
Now we are ready to present the main result for the plant (1),

(2) with input delays.
Theorem 5: Suppose the plant (1), (2) satisfies

Assumptions 1, 3, and 4. If the MARE (48) has a mean-
square stabilizing solution X ≥ 0 (i.e., the plant (46), (47)
is mean-square stabilizable), then the minimum performance
cost JH2

of the plant with an output feedback (3) is given by
minF JH2

in (50) and the optimal parameters of the output
feedback controller are given by (49) and

L = −AΨ(C2Ψ)†, L0 = −FoptΨ(C2Ψ)†. (51)
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Proof: In view of Lemmas 3, 8, and (13), the optimal
output feedback design problem is to find F , L and L0 in
minimizing 1/σ2

0 subject to the constraints∥∥∥Γ 1
2
e Gi

∥∥∥2
2

σ2
i

γ2
i

< 1, i = 0, 1, . . . ,m, with γ0 = 1. (52)

Under Assumptions 3 and 4, it is shown by Lemma 10 that
for any given Γ = diag{γ2

1 , . . . , γ
2
m}, the output feedback

controller with the parameters given by (37) and (42) mini-

mizes ‖Γ1/2
e Gi‖

2

2, i = 0, 1 . . . ,m, simultaneously. Moreover, it
holds that∥∥∥Γ 1

2
e G0

∥∥∥2
2

σ2
0

γ2
0

=σ2
0 φ̄0(XΓ)∥∥∥Γ 1

2
e Gi

∥∥∥2
2

σ2
i

γ2
i

=
σ2
i

γ2
i

φ̄i(XΓ), i = 1, . . . ,m (53)

where XΓ is the stabilizing solution to the DARE (19). Substi-
tuting (53) into (52) leads to the optimal output feedback design
constraint below

σ2
0φ̄0(XΓ) < 1 and

σ2
i

γ2
i

φ̄i(XΓ) < 1, i = 1, . . . ,m.

Hence the optimal output feedback design is to find the min-
imum 1/σ2

0 under the constraint that the inequalities above
hold. This problem is equivalent to the optimal state feedback
design studied in Lemmas 11 and 12. Applying these lemmas,
we obtain the optimal parameter Fopt for the output feedback
and the minimum performance cost given by (49) and (50),
respectively. The controller parameters L and L0 are obtained
by applying Lemma 10. �

Remark 4: This theorem shows that, for a minimum phase
plant (1), (2) with input delays, a separation principle holds
in certain sense for mean-square optimal H2 output feedback
design. More precisely, the optimal state feedback gain is ob-
tained from the mean-square stabilizing solution to the MARE
(48). The remaining parameters L0 and L, which are related
to an observer-like part in the feedback law, are obtained from
the plant model and the optimal state feedback gain matrix. It
must be noticed that, in this case, the optimal state feedback
design is based on the plant (46), (47) which is generated
from the original plant (1), (2) but involves the input delay
information in its model. This is conceptually different to the
separation principle for the conventional optimal H2 output
feedback design.

Remark 5: In addition, it is shown in the preceding section
that the optimal state feedback design is an EVP problem and
a numerical algorithm for solving it is presented in Theorem 3.
This means that the mean-square optimal H2 control via output
feedback is numerically solvable for a minimum phase plant
(1), (2) satisfying Assumptions 3 and 4. It is also explicitly
explained by (50) that the delay size degrades the performance
exponentially.

Now, we consider the case when the plant (1), (2) is minimum
phase with relative degree one and without input delays. In
this case, the auxiliary plant (46), (47) which is used to design
the optimal state feedback gain Fopt in this optimal output
feedback reduces to the plant (1), (2). This leads to the corollary
below, straightforwardly.

Corollary 1: Suppose that the plant (1), (2) satisfies
Assumptions 1, 3, and 4 with r0 = r1 = · · · = rm = 1. Sup-
pose the plant is mean-square stabilizable (i.e. the MARE (22)
has the mean-square stabilizing solution). Then, the minimum
performance cost via output feedback (3) is given by

inf
K

JH2
= tr

{
BT

1 XB1

}
and the optimal parameters of the output feedback controller
Kopt are given by

F = −
[
Φ(X)Σ +BT

2 XB2

]−1
BTXA (54)

L = −A[B1 B2] (C2[B1 B2])
†

L0 = −F [B1 B2] (C2[B1 B2])
† (55)

where X ≥ 0 is the mean-square stabilizing solution to the
MARE (22).

V. CONCLUSION

In this paper, we have solved the mean-square optimal H2

control design problem for linear systems subject to stochas-
tic multiplicative uncertainties. The optimal mean-square state
feedback is designed using the mean-square stabilizing solution
to a modified algebraic Riccati equation (MARE) or, alter-
natively, a set of linear matrix inequalities. A necessary and
sufficient condition is presented for the existence of the mean-
square stabilizing solution to the MARE. In the output feedback
design, a separation principle holds for minimum-phase plants
with/without fixed input delays in the sense that the optimal
controller is designed using the optimal mean-square state feed-
back, and two observer gains determined by this optimal state
feedback and the parameters of the plant model. Given the close
connection between stochastic multiplicative uncertainties and
modeling of network transmission errors (such as packet drop-
outs), the results in this paper are expected to have important
applications in networked control. Future research can focus on
the general output feedback control design where the minimum-
phase assumption is removed.

APPENDIX A
PROOF OF LEMMA 2

Let {Ge(0), Ge(1), Ge(2), . . .} be the impulse response as-
sociated with the transfer function Ge in (5). Following the
partition of Ge in (5), we write Ge(k), k = 0, 1, 2, . . . as:

Ge(k) =

⎡
⎢⎢⎢⎣
gz0(k) gz1(k) · · · gzm(k)
g10(k) g11(k) · · · g1m(k)

...
...

. . .
...

gm0(k) gm1(k) · · · gmm(k)

⎤
⎥⎥⎥⎦ .

Note the fact that the nominal plant (4) has a strict proper
transfer function from input {v, d, u} to output {z, y}. The
transfer function Ge of the plant with a proper feedback control
law is also strict proper. Hence, it holds that gij(0) = 0, i =
0, 1, . . . ,m, j = 0, . . . ,m. When the initial state of the system
in Fig. 2 is at rest, the output of the system is given by[

z(k)

u(k)

]
=

k∑
i=1

Ge(i)

[
v(k − i)

d(k − i)

]
(56)



SU et al.: CONTROL UNDER STOCHASTIC MULTIPLICATIVE UNCERTAINTIES: PART II, OPTIMAL DESIGN FOR PERFORMANCE 1295

where d(k − i) = Δ(k − i)u(k − i). Write the output z(k) is

z(k) = zv(k) +

m∑
j=1

zdj
(k) (57)

where

zv(k) =

k∑
i=1

Gz0(i)v(k − i)

zdj
(k) =

k∑
i=1

Gzj(i)dj(k − i), j = 1, . . . ,m. (58)

Under Assumption 1, we obtain that

E
{
zT (k)z(k)

}
=E

{
zTv (k)zv(k)

}
+

m∑
j=1

E
{
zTdj

(k)zdj
(k)
}
.

(59)
Substituting (58) into E{zTdj

(k)zdj
(k)} leads to

E
{
zTdj

(k)zdj
(k)
}

= E

⎧⎨
⎩tr

⎧⎨
⎩

k∑
i=1

Gzj(i)dj(k−i)

[
k∑

i=1

Gzj(i)dj(k−i)

]T⎫⎬
⎭
⎫⎬
⎭

=

k∑
i=1

tr
[
Gzj(i)G

T
zj(i)

]
σ2
jE
{
u2
j(k − i)

}
. (60)

Taking summation on both sides of (60), we obtain that

k̄∑
k=1

E
{
zTdj

(k)zdj
(k)
}

=

k̄∑
k=1

k∑
i=1

tr
[
Gzj(i)G

T
zj(i)

]
σ2
jE
{
u2
j(k − i)

}

= σ2
j

k̄∑
i=1

k̄∑
k=i

tr
[
Gzj(i)G

T
zj(i)

]
E
{
u2
j(k − i)

}
.

Then, the averaged power of the signal zdj
is given by

E
{∥∥zdj

∥∥2
p

}

= lim
k̄→∞

1

k̄ + 1

k̄∑
k=1

E
{
zTdj

(k)zdj
(k)
}

= σ2
j lim
k̄→∞

1

k̄ + 1

k̄∑
i=1

tr
[
Gzj(i)G

T
zj(i)

] k̄∑
k=i

E
{
u2
j(k − i)

}

= σ2
j

∞∑
i=1

tr
[
Gzj(i)G

T
zj(i)

]
E
{
‖uj‖2p

}
. (61)

Noting the fact that ‖Gzj‖22 =
∑∞

i=1 tr[Gzj(i)G
T
zj(i)], we

rewrite (61) as below

E
{∥∥zdj

∥∥2
p

}
= σ2

j ‖Gzj‖22E
{
‖uj‖2p

}
. (62)

Similarly, noting the stochastic properties of the signal v, we
have that

E
{
‖zv‖2p

}
= ‖Gz0‖22. (63)

With (59), (62) and (63), we have that

E
{
‖z‖2p

}
= ‖Gz0‖22 +

m∑
i=1

σ2
i ‖Gzi‖22E

{
‖ui‖2p

}
. (64)

In the light of the discussion above, we can also obtain that

E
{
‖uj‖2p

}
=‖Gj0‖22+

m∑
i=1

σ2
i ‖Gji‖22E

{
‖ui‖2p

}
, j=1, . . . ,m

or⎡
⎢⎢⎢⎣
E
{
‖u1‖2p

}
...

E
{
‖um‖2p

}
⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
E
{
‖G10‖2p

}
...

E
{
‖Gm0‖2p

}
⎤
⎥⎥⎥⎦+ ĜΣ

⎡
⎢⎢⎢⎣
E
{
‖u1‖2p

}
...

E
{
‖um‖2p

}
⎤
⎥⎥⎥⎦ .
(65)

From (64) and (65), we obtain (10).

APPENDIX B
PROOF OF LEMMA 7

Following Lemma 5, we can see that the plant (1), (2) is
mean-square stabilizable if and only if there exist F , Γ > 0 and
σ0 > 0 satisfying (17). Hence, it holds for some ε > 0 such that∥∥∥∥∥∥

⎡
⎣ εI

C1

Γ
1
2F

⎤
⎦ (zI −AF )

−1B1

∥∥∥∥∥∥
2

2

<
1

σ2
0

∥∥∥∥∥∥
⎡
⎣ εI

C1

Γ
1
2F

⎤
⎦ (zI − AF )

−1B2i

∥∥∥∥∥∥
2

2

<
γ2
i

σ2
i

, i = 1, . . . ,m.

According to Lemma 6, the terms on the left-hand sides of the
inequalities above are minimized simultaneously by

Fε = −
(
Γ +BT

2 XΓ,εB2

)−1
BT

2 XΓ,εA

where XΓ,ε > 0 is the stabilizing solution to the DARE

XΓ,ε = ATXΓ,εA+ CT
1 C1 + ε2I

−ATXΓ,εB2

(
Γ +BT

2 XΓ,εB2

)−1
BT

2 XΓ,εA.

Moreover, it holds that

tr
{
BT

1 XΓ,εB1

}
=

∥∥∥∥∥∥
⎡
⎣ εI

C1

Γ
1
2Fε

⎤
⎦ (zI −AFε

)−1 B1

∥∥∥∥∥∥
2

2

<
1

σ2
0

BT
2iXΓ,εB2i =

∥∥∥∥∥∥
⎡
⎣ εI

C1

Γ
1
2Fε

⎤
⎦ (zI −AFε

)−1 B2i

∥∥∥∥∥∥
2

2

<
γ2
i

σ2
i

i =1, . . . ,m.

From Fε and the DARE above, we obtain the following
inequality:

XΓ,ε > (A+B2Fε)
TXΓ,ε(A+B2Fε)+CT

1 C1+FT
ε ΓFε.
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The inequalities (24), (25) follow from the above by setting
ignoring the subscript ε.

APPENDIX C
PROOF OF THEOREM 1

Sufficiency: Suppose the plant (1), (2) is mean-square stabi-
lizable and (A,C1) has no unobservable poles on the unit circle.
Then, there exists a state feedback u(k) = F0x(k) such that
the performance cost JH2

of the resulting closed-loop system
is bounded by a constant 1/σ2

0. Moreover, for some Γ0 =
diag{γ2

01, . . . , γ
2
0m} and Γe0 = diag{I,Γ0}, the inequalities in

(17) hold, i.e.,

J0 =

∥∥∥∥
[

C1

Γ
1
2
0 F0

]
(zI −AF0

)−1 B1

∥∥∥∥
2

2

<
1

σ2
0

(66)

Ji =

∥∥∥∥
[

C1

Γ
1
2
0 F0

]
(zI −AF0

)−1 B2i

∥∥∥∥
2

2

<
γ2
0i

σ2
i

, i = 1, . . . ,m.

(67)

The function J0 on the left-hand side of the inequality (66) is the
square of the H2 norm of the auxiliary plant (18) with the state
feedback law u(k) = F0x(k), Γ = Γ0 and D = 0. Applying
Lemma 6, we design the optimal state feedback gain FΓ0

to
minimize J0 as follows:

FΓ0
= −

(
Γ0 +BT

2 XΓ0
B2

)−1
BT

2 XΓ0
A (68)

where XΓ0
is the stabilizing solution to the following DARE:

XΓ0
= ATXΓ0

A+ CT
1 C1

−ATXΓ0
B2

(
Γ0 +BT

2 XΓ0
B2

)−1
BT

2 XΓ0
A. (69)

For the closed-loop system, the corresponding minimum per-
formance cost of J0 is given by

J0,min(Γ0) = tr
{
BT

1 XΓ0
B1

}
. (70)

It must also be noted that the state feedback gain FΓ0
in (68)

minimizes the cost functions J1, . . . , Jm, simultaneously and
the minimum values of these functions are

Ji,min(Γ0) = BT
2iXΓ0

B2i, i = 1, . . . ,m. (71)

Substituting J0,min(Γ0) and Ji,min(Γ0) into (66) and (67)
leads to

σ2
0tr
{
BT

1 XΓ0
B1

}
<1, σ2

iB
T
2iXΓ0

B2i<γ2
0i, i=1, . . . ,m.

(72)

Now, let Γe1 = diag{I,Γ1} with Γ1 = diag{γ2
11, . . . , γ

2
1m}

and γ2
1i = σ2

iB
T
2iXΓ0

B2i, i = 1, . . . ,m. It follows from (72)
that Γ1 < Γ0. Similarly, consider the auxiliary plant (18) with
Γ = Γ1. According to Lemma 6, we design the optimal state
feedback FΓ1

for the plant using the stabilizing solution to the
new DARE below

XΓ1
= ATXΓ1

A+ CT
1 C1

−ATXΓ1
B2

(
Γ1 +BT

2 XΓ1
B2

)−1
BT

2 XΓ1
A. (73)

Since Γ1 < Γ0, it holds that XΓ1
≤ XΓ0

. This leads to

σ2
0tr
{
BT

1 XΓ1
B1

}
< 1

max

{
σ2
i

γ2
1i

BT
2iXΓ1

B2i, i = 1, . . . ,m

}
< 1. (74)

Subsequently, we can construct Γ2 < Γ1 with the posi-
tive semidefinite solution XΓ1

. Repeating the process above,
we obtain a sequence {Γ0,Γ1,Γ2, . . .} satisfying Γ0 > Γ1 >
Γ2 > · · · > 0. The sequence of positive semidefinite solu-
tions {XΓ0

, XΓ1
, XΓ2

, . . .} to the DAREs associated with
{Γ0,Γ1,Γ2, . . .} satisfies XΓ0

≥ XΓ1
≥ · · · ≥ 0, thus con-

verges to a positive semidefinite matrix X̄ , and satisfies the
equation below

Γ̄e = diag{1, Γ̄}

Γ̄ = diag
{
σ2
1B

T
21X̄B21, . . . , σ

2
mBT

2mX̄B2m

}
. (75)

The DARE associated with Γ̄ becomes the MARE (22) and it
holds that

σ2
0tr
{
BT

1 X̄B1

}
< 1

max

{
σ2
i

γ̄2
i

BT
2iX̄B2i, i = 1, . . . ,m

}
= 1.

This yields

inf
F

JH2
= inf

F,σ0

{
1

σ2
0

: subject to (17)

}
= tr

{
BT

1 X̄B1

}
.

Moreover, it holds that ρ(ĜΣ) < 1. Indeed, it holds when
C1(zI −AF̄ )

−1B2i �= 0, i = 1, . . . ,m.
In the case when C1(zI −AF̄ )

−1B2i = 0 for some 1 ≤
i ≤ m, and there exists j, 1 ≤ j ≤ m such that C1(zI −
AF̄ )

−1B2j �= 0, we have that

∥∥∥Γ̄ 1
2 F̄ (zI −AF̄ )

−1B2j

∥∥∥2
2
<

γ̄2
j

σ2
j

.

It is clear that there exists a γ̂j < γ̄j satisfying∥∥∥Γ̂ 1
2 F̄ (zI −AF̄ )

−1B2j

∥∥∥2
2
<
∥∥∥Γ̄ 1

2 F̄ (zI−AF̄ )
−1B2j

∥∥∥2
2
<

γ̂2
j

σ2
j

(76)

where Γ̂ is the matrix constructed from Γ̄ by replacing the jth
diagonal element with γ̂j . Subsequently, it holds that∥∥∥Γ̂ 1

2 F̄ (zI −AF̄ )
−1B2k

∥∥∥2
2
<

γ̄2
k

σ2
k

, k = 1, . . . ,m and k �= j.

(77)

The inequalities (76) and (77) result in ρ(ĜΣ) < 1.
Note the fact that

C1(zI−AF̄ )
−1B2=C1(zI−A)−1B2

[
I−F̄ (zI−A)−1B2

]−1
.

For the case when C1(zI −AF̄ )
−1B2i = 0 for i = 1, . . . ,m,

it holds that C1(zI −A)−1B2 = 0. In this case, each of ob-
servable modes for (A,C1) is not controllable for (A,B2). The
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optimal design problem reduces to mean-square stabilization
problem.

Necessity: Suppose the MARE (22) has a mean-square stabi-
lizing solution X∗. By the definition of mean-square stabilizing
solutions, the plant (1), (2) is mean-square stabilizable. We
claim that (A,C1) has no unobservable poles on the unit circle,
following Lemma 6. Indeed, if this were not true, we take Γ∗ =
diag{σ2

1B
T
21X

∗B21, . . . , σ
2
mBT

21X
∗B21}. Then the DARE (19)

would have no stabilizing solution for this Γ∗, which, according
to Lemma 6, would contradict to the assumption that the MARE
has a mean-square stabilizing solution.

Up to now, we see that for any sequence {XΓ0
, XΓ1

,
XΓ2

, . . .} generated by an initial Γ0, it is convergent to a
minimum X which is a mean-square stabilizing solution to the
MARE (22). Next, we show that this minimum X is the unique
mean-square solution and the largest solution to the MARE.

It follows from Lemmas 5 and 7 that the mean-square opti-
mal H2 problem amounts to finding the supremum σ0 such that
inequalities (24) and (25) hold. Applying Schur Complement,
we write these inequalities as follows:⎡
⎢⎢⎣

XΓ (A+B2F )T FT CT
1

(A+B2F ) X−1
Γ 0 0

F 0 Γ−1 0
C1 0 0 I

⎤
⎥⎥⎦ > 0

tr{Z} <
1

σ2
0

,

[
Z BT

1

B1 X−1
Γ

]
> 0[

γ2
i

σ2
i

BT
2i

B2i X−1
Γ

]
> 0, i = 1, . . . ,m.

Letting S = X−1
Γ , V = FX−1

Γ , Π = Γ−1 and pre- and post-
multiplying the matrices⎡

⎢⎢⎣
X−1

Γ 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ ;

[
γ−2
i 0
0 I

]

on both sides of the first one and last two inequalities above,
respectively, leads to the following inequalities:⎡
⎢⎢⎣

S SAT +V TBT
2 V T SCT

1

AS+B2V S 0 0
V 0 Π 0

C1S 0 0 I

⎤
⎥⎥⎦ > 0

[
Z BT

1

B1 S

]
> 0,

[ πi

σ2
i

πiB
T
2i

πiB2i S

]
> 0 i = 1, . . . ,m

S>0, Z>0, Π=diag{π1, π2, . . . , πm} > 0.

The optimal state feedback design is to minimize tr{Z} subject
to the inequality constraints above. This is an EVP problem
which has a global optimal solution (see [3]). Denote the
optimal solution to this problem by Sopt and Vopt. Hence,
all stabilizing solution sequences {XΓ0

, XΓ1
, XΓ2

, . . .} to the
DAREs converge to S†

opt. Since these stabilizing solutions are
the unique stabilizing solutions and largest positive semidefinite
solutions to the DAREs, respectively, S†

opt is the unique mean-
square stabilizing solution and the largest positive semidefinite
solution to the MARE (22). Otherwise, there exists a stabilizing

solution sequence to the DAREs which converges to another
point, i.e., Sopt is not a global optimal solution, which is not
possible.

APPENDIX D
PROOF OF THEOREM 2

Sufficiency: Let X be the largest positive semidefinite
solution to the MARE (22). Denote Γ = diag{σ2

1B
T
21XB21,

. . . , σ2
mBT

2mXB2m}. Then, X is a solution to the DARE

X = ATXA−ATXB2

(
Γ +BT

2 XB2

)−1
BT

2 XA+ CT
1 C1.

(78)

In fact, X is the largest solution to this DARE, otherwise we can
find the other solution X̄ > X to the MARE (22), which contra-
dicts to the assumption on X . According to Lemma 6, X is the
stabilizing solution to (78), the nominal closed-loop system Ge

with this state feedback gain F = −(Γ +BT
2 XB2)

−1
BT

2 XA
is stable. Moreover, it holds for some σ0 > 0 that∥∥∥∥

[
C1

Γ
1
2F

]
(zI −AF )

−1B1

∥∥∥∥
2

2

<
1

σ2
0∥∥∥∥

[
C1

Γ
1
2F

]
(zI −AF )

−1B2i

∥∥∥∥
2

2

=
γ2
i

σ2
i

, i = 1, . . . ,m. (79)

According to Lemma 4, it means that ρ(ĜeΣe) ≤ 1. Sub-
sequently, from Lemma 3, we obtain that the performance
cost JH2

of the plant (1), (2) with this state feedback law
is bounded and ρ(ĜΣ) ≤ 1. Moreover, noting (10), one can
see that ρ(ĜΣ) < 1, i.e. the plant is man-square stabilizable,
otherwise the performance cost JH2

of the closed-loop system
is unbounded.

Necessity: Notice the assumption that (A,C1) has no unob-
servable poles on the unit circle. It follows from Theorem 1
that if the plant (1), (2) is mean-square stabilizable, the the
MARE (22) has the unique mean-square stabilizing solution.
This solution is the largest positive semidefinite to the MARE.

The proof for the optimal state feedback design and mini-
mum performance cost follows the proof of Theorem 1.

APPENDIX E
PROOF OF THEOREM 4

Consider the plant (29) and note that Ai = BsiCsi, i = 1,
. . . ,ms. Let ysi(k)=Csix(k), dsi(k)=Δsi(k)ysi(k), ỹ(k)=
[ys1(k), . . . , ysms

(k), u1(k), . . . , um(k)]T and d̃(k)=[ds1(k),
. . . , dsms

(k), d1(k), . . . , dm(k)]T . The closed-loop system of
the plant with a state feedback u(k) = Fx(k) is written as

x(k + 1) =AFx(k) +B1v(k) + B̃2d̃(k) (80)
z(k) =C1x(k)

ỹ(k) =

[
Cs

F

]
x(k)

d̃(k) = Δ̃(k)ỹ(k) (81)

where AF = A+B2F , B̃2 = [Bs1 · · · Bsms
B21 · · · B2m],

Cs = [CT
s1 · · · CT

sms
]
T

and

Δ̃ = diag{Δs1, . . . ,Δsms
,Δ1, . . . ,Δm}.
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Fig. 5. The closed-loop system with multiplicative noises via a state
feedback.

The closed-loop system (80) and (81) is depicted in
Fig. 5 where P (F ) is the nominal closed-loop system (80).
Denote the transfer function of this nominal closed-loop system
by G̃e which is given below

G̃e =

⎡
⎢⎢⎢⎣
C1

Cs1

...
Fm

⎤
⎥⎥⎥⎦ (zI −AF )

−1
[
B1 Bs1 · · · B2m

]
.

Then define ˆ̃Ge by following (11). Let Σ̃e = diag{σ2
0 , σ

2
s1, . . . ,

σ2
m}. According to Lemma 3, the problem of mean-square op-

timal H2 control via state feedback is to find the state feedback

gain F in minimizing 1/σ2
0 with the constraint ρ( ˆ̃GeΣ̃e) < 1.

Let Γ̃e = diag{I,Γs,Γ}, Γs = diag{γ2
s1, . . . , γ

2
sms

} and Γ =
diag{γ2

1 , . . . , γ
2
m}. It follows from Lemma 4 that the inequality

ρ( ˆ̃GeΣ̃e) < 1 holds if and only if it holds for some Γ̃e that∥∥∥∥∥∥∥
⎡
⎢⎣

C1

Γ
1
2
s Cs

Γ
1
2F

⎤
⎥⎦ (zI −AF )

−1B1

∥∥∥∥∥∥∥
2

2

<
1

σ2
0∥∥∥∥∥∥∥

⎡
⎢⎣

C1

Γ
1
2
s Cs

Γ
1
2F

⎤
⎥⎦ (zI −AF )

−1Bsi

∥∥∥∥∥∥∥
2

2

<
γ2
si

σ2
si

, i = 1, . . . ,ms (82)

∥∥∥∥∥∥∥
⎡
⎢⎣

C1

Γ
1
2
s Cs

Γ
1
2F

⎤
⎥⎦ (zI −AF )

−1B2i

∥∥∥∥∥∥∥
2

2

<
γ2
i

σ2
i

, i = 1, . . . ,m. (83)

Following the argument used in the proof of Theorem 1, we
obtain that, for any given Γs and Γ, the terms on the left-
hand sides of the inequalities in (82) and (83) have a common
minimizer FΓ which is designed by the stabilizing solution to
the DARE

XΓ = ATXΓA+ CT
1 C1 + CT

s ΓsCs

−ATXΓB2

(
Γ +BT

2 XΓB2

)−1
BT

2 XΓA. (84)

With this common minimizer FΓ, the inequalities in (82) and
(83) are rewritten as

tr
{
BT

1 XΓB1

}
<

1

σ2
0

BT
siXΓBsi <

γ2
si

σ2
si

, i = 1, . . . ,ms

BT
2iXΓB2i <

γ2
i

σ2
i

, i = 1, . . . ,m.

In the light of the proof for Theorem 1, we construct a sequence
of Γ̃e and denote it by {Γ̃e0, Γ̃e1, Γ̃e2, . . .}. It is clear that
the DARE (84) associated with Γ̃ek, k = 0, 1, 2, . . ., has a
stabilizing solution if and only if (A,B2) is stabilizable and

(A, [CT
1 , C

T
s1, . . . , C

T
sms

]
T
) has no unobservable poles on the

unit circle. The sequence of Γ̃e is convergent if the plant is
mean-square stabilizable. The sequence of the DARE associ-
ated with Γ̃e converges to the MARE (30). By the arguments
used in the proofs of Theorems 1–3, we can see that this
theorem is true.

APPENDIX F
PROOF OF LEMMA 10

It is shown in Lemma 8 that the square of the minimum
H2 norm of the auxiliary plant (34) with the output feedback
controller (36) is given by (39). Since the plant (34) satisfies
Assumptions 3 and 4, so does the plant (1). By the stabilizing
solution YΓ to the DARE (35) given in Lemma 9, we have

C2YΓC
T
2 = C2Ψdiag

{
σ2
0λ

2
0γ

−2
0 , . . . , σ2

mλ2
mγ−2

m

}
ΨTCT

2

YΓC
T
2 = Ψdiag

{
σ2
0λ

2
0γ

−2
0 , . . . , σ2

mλ2
mγ−2

m

}
ΨTCT

2 (85)

where Ψ is given in (32). Therefore, it holds that(
C2Ψdiag

{
σ0λ0γ

−1
0 , . . . , σmλmγ−1

m

})T (
C2YΓC

T
2

)†
=
(
C2Ψdiag

{
σ0λ0γ

−1
0 , . . . , σmλmγ−1

m

})†
.

This leads to

tr
{
ZFΓYΓC

T
2

(
C2YΓC

T
2

)†
C2YΓF

T
Γ Z
}

= tr
{
ZFΓΨdiag

{
σ2
0λ

2
0γ

−2
0 , . . . , σ2

mλ2
mγ−2

m

}
ΨTFT

Γ Z
}
.

Subsequently, we obtain that

tr{ZFΓYΓF
T
Γ Z}−tr

{
ZFΓYΓC

T
2

(
C2YΓC

T
2

)†
C2YΓF

T
Γ Z
}

= tr

⎧⎨
⎩ZFΓ

⎛
⎝r0−2∑

j=0

AjB1σ
2
0λ

2
0γ

−2
0 BT

1 A
T j

+

m∑
i=1

ri−2∑
j=0

AjB2iσ
2
i λ

2
i γ

−2
i BT

2iA
T j

⎞
⎠FT

Γ Z

⎫⎬
⎭

=

r0−2∑
j=0

σ2
0λ

2
0γ

−2
0 tr

{
BT

1 A
T j

FT
Γ ZZTFΓA

jB1

}

+

m∑
i=1

ri−2∑
j=0

σ2
i λ

2
i γ

−2
i tr

{
BT

2iA
T j

FT
Γ ZZTFΓA

jB2i

}
. (86)

It follows from (19) and (37) that:

FT
Γ ZZTFΓ = ATXΓA−XΓ + CT

1 C1. (87)

Substituting (86) and (87) into yields (39) leads to (43).
The controller parameters LΓ and LΓ0 in (42) are obtained

by applying (40) and (85) to (38).

APPENDIX G
PROOF OF LEMMA 11

The proof is similar to that of Theorem 1. Here, a sketch
of the proof is presented due to the space limit. Following
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Lemma 5, we see that the problem of mean-square optimal
H2 control via state feedback for the plant (46), (47) is to find
Fopt = arg infF infσ0

(1/σ2
0) subject to∥∥∥Γ 1

2
e G0

∥∥∥2
2
=

∥∥∥∥Γ 1
2
e

[
C1

F

]
(zI −AF )

−1Ar0B1 +

[
D1

0

]∥∥∥∥
2

2

<
1

σ2
0∥∥∥Γ 1

2
e Gi

∥∥∥2
2
=

∥∥∥∥Γ 1
2
e

[
C1

F

]
(zI −AF )

−1AriB2i +

[
0

D2i

]∥∥∥∥
2

2

<
γ2
i

σ2
i

i = 1, . . . ,m

where AF = A+B2F and D2i is the i-th column of D2.
It is verified by Lemma 6 that FΓ given in (37) min-

imizes ‖ΓeGi‖22, i = 0, 1, . . . ,m, simultaneously. Moreover,
these minimum costs are given by

‖ΓeG0‖22 = φ̄0(XΓ), ‖ΓeGi‖22 = φ̄i(XΓ), i = 1, . . . ,m.

The design constraints for the mean-square optimal H2 control
problem are written below

σ2
0 φ̄0(XΓ) < 1 and

σ2
i

γ2
i

φ̄i(XΓ) < 1, i = 1, . . . ,m.

Then, similar to the proof of Theorem 1, we construct a se-
quence {Γk, k = 0, 1, 2, . . . ,∞} such that Γk = Φ(XΓk−1

)Σ
where XΓk−1

is the stabilizing solution to the DARE (19)
associated with Γk−1. According to the arguments used in the
proof of Theorem 1, the sequences {Γk, k = 0, 1, 2, . . . ,∞}
and {XΓk

, k = 0, 1, 2, . . . ,∞} are convergent. The MARE
(48) has a mean-square stabilizing solution X . By the same
argument used in the proof of of Theorem 1, X is the unique
mean-square stabilizing solution to the MARE (48) and the
largest positive semidefinite solution to this MARE.
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