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Optimal Stabilization Control for Discrete-Time
Mean-Field Stochastic Systems
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Abstract—This paper will investigate the stabilization and
optimal linear quadratic (LQ) control problems for infinite
horizon discrete-time mean-field systems. Unlike the pre-
vious works, for the first time, the necessary and suffi-
cient stabilization conditions are explored under mild con-
ditions, and the optimal LQ controller for infinite horizon is
designed with a coupled algebraic Riccati equation (ARE).
More specifically, we show that under the exact detectabil-
ity (exact observability) assumption, the mean-field system
is stabilizable in the mean square sense with the optimal
controller if and only if a coupled ARE has a unique posi-
tive semidefinite (positive definite) solution. The presented
results are parallel to the classical results for the standard
LQ control.

Index Terms—Algebraic Riccati equation (ARE), mean-
field LQ (linear quadratic) control, optimal controller, stabi-
lizing controller.

I. INTRODUCTION

IN THIS paper, the optimal control and stabilization problems
for infinite horizon discrete-time mean-field systems are con-

sidered. Different to the classical stochastic control problem,
the system state is described by a controlled mean-field stochas-
tic difference/differential equation (MF-SDE), which was first
studied in [1] and [2]. Since then, significant contributions have
been made in studying MF-SDEs and related topics by many re-
searchers. See, for example, [3]–[7] and the references therein.
Inspired by the progress made on MF-SDEs, the study of mean-
field stochastic control has been a hot research topic since 1950s,
which combines the mean-field theory with stochastic control
problems. The recent development in mean-field control prob-
lems can be found in [8]–[15], [17], [18] and references therein.
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In particular, Yong[20] first studied the finite horizon mean-
field linear quadratic (LQ) control problem, a necessary and
sufficient solvability condition of the problem was presented
in terms of operator type criteria. Furthermore, the continuous-
time mean-field LQ control and stabilization problem for the
infinite horizon was investigated in [21], the equivalence of sev-
eral notions of stability for mean-field systems was established.
It was shown that the optimal mean-field LQ controller for the
infinite horizon case can be presented via the maximal solution
to the AREs.

For the discrete-time mean-field LQ control problem, a solv-
ability condition for the finite horizon discrete-time mean-field
LQ control problem was presented in terms of operator type con-
ditions in [5]. Furthermore, under some conditions, the explicit
optimal controller was derived by using the matrix dynamical
optimization method. Besides, for the infinite time case, the
equivalence of some stabilizability notions for mean-field SDEs
was studied and the solution to the associated ARE was investi-
gated in [27]. Moreover, Ni et al. [17], [18] studied the indefinite
mean-field LQ control problems.

However, it should be stressed that the stabilization problem
for mean-field systems remains to be further investigated, al-
though a lot of progress has been made as mentioned in [5],
[17], [18], [27], and references therein. The main reasons are
as follows: 1) Stabilization properties of the optimal controllers
have not been studied, or the necessary and sufficient stabiliza-
tion conditions for mean-field systems have not been provided in
the literature; 2) Previous works on optimal control design rely
on strong assumptions and it is crucial to relax the assumptions.
The following fundamental question has not been answered:
Under what conditions can the closed-loop mean-field system
with the optimal controller be mean-square stabilizable.

In this paper, we aim to provide a thorough solution to the
problems of optimal LQ control and stabilization for infinite
horizon discrete time mean-field systems. As the preliminaries,
the results of finite horizon mean-field LQ control are presented,
and the necessary and sufficient solvability condition of finite
horizon case is given in an explicit expression. By doing the
convergence analysis on the coupled Riccati equation for the
finite horizon case, the infinite horizon LQ controller and the
stabilization conditions (necessary and sufficient) are derived.
In addition, the Lyapunov function for stabilization is expressed
with the optimal cost function. Two stabilization results are
obtained under two different assumptions. One is the assump-
tion of exact detectability, under which it is shown that the
mean-field system is mean square stabilizable if and only if the
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coupled algebraic Riccati equation (ARE) admits a unique pos-
itive semidefinite solution. The other one is the assumption of
exact observability, under which it is shown that the mean-field
system is mean square stabilizable if and only if the coupled
ARE has a unique positive definite solution.

It should be pointed out the stabilization conditions will be
explored under the assumption of R ≥ 0 and R + R̄ ≥ 0. This
weakens the assumption of R > 0, even for the classical LQ
case, see [24], [29], and [30]. On one hand, the control weight-
ing matrices R are not necessary positive definite, especially
for finance applications, like mean-variance portfolio selection
problem [16]; on the other hand, the relaxation is significant and
more general for mathematical reasons, which includes R > 0
as a special case.

The remainder of this paper is organized as follows. Section II
provides the problem formulation and the preliminary results of
finite horizon mean-field LQ control. In Section III, main results
of the infinite horizon optimal control and stabilization problems
are presented. Numerical examples are given in Section IV to
illustrate main results of this paper. Some concluding remarks
are given in Section V. Finally, relevant proofs are detailed in
Appendices.

Notations: In means the unit matrix with rank n; superscript ′

denotes the transpose of a matrix. Real symmetric matrix A > 0
(or ≥ 0) implies that A is strictly positive definite (or positive
semidefinite). Rn signifies the n-dimensional Euclidean space.
B−1 is used to indicate the inverse of real matrix B, and C†

means the Moore–Penrose inverse of C. {Ω,F ,P, {Fk}k≥0}
represents a complete probability space, with Fk the σ-algebra
generated by {x0 , w0 , . . . , wk}. E[·|Fk ] means the conditional
expectation with respect to Fk and F−1 is understood as {∅,Ω}.
a.s. denotes in the “almost surely” sense.

Definition 1: For random vector x, if E(x′x) = 0, we call it
zero random vector, i.e., x = 0, a.s.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

We consider the following discrete-time mean-field system:
⎧
⎨

⎩

xk+1 = (Axk + ĀExk + Buk + B̄Euk )
+(Cxk + C̄Exk + Duk + D̄Euk )wk ,

x0 = ξ
(1)

where A, Ā, C, C̄ ∈ Rn×n , and B, B̄,D, D̄ ∈ Rn×m , all the
coefficient matrices are given deterministic. xk ∈ Rn is the
state process and uk ∈ Rm is the control process. The system
noise {wk}N

k=0 is scalar valued random white noise with zero
mean and variance σ2 , defined on a complete probability space
{Ω,F ,P, {Fk}k≥0}. E is the expectation taken over the noise
{wk}N

k=0 and initial state ξ. {Fk}k≥0 is the natural filtration
generated by {ξ, w0 , . . . , wk} augmented by all the P-null sets.

By taking expectations on both sides of (1), we obtain

Exk+1 = (A + Ā)Exk + (B + B̄)Euk ,Ex0 = Eξ. (2)

In this paper, the infinite horizon mean-field stochastic LQ
control problem is solved. Besides, the necessary and sufficient
stabilization conditions for mean-field systems are investigated.

Unlike the finite horizon case, the infinite horizon solution also
needs to guarantee the closed-loop stability.

The associated cost function is given by

J =
∞∑

k=0

E[x′
kQxk + Ex′

k Q̄Exk + u′
kRuk + Eu′

k R̄Euk ]

(3)
where Q, Q̄, R, R̄ are deterministic symmetric weighting ma-
trices with appropriate dimensions.

The admissible control set of the infinite horizon case is pre-
sented as follows:

U∞ = {u0 , u1 · · · |uk ∈ Rm , uk isFk−1-measurable,

and
∞∑

k=0

E(u′
kuk ) < +∞}. (4)

Throughout this paper, the weighting matrices in the cost
function are required to satisfy:

Assumption 1: Q ≥ 0, Q + Q̄ ≥ 0 and R ≥ 0, R + R̄ ≥ 0.
Remark 1: In previous works like [24], [29], and [30], R > 0

was required to solve the stabilization problems. While in this
paper, R is only required to be a positive semidefinite.

The following notions of stability and stabilization are intro-
duced.

Definition 2: System (1) with uk = 0 is called asymptoti-
cally mean square stable if for any initial values x0 , there holds

lim
k→+∞

E(x′
kxk ) = 0.

Definition 3: System (1) is called mean square stabilizable if
there exists a Fk−1-measurable linear controller u ∈ U∞, such
that for any initial state x0 , the closed loop of system (1) is
asymptotically mean square stable.

Following from [25], [29], and [30], the definitions of ex-
act observability and exact detectability are respectively given
below.

Definition 4: We consider the following mean-field system:
{

xk+1 = (Axk + ĀExk ) + (Cxk + C̄Exk )wk ,
Yk = Q1/2Xk

(5)

whereQ =
[

Q 0
0 Q + Q̄

]
and Xk =

[
xk − Exk

Exk

]
. System (5) is said

to be exact observable, if for any N ≥ 0

Yk = 0 ∀ 0 ≤ k ≤ N ⇒ x0 = 0

where the meaning of Yk = 0 and x0 = 0 are given in Definition
1.

For simplicity, we rewrite system (5) as (A, Ā, C, C̄,Q1/2).
Definition 5: The system (A, Ā, C, C̄,Q1/2) in (5) is said to

be exact detectable, if for any N ≥ 0

Yk = 0 ∀ 0 ≤ k ≤ N, ⇒ lim
k→+∞

E(x′
kxk ) = 0.

Remark 2: Definition 5 gives a different definition of “ex-
act detectability” from the one given in previous work [27].
In fact, Ni et al. [27] considered the system with different
observation yk

{
xk+1 = (Axk + ĀExk ) + (Cxk + C̄Exk )wk ,
yk = Qxk + Q̄Exk .

(6)
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Obviously, it is different to the definition given in this paper. In
[27], system (6) was called “exact detectable,” if for any N ≥ 0

yk = 0 ∀ 0 ≤ k ≤ N ⇒ lim
k→+∞

E(x′
kxk ) = 0.

Remark 3: The exact detectability made in Definition 5 is
weaker than the exact detectability made in [27]. In fact, noting
that Yk = Q1/2Xk = 0 implies

[
Q 0
0 Q + Q̄

]1/2 [
xk − Exk

Exk

]

= 0. (7)

Equation (7) indicates that

Q(xk − Exk ) = 0, and (Q + Q̄)Exk = 0 (8)

and thus, Qxk + Q̄Exk = 0.
Hence, if (A, Ā, C, C̄,Q, Q̄) is “exact detectable” as defined

in [27], then (A, Ā, C, C̄,Q1/2) will be exact detectable as de-
fined in Definition 5.

Remark 4: Definitions 4 and 5 can be reduced to the standard
exact observability and exact detectability for standard stochas-
tic systems, respectively. Actually, with Ā = 0, C̄ = 0, Q̄ = 0
in system (5), Definition 4 becomes Q1/2xk = 0 ⇒ x0 = 0,
which is the standard exact observability definition for standard
stochastic linear systems. Similarly, the exact detectability given
in Definition 5 can be reduced to the standard exact detectability
definition for standard stochastic system. One can refer to [22],
[25], and [26].

The problems of infinite horizon LQ control and stabilization
for discrete-time mean-field systems are stated as the following.

Problem 1: We find the Fk−1-measurable linear controller
u ∈ U∞ to minimize the cost function (3) and stabilize system
(1) in the mean square sense.

B. Preliminaries

In this section, we recall the finite horizon mean-field LQ
control problem, which serves as the preliminary results.

The finite horizon cost function associated with system (1) is
given by

JN =
N∑

k=0

E
[
x′

kQxk + (Exk )′Q̄Exk + u′
kRuk + (Euk )′R̄Euk

]

+ E(x′
N +1PN +1xN +1) + (ExN +1)′P̄N +1ExN +1 (9)

where Q, Q̄,R, R̄, PN +1 , P̄N +1 are deterministic symmetric
matrices with compatible dimensions and PN +1 ≥ 0, PN +1 +
P̄N +1 ≥ 0.

The admissible control set is defined as follows:

UN = {u0 , . . . , uN |uk ∈ Rm , uk isFk−1-measurable,

and
N∑

k=0

E(u′
kuk ) < +∞}. (10)

Any uk ∈ UN is called an admissible control, and it is clear
that UN is a nonempty, closed, and convex subset of Rm .

The results for the finite horizon mean-field LQ control prob-
lem are stated as below.

The following result is the maximum principle for system (1)
associated with the finite horizon cost function (9).

Theorem 1: A necessary condition for minimizing (9) for
system (1) is as follows:

0 = E

{

Ruk + R̄Euk +
[

B + wkD
0

]′
λk

+ E

{ [
B̄ + wkD̄
B + B̄

]′
λk

}∣
∣
∣Fk−1

}

(11)

where the costate λk satisfies the following backward iteration:

λk−1 = E

{[
Qxk + Q̄Exk

0

]

+
[

A + wkC Ā + wkC̄
0 A + Ā

]′
λk

∣
∣
∣Fk−1

}

(12)

with the final condition

λN =
[

PN +1xN +1 + P̄N +1ExN +1
0

]

(13)

where PN +1 and P̄N +1 are as in the cost function (9).
Proof: See the detailed proof in [28]. �
Remark 5: It is noted that previous results on maximum prin-

ciple for mean-field LQ were based on the mean-field BSDE,
see [18]–[20]. We develop a new maximum principle for mean-
field LQ control problem in Theorem 1, which can be calculated
more easily, and can be reduced to the standard LQ case.

Theorem 2: Under Assumption 1, the optimal controller
{uk}N

k=0 is given as

uk = Kkxk + K̄kExk (14)

and the controller is unique if and only if Υ(1)
k and Υ(2)

k for
k = 0, . . . , N , as given below, are all positive definite, where

Kk = −[Υ(1)
k ]−1M

(1)
k , (15)

K̄k = −
{

[Υ(2)
k ]−1M

(2)
k − [Υ(1)

k ]−1M
(1)
k

}
(16)

and Υ(1)
k , M

(1)
k , Υ(2)

k , M
(2)
k are given as

Υ(1)
k = R + B′Pk+1B + σ2D′Pk+1D, (17)

M
(1)
k = B′Pk+1A + σ2D′Pk+1C, (18)

Υ(2)
k = R + R̄ + (B + B̄)′(Pk+1 + P̄k+1)(B + B̄)

+ σ2(D + D̄)′Pk+1(D + D̄), (19)

M
(2)
k = (B + B̄)′(Pk+1 + P̄k+1)(A + Ā)

+ σ2(D + D̄)′Pk+1(C + C̄) (20)

while Pk and P̄k in the above obey the following coupled Riccati
equation for k = 0, . . . , N .

Pk = Q + A′Pk+1A + σ2C ′Pk+1C − [M (1)
k ]′[Υ(1)

k ]−1M
(1)
k ,
(21)
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P̄k =Q̄ +A′Pk+1Ā + σ2C ′Pk+1C̄ +Ā′Pk+1A + σ2C̄ ′Pk+1C

+ Ā′Pk+1Ā + σ2C̄ ′Pk+1C̄ + (A + Ā)′P̄k+1(A + Ā)

+ [M (1)
k ]′[Υ(1)

k ]−1M
(1)
k − [M (2)

k ]′[Υ(2)
k ]−1M

(2)
k (22)

with final condition PN +1 and P̄N +1 given in (9).
The associated optimal cost function is given by

J∗
N = E(x′

0P0x0) + (Ex0)′P̄0(Ex0). (23)

Proof: The detailed proof can be found in [28]. �

III. MAIN RESULTS

In this section, the main results of this paper will be pre-
sented, and the necessary and sufficient stabilization conditions
for mean-field systems will be developed.

Before presenting the solution to Problem 1, the following
lemmas will be given at first.

Lemma 1: Under Assumption 1, for the following coupled
Riccati equation

Pk (N ) = Q + A′Pk+1(N )A + σ2C ′Pk+1(N )C

− [M (1)
k (N )]′[Υ(1)

k (N )]†M (1)
k (N ), (24)

P̄k (N ) = Q̄ + A′Pk+1(N )Ā + σ2C ′Pk+1(N )C̄ + Ā′Pk+1(N )A

+ σ2 C̄ ′Pk+1(N )C + Ā′Pk+1(N )Ā + σ2 C̄ ′Pk+1(N )C̄

+ (A + Ā)′P̄k+1(N )(A + Ā) + [M (1)
k (N )]′[Υ(1)

k (N )]†M (1)
k (N )

− [M (2)
k (N )]′[Υ(2)

k (N )]†M (2)
k (N ) (25)

with the final condition PN +1 = P̄N +1 = 0, where † means
that the Moore–Penrose inverse. If the regular condition below
holds:

Υ(i)
k (N)[Υ(i)

k (N)]†M (i)
k (N) = M

(i)
k (N), i = 1, 2 (26)

where

Υ(1)
k (N) = R + B′Pk+1(N)B + σ2D′Pk+1(N)D, (27)

M
(1)
k (N) = B′Pk+1(N)A + σ2D′Pk+1(N)C, (28)

Υ(2)
k (N) = (B + B̄)′[Pk+1(N) + P̄k+1(N)](B + B̄)

+ σ2(D + D̄)′Pk+1(N)(D + D̄) + R + R̄, (29)

M
(2)
k (N) = (B + B̄)′[Pk+1(N) + P̄k+1(N)](A + Ā)

+ σ2(D + D̄)′Pk+1(N)(C + C̄) (30)

with Pk (N), P̄k (N) satisfying (24) and (25). Then, the cost
function (9) with PN +1 = P̄N +1 = 0 can be minimized by

uk = Kk (N)xk + K̄k (N)Exk (31)

where

Kk (N) = −[Υ(1)
k (N)]†M (1)

k (N),

K̄k (N) = −
{

[Υ(2)
k (N)]†M (2)

k (N) − [Υ(1)
k (N)]†M (1)

k (N)
}

.

(32)

Moreover, the optimal cost function is

J∗
N = E[x′

0P0(N)x0 ] + (Ex0)′P̄0(N)(Ex0). (33)

Proof: See Appendix A. �
Remark 6: It should be noted that the presented results in

Lemma 1 are different to that in Theorem 2. First, the matrix
Υ(1)

k ,Υ(2)
k are no longer positive definite but regular condition

(26) is required; Second, the optimal controller (31) is not nec-
essarily unique.

Lemma 2: Under Assumption 1, for any N ≥ 0, Pk (N)
and P̄k (N) in (21) and (22) satisfy Pk (N) ≥ 0 and Pk (N) +
P̄k (N) ≥ 0.

Proof: See Appendix B. �
Lemma 3: Under Assumption 1, if the mean-field system (1)

is mean square stabilizable, then the following coupled ARE has
a solution satisfying P ≥ 0 and P + P̄ ≥ 0:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P = Q + A′PA + σ2C ′PC − [M (1) ]′[Υ(1) ]†M (1) ,

P̄ = Q̄ + A′PĀ + σ2C ′PC̄ + Ā′PA + σ2C̄ ′PC

+Ā′PĀ + σ2C̄ ′PC̄ + (A + Ā)′P̄ (A + Ā)

+[M (1) ]′[Υ(1) ]†M (1) − [M (2) ]′[Υ(2) ]†M (2) ,

Υ(i) [Υ(i) ]†M (i) = M (i) , i = 1, 2

(34)

while

Υ(1) = R + B′PB + σ2D′PD ≥ R ≥ 0, (35)

M (1) = B′PA + σ2D′PC, (36)

Υ(2) = R + R̄ + (B + B̄)′(P + P̄ )(B + B̄)

+ σ2(D + D̄)′P (D + D̄) ≥ R + R̄ ≥ 0, (37)

M (2) = (B + B̄)′(P + P̄ )(A + Ā)

+ σ2(D + D̄)′P (C + C̄). (38)

Proof: See Appendix C. �
It is noted from (35)–(38) that

[
M (1)

]′ [
Υ(1)

]†
M (1) = −

[
M (1)

]′
K − K′M (1) −K′Υ(1)K,

(39)
[
M (2)

]′
[Υ(2) ]†M (2) = −[M (2) ]′(K + K̄) − (K + K̄)′M (2)

− (K + K̄)′Υ(2)(K + K̄) (40)

where K and K̄ satisfy

K = −[Υ(1) ]†M (1) , (41)

K̄ = −{[Υ(2) ]†M (2) − [Υ(1) ]†M (1)}. (42)

By using (39)–(40), we can rewrite (34) as follows:

P = Q + A′PA + σ2C′PC, (43)

P + P̄ = Q̄ + Ā′(P + P̄ )Ā + σ2C̄′P C̄ (44)
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where

Q = Q + K′RK ≥ 0,A = A + BK,C = C + DK,

Q̄ = Q + Q̄ + (K + K̄)′(R + R̄)(K + K̄) ≥ 0,

Ā = A + Ā + (B + B̄)(K + K̄),

C̄ = C + C̄ + (D + D̄)(K + K̄). (45)

Definition 6: The Riccati equation (34) is said to have a pos-
itive definite (resp. positive semidefinite) solution, if there exist
P > 0 and P + P̄ > 0 (resp. P ≥ 0 and P + P̄ ≥ 0) satisfying
(34).

Lemma 4: Under Assumption 1, if system (A, Ā, C, C̄,
Q1/2) is exact detectable, then:

1) The following system (Ã, C̃, Q̃1/2) is exact detectable:
{

Xk+1 = ÃXk + C̃Xkwk , X0 ,

Ỹk = Q̃1/2Xk
(46)

where Ã =
[

A 0
0 Ā

]
, C̃ =

[
C C̄
0 0

]
, Q̃ =

[
Q 0
0 Q̄

]
≥ 0, and Xk =

[
xk − Exk

Exk

]
, i.e., for any N , if Ỹk = 0, a.s., 0 ≤ k ≤ N, then

limk→+∞ E(X′
kXk ) = 0.

2) If P ≥ 0, then E(X′
0PX0) = 0 if and only if X0 is an

unobservable state of the system (Ã, C̃, Q̃1/2), where P =[
P 0
0 P + P̄

]
and P, P̄ satisfy (34).

Proof: See Appendix D. �
Remark 7: Similar to Lemma 4 and its proof, under

Assumption 1, it is easy to verify if the system (A, Ā, C, C̄,
Q1/2) is exact observable, then the system (Ã, C̃, Q̃1/2) is ex-
act observable.

We are now in the position to present the main results of
this section. Two results are to be given, one is based on the
assumption of exact detectability, and the other is based on the
assumption of exact observability.

Theorem 3: Suppose Assumption 1 holds and system (5)
(A, Ā, C, C̄,Q1/2) is exact detectable, then the mean-field sys-
tem (1) is stabilizable in the mean square sense if and only if
there exists a unique positive semidefinite solution to the cou-
pled ARE (34).

In this case, a stabilizing controller is given by

uk = Kxk + K̄Exk (47)

where K and K̄ are given by (41) and (42). In addition, the
stabilizing controller (47) minimizes the cost function (3), and
the optimal cost function is given as

J∗ = E(x′
0Px0) + Ex′

0 P̄Ex0 . (48)

Proof: See Appendix E. �
Theorem 4: Under the conditions of Assumption 1 and the

exact observability of (A, Ā, C, C̄,Q1/2), the mean-field system
(1) is mean square stabilizable if and only if the coupled ARE
(34) has a unique positive definite solution, and a stabilizing
controller is given by (47) and that the cost function (3) is
minimized by (47).

Proof: See Appendix F. �
Remark 8: Theorems 3 and 4 propose a new approach to

stabilization problems for mean-field systems. The necessary

Fig. 1. Mean square stabilization of the mean-field system.

and sufficient stabilization conditions are provided under the
assumption of R ≥ 0 and R + R̄ ≥ 0, in comparison with the
results in the literature (e.g., [24], [29], and [30]) where R > 0
is required, even for the standard LQ problems.

IV. NUMERICAL EXAMPLE

We consider system (1) and the cost function (3) with:

A = 1.1, Ā = 0.2, B = 0.4, B̄ = 0.1, C = 0.9, C̄ = 0.5,

D = 0.8, D̄ = 0.2, Q = 2, Q̄ = 1, R = 1, R̄ = 1, σ2 = 1

the initial state x0 ∼ N(1, 2), i.e., x0 obeys the normal distri-
bution with mean 1 and covariance 2.

Note that Q = 2, Q + Q̄ = 3, R = 1, R + R̄ = 2 are all
positive, then Assumption 1 and the exact observability of
(A, Ā, C, C̄,Q1/2) are satisfied. By using coupled ARE (34),
we have P = 5.6191 and P̄ = 5.1652. From (35)–(38), we can
obtain Υ(1) = 5.4953,M (1) = 6.5182,Υ(2) = 10.3152, and
M (2) = 14.8765.

Notice that P > 0 and P + P̄ > 0, according to Theorem 4,
there exists a unique optimal controller to stabilize the mean-
field system (1) in the mean square sense as well as to minimize
the cost function (3), the controller in (47) is presented as

uk = Kxk + K̄Exk = −1.1861xk − 0.2561Exk , k ≥ 0.

Using the designed controller, the simulation of the system
state is shown in Fig. 1. With the optimal controller, the regulated
system state is stabilized in the mean square sense as shown in
Fig. 1.

To explore the improvement of the main results presented
in this paper, we consider the mean-field system (1) and cost
function (3) with

A = 2, Ā = 0.8, B = 0.5, B̄ = 1, C = 1, C̄ = 1,

D = −0.8, D̄ = 0.6, Q = 1, Q̄ = 1, R = 1, R̄ = 1, σ2 = 1.

The initial state x0 ∼ N(1, 2).
By solving the coupled ARE (34), it is found that P has

two negative roots as P = −1.1400 and P = −0.2492. Thus,
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Fig. 2. Simulation for the state trajectory E(x′
k xk ).

Fig. 3. Simulation for the state trajectory E(x′
k xk ).

according to Theorems 3 and 4, we know that system (1) is not
stabilizable in the mean square sense.

Actually, when P = −1.1400, it can be checked that (34) has
no real roots for P̄ . While in the case of P = −0.2492, P̄ has
two real roots which can be solved from (34) as P̄ = 7.0597
and P̄ = −0.6476, respectively.

In the latter case, with P = −0.2492 and P̄ = 7.0597, we
can calculate K and K̄ from (41) and (42) as K = 0.0640,
K̄ = 1.5939. Similarly, with P = −0.2492 and P̄ = −0.6476,
K and K̄ can be computed as K = 0.0640, K̄ = 131.8389. Ac-
cordingly, the controllers are designed as uk = 0.0640xk +
1.5939Exk , uk = 0.0640xk + 131.8389Exk , respectively.

Simulation results of the corresponding state trajectories with
the designed controllers are shown as in Figs. 2 and 3, respec-
tively. As expected, the state trajectories are not convergent.

V. CONCLUSION

In this paper, the necessary and sufficient stabilization condi-
tions for mean-field systems have been investigated. It is shown
that, under the exact detectability assumption, the mean-field

system (1) is mean square stabilizable if and only if a cou-
pled ARE has a unique positive semidefinite solution. Further-
more, under the exact observability assumption, we show that
the mean-field system is mean square stabilizable if and only if
the coupled ARE admits a unique positive definite solution.

APPENDIX A
PROOF OF LEMMA 1

Proof: The positive semidefiniteness of Υ(1)
N (N), Υ(2)

N (N)
can be easily obtained under Assumption 1. By using the induc-
tion method as in Theorem 2, we can conclude that Υ(1)

k (N) ≥ 0
and Υ(1)

k (N) ≥ 0 for any k ≥ 0.
On the other hand, using the Riccati equation (24)–(25) and

the regular condition (26), following the proof of [28, Th. 2],
then JN in (9) with PN +1 = P̄N +1 = 0 can be calculated as

JN =
N∑

k=0

E
{[

uk − Euk −Kk (N)(xk − Exk )
]′

Υ(1)
k (N)

×
[
uk − Euk −Kk (N)(xk − Exk )

]}

+
N∑

k=0

{Euk − [Kk (N) + K̄k (N)]Exk}′Υ(2)
k (N)

× {Euk − [Kk (N) + K̄k (N)]Exk}
+ E[x′

0P0(N)x0 ] + Ex′
0 P̄0(N)Ex0 (49)

where Kk (N), K̄k (N) are given by (32).
Since Υ(1)

k (N) ≥ 0 and Υ(2)
k (N) ≥ 0, then JN ≥

E[x′
0P0(N)x0 ] + Ex′

0 P̄0(N)Ex0 . Thus, JN in (9) with
PN +1 = P̄N +1 = 0 is minimized by (31) and the optimal cost
function is (33). �

APPENDIX B
PROOF OF LEMMA 2

Proof: Using Lemma 1, under Assumption 1, if the solution
to the Riccati equation (24)–(25) satisfies the regular condition
(26), then (9) with PN +1(N) = P̄N +1(N) = 0 can be mini-
mized by (31), and the optimal cost function is as (33):

J∗
N = E[x′

0P0(N)x0 ] + Ex′
0 P̄0(N)Ex0 . (50)

Moreover, Assumption 1 indicates JN ≥ 0 for any controller
uk , thus the optimal J∗

N ≥ 0 can be derived.
We choose x0 to be any random variable with Ex0 = 0, (50)

reduces to E[x′
0P0(N)x0 ] ≥ 0, then we have P0(N) ≥ 0. On

the other hand, if x0 = Ex0 , i.e., x0 is deterministic, from (50)
we know x′

0 [P0(N) + P̄0(N)]x0 ≥ 0, then P0(N) + P̄0(N)
≥ 0 can be derived.

Noting the time-variance of the coefficient matrices in (24)–
(32), there holds Pk (N) = P0(N − k), P̄k (N) = P̄0(N − k).

In conclusion, under Assumption 1, Pk (N) ≥ 0, Pk (N) +
P̄k (N) ≥ 0 for any 0 ≤ k ≤ N . �
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APPENDIX C
PROOF OF LEMMA 3

Proof: Under Assumption 1, suppose the mean-field system
(1) is stabilizable in the mean square sense, we will show that the
coupled ARE (34) has a unique solution P and P̄ with P ≥ 0
and P + P̄ ≥ 0.

First, we shall show P0(N) and P0(N) + P̄0(N) are mono-
tonically increasing with N .

Actually, since JN ≤ JN +1 , then for any initial state x0 , we
have J∗

N ≤ J∗
N +1 , it holds from (33) that

E[(x0 − Ex0)′P0(N)(x0 − Ex0)]

+ (Ex0)′[P0(N) + P̄0(N)](Ex0)

≤ E[(x0 − Ex0)′P0(N + 1)(x0 − Ex0)]

+ (Ex0)′[P0(N + 1) + P̄0(N + 1)](Ex0). (51)

For any initial state x0 
= 0 with Ex0 = 0, (51) can be
reduced to

E[x′
0P0(N)x0 ] ≤ E[x′

0P0(N + 1)x0 ]

i.e., E{x′
0 [P0(N) − P0(N + 1)]x0} ≤ 0. Therefore, we can

obtain

P0(N) ≤ P0(N + 1) (52)

which implies that P0(N) increases with respect to N .
On the other hand, for arbitrary initial state x0 
= 0 with x0 =

Ex0 , i.e., x0 ∈ Rn is arbitrary deterministic, (51) indicates that

x′
0 [P0(N) + P̄0(N)]x0 ≤ x′

0 [P0(N + 1) + P̄0(N + 1)]x0 .

Note that x0 is arbitrary, then we have

P0(N) + P̄0(N) ≤ P0(N + 1) + P̄0(N + 1) (53)

which implies that P0(N) + P̄0(N) increases with respect to
N , too.

Next we will show that P0(N) and P0(N) + P̄0(N) are
bounded. Since system (1) is stabilizable in the mean square
sense, there exists uk has the form

uk = Lxk + L̄Exk (54)

with constant matrices L and L̄ such that the closed-loop system
(1) satisfies

lim
k→+∞

E(x′
kxk ) = 0. (55)

As (Exk )′Exk + E(xk − Exk )′(xk − Exk ) = E(x′
kxk ),

thus, (55) implies limk→+∞(Exk )′Exk = 0.
Substituting (54) into (1), we obtain

xk+1 = [(A + wkC) + (B + wkD)L]xk (56)

+ [(B + wkD)L̄ + (Ā + wkC̄) + (B̄ + wkD̄)(L + L̄)]Exk ,

Exk+1 = [(A + Ā) + (B + B̄)(L + L̄)]Exk . (57)

We denote Xk �
[

xk

Exk

]
, and Xk � E[XkX ′

k ].
Following from (56) and (57), it holds

Xk+1 = AXk (58)

where A =
[

A 1 1 A 1 2
0 A 2 2

]
, A11 = (A + wkC) + (B + wkD)L,

A12 = (B + wkD)L̄ + (Ā + wkC̄) + (B̄ + wkD̄)(L + L̄),
and A22 = (A + Ā) + (B + B̄)(L + L̄).

The mean square stabilization of limk→+∞ E(x′
kxk ) = 0 im-

plies limk→+∞ Xk = 0, thus, it follows from [23] that
∞∑

k=0

E(x′
kxk ) < +∞, and

∞∑

k=0

(Exk )′(Exk ) < +∞.

Therefore, there exists constant c such that
∞∑

k=0

E(x′
kxk ) ≤ cE(x′

0x0). (59)

Since Q ≥ 0, Q + Q̄ ≥ 0, R ≥ 0 and R + R̄ ≥ 0, thus

there exists constant λ such that
[

Q 0
0 Q + Q̄

]
≤ λI and

[
L ′RL 0

0 (L + L̄)′(R + R̄)(L + L̄)

]
≤ λI , using (54) and (59), we ob-

tain that

J =
∞∑

k=0

E[x′
kQxk + u′

kRuk + Ex′
k Q̄Exk + Eu′

k R̄Euk ]

=
∞∑

k=0

E

{ [
xk − Exk

Exk

]′ [
Q 0
0 Q + Q̄

] [
xk − Exk

Exk

] }

+
∞∑

k=0

E

{ [
xk − Exk

Exk

]′ [
L′RL 0

0 (L + L̄)′(R + R̄)(L + L̄)

]

×
[

xk − Exk

Exk

] }

≤ 2λ

∞∑

k=0

E[(Exk )′Exk + (xk − Exk )′(xk − Exk )]

= 2λ

∞∑

k=0

E(x′
kxk ) ≤ 2λcE(x′

0x0). (60)

On the other hand, by (23), notice the fact that

E[x′
0P0(N)x0 ] + (Ex0)′P̄0(N)(Ex0) = J∗

N ≤ J

thus, (60) yields

E[x′
0P0(N)x0 ] + (Ex0)′P̄0(N)(Ex0) ≤ 2λcE(x′

0x0). (61)

Now we let the initial state value be a random vector with zero
mean, i.e., Ex0 = 0, it follows from (61) that

0 ≤ E[x′
0P0(N)x0 ] ≤ 2λcE(x′

0x0).

Since x0 is arbitrary with Ex0 = 0, there holds that

0 ≤ P0(N) ≤ 2λcI.

Similarly, let the initial state value be arbitrary deterministic,
i.e., x0 = Ex0 , (61) yields that

0 ≤ x′
0 [P0(N) + P̄0(N)]x0 = J∗

N ≤ J ≤ 2λcx′
0x0

which implies

0 ≤ P0(N) + P̄0(N) ≤ 2λcI.
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Therefore, both P0(N) and P0(N) + P̄0(N) are bounded.
Recall that P0(N) and P0(N) + P̄0(N) are monotonically in-
creasing, we conclude that P0(N) and P0(N) + P̄0(N) are
convergent, i.e., there exists P and P̄ such that

lim
N →+∞

Pk (N) = lim
N →+∞

P0(N − k) = P ≥ 0,

lim
N →+∞

P̄k (N) = lim
N →+∞

P̄0(N − k) = P̄ , P + P̄ ≥ 0.

Furthermore, in view of (27)–(30), we know that Υ(1)
k (N),

M
(1)
k (N), Υ(2)

k (N), and M
(2)
k (N) are convergent, i.e.

lim
N →+∞

Υ(i)
k (N) = Υ(i) , lim

N →+∞
M

(i)
k (N) = M (i) , i = 1, 2

(62)

where Υ(1) ,M (1) ,Υ(2) ,M (2) are given by (35)–(38). Taking
limitation on both sides of (21) and (22), we know that P and
P̄ satisfy the coupled ARE (34). �

APPENDIX D
PROOF OF LEMMA 4

Proof: 1) The mean-field system (1) and (2) with uk = 0 can
be rewritten as follows:

{
Xk+1 = AXk + CXkwk , X0 ,
Yk = Q1/2Xk

(63)

where A =
[

A 0
0 A + Ā

]
, C =

[
C C + C̄
0 0

]
, and Q is as in (5).

Thus, the exact detectability of system (A, Ā, C, C̄,Q1/2) is
equivalent to the exact detectability of system (A, C,Q1/2) in
(63).

The systems (1) and (2) with controller (47) can be presented
as

Xk+1 = ÃXk + C̃Xkwk (64)

where Xk , Ã, and C̃ are given below (46).
Using the symbols in (45) and (46), there holds

Ã = A + BK, C̃ = C + DK, Q̃ = Q + K′RK

where B =
[

B 0
0 B + B̄

]
, D =

[
D D + D̄
0 0

]
, K =

[
K 0
0 K + K̄

]
, and

R =
[

R 0
0 R + R̄

]
.

From [29, Th. 4 and Proposition 1], we conclude that if
the system (A, C,Q1/2) (i.e., (A, Ā, C, C̄,Q1/2)) is exact de-
tectable, then for any feedback gain K (K and K̄), system
(Ã, C̃, Q̃1/2) is exact detectable.

2) Similar to the derivation of [28, Th. 2] for the finite horizon
case, we have

E(x′
N +1PxN +1) + (ExN +1)′P̄ExN +1

− [E(x′
0Px0) + (Ex0)′P̄Ex0 ]

= E(X′
N +1PXN +1) − E(X′

0PX0)

= −
N∑

k=0

E(X′
k Q̃Xk ) ≤ 0 (65)

where the controller (47) has been used, Q̃ is as in (45).

Following from (65), since P ≥ 0, if E(X′
0PX0) = 0, then

0 ≤
N∑

k=0

E(X′
k Q̃Xk ) = −E(X′

N +1PXN +1) ≤ 0. (66)

This implies
∑N

k=0 E(X′
k Q̃Xk ) = 0. Then,

∑N
k=0 E(Ỹ ′

k Ỹk ) =
∑N

k=0 E(X′
k Q̃Xk ) = 0, which means that for any k ≥ 0, Ỹk =

Q̃1/2Xk = 0. Hence, X0 is an unobservable state of system
(Ã, C̃, Q̃1/2).

On the contrary, if we choose X0 as an unobservable
state of (Ã, C̃, Q̃1/2), i.e., Ỹk = Q̃1/2Xk ≡ 0, k ≥ 0. Noting
from Lemma 4 that (Ã, C̃, Q̃1/2) is exact detectable, it holds
limN →+∞ E(X′

N +1PXN +1) = 0. Thus, from (65), we can ob-
tain that

E(X′
0PX0) =

∞∑

k=0

E(X′
k Q̃Xk ) =

∞∑

k=0

E(Ỹ ′
k Ỹk ) = 0. (67)

This ends the proof. �

APPENDIX E
PROOF OF THEOREM 3

Proof: The sketch of the “sufficiency” proof is broken into
two parts. First, we define the Lyapunov function candidate
with the optimal cost function, if the solution to the ARE (34) is
strictly positive definite, the stabilization of mean-field systems
will be derived; second, if the solution to the ARE (34) is strictly
positive semidefinite, we decompose the solution of the ARE
(34) into two parts, and the corresponding system state of the
mean-field systems is divided into two parts. By using the exact
detectability assumption, we show the stabilization of the two
parts, respectively. While for the “necessity” proof, we show
that the ARE (34) admits a positive semidefinite solution, and
the proof can be found in Lemma 3. In the end, we show the
uniqueness of the solution to the ARE (34).

“Sufficiency:” If Assumption 1 holds and the system
(A, Ā, C, C̄,Q1/2) is exact detectable, suppose P and P̄ are
the unique solution to (34) satisfying P ≥ 0 and P + P̄ ≥ 0,
we will show that (47) stabilizes system (1) in the mean square
sense.

From (33), we define the Lyapunov function candidate
V (k, xk ) with the optimal cost function as

V (k, xk ) � E(x′
kPxk ) + Ex′

k P̄Exk . (68)

Apparently we have

V (k, xk ) = E[(xk − Exk )′P (xk − Exk ) + Ex′
k (P + P̄ )Exk]

≥ 0. (69)

From (65), there holds

V (k, xk ) − V (k + 1, xk+1) = E(X′
k Q̃Xk ) ≥ 0 (70)

where Q̃ =
[

Q 0
0 Q̄

]
≥ 0, and Xk =

[
xk − Exk

Exk

]
. Thus, V (k, xk )

is convergent.
Following from Lemma 4, we know the stabilization of sys-

tem (1) with controller (47) is equivalent to the stability of
system (64), or (Ã, C̃).
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In the following, we will consider P > 0 and P ≥ 0, re-
spectively. And we shall show that system (1) is mean square
stabilizable in these two different cases.

1) P > 0, i.e., P > 0 and P + P̄ > 0.
In this case, E(X′

0PX0) = 0 implies that X0 = 0, i.e., x0 =
Ex0 = 0. Following from Lemma 4 and Remark 7, we know
that system (Ã, C̃, Q̃1/2) is exact observable.

Taking summation on both sides of (70) from 0 to N for any
N > 0, we have that

N∑

k=0

E(X′
k Q̃Xk ) = V (0, x0) − V (N + 1, xN +1)

=
N∑

k=0

E(xk − Exk )′Q(xk − Exk ) + Ex′
kQ̄Exk

= E(x0 − Ex0)′H0(N)(x0 − Ex0)

+ Ex′
0 [H0(N) + H̄0(N)]Ex0 (71)

where H0(N), H̄0(N) can be obtained by

Hk (N) = Q + A′Hk+1(N)A + σ2C′Hk+1(N)C, (72)

Hk (N) + H̄k (N) = Q̄ + Ā′[Hk+1(N) + H̄k+1(N)]Ā

+ σ2C̄′Hk (N)C̄ (73)

with final condition HN +1(N) = H̄N +1(N) = 0.
Since Q ≥ 0 and Q̄ ≥ 0, we conclude that (72) and (73)

admit a unique solution H0(N) ≥ 0,H0(N) + H̄0(N) ≥ 0 by
backward iterations.

Then we will show H0(N) > 0 and H0(N) + H̄0(N) > 0.
Otherwise, there exists nonzero y and ȳ satisfying

y 
= 0, E[y′H0(N)y] = 0, Ey = 0, (74)

ȳ 
= 0, ȳ′[H0(N) + H̄0(N)]ȳ = 0, ȳ = Eȳ. (75)

If the initial state is chosen to be y, (71) implies

N∑

k=0

E(X′
k Q̃Xk ) = E[y′H0(N)y] = 0. (76)

Then, Q̃1/2Xk = 0, a.s. Following from the exact observability
of the system (Ã, C̃, Q̃1/2), we have y = 0, which contradicts
with y 
= 0 defined in (74).

On the other hand, if we assume the initial state to be ȳ, (71)
reduces to

N∑

k=0

E(X′
k Q̃Xk ) = ȳ′[H0(N) + H̄0(N)]ȳ = 0. (77)

Since system (46) is exact observable, then ȳ = 0, this contra-
dicts with ȳ 
= 0 in (75).

In conclusion, we have proved H0(N) > 0 and H0(N) +
H̄0(N) > 0.

Via a time shift of l, there holds from (71) that

l+N∑

k= l

E(X′
k Q̃Xk )

= E[(xl − Exl)′H0(N)(xl − Exl)]

+ Ex′
l [H0(T ) + H̄0(N)]Exl

= V (l, xl) − V (l + N,xl+N ) (78)

where Hl(l + N) = H0(N), H̄l(l + N) = H̄0(N) has been in-
serted above.

By taking limitation l → +∞ on both sides of (78), using the
convergence of V (k, xk ), we have that

lim
l→+∞

E[(xl − Exl)′(xl − Exl)] = 0, lim
l→+∞

Ex′
lExl = 0.

(79)

Therefore, limk→+∞ E(x′
kxk ) = 0, i.e., system (Ã, C̃) is sta-

ble, and system (1) is mean square stabilizable with controller
(47).

2) P ≥ 0.
It is noticed from (43) and (44) that P satisfies the following

Lyapunov equation:

P = Q̃ + Ã′PÃ + σ2 [C̃(1) ]′PC̃(1) + σ2 [C̃(2) ]′PC̃(2) (80)

where C̃(1) =
[
C 0
0 0

]

, C̃(2) =
[

0 C̄
0 0

]

, and C̃(1) + C̃(2) = C̃.

Since P ≥ 0, there exists an orthogonal matrix U with U ′ =
U−1 such that

U ′PU =
[

0 0
0 P2

]

, P2 > 0. (81)

Obviously from (80), we can obtain that

U ′PU = U ′Q̃U + U ′Ã′U · U ′PU · U ′ÃU

+ σ2U ′[C̃(1) ]′U · U ′PU · U ′C̃(1)U

+ σ2U ′[C̃(2) ]′U · U ′PU · U ′C̃(2)U. (82)

Assuming U ′ÃU =
[

Ã1 1 Ã1 2

Ã2 1 Ã2 2

]
, U ′Q̃U =

[
Q̃1 Q̃1 2

Q̃2 1 Q̃2

]
,

U ′C̃(1)U =
[

C̃( 1 )
1 1 C̃( 1 )

1 2

C̃( 1 )
2 1 C̃( 1 )

2 2

]
, and U ′C̃(2)U =

[
C̃( 2 )

1 1 C̃( 2 )
1 2

C̃( 2 )
2 1 C̃( 2 )

2 2

]
, we have

that

U ′Ã′U · U ′PU · U ′ÃU =
[

Ã′
21P2Ã21 Ã′

21P2Ã22

Ã′
22P2Ã21 Ã′

22P2Ã22

]

,

U ′{C̃(1)}′U · U ′PU · U ′C̃(1)U

=

[
{C̃(1)

21 }′P2C̃(1)
21 {C̃(1)

21 }′P2C̃(1)
22

{C̃(1)
22 }′P2C̃(1)

21 {C̃(1)
22 }′P2C̃(1)

22

]

U ′{C̃(2)}′U · U ′PU · U ′C̃(2)U

=

[
{C̃(2)

21 }′P2C̃(2)
21 {C̃(2)

21 }′P2C̃(2)
22

{C̃(2)
22 }′P2C̃(2)

21 {C̃(2)
22 }′P2C̃(2)

22

]

.

Thus, by comparing each block element on both sides of (82)
and noting P2 > 0, we have that Ã21 = 0, C̃(1)

21 = C̃(2)
21 = 0,
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and Q̃1 = Q̃12 = Q̃21 = 0, i.e.

U ′ÃU =
[
Ã11 Ã12

0 Ã22

]

, U ′C̃U =
[
C̃11 C̃12

0 C̃22

]

, U ′Q̃U =
[
0 0
0 Q̃2

]

(83)

where Q̃2 ≥ 0, C̃11 = C̃(1)
11 + C̃(2)

11 , C̃12 = C̃(1)
12 + C̃(2)

12 and

C̃22 = C̃(1)
22 + C̃(2)

22 .
Substituting (81) and (83) into (82) yields that

P2 = Q̃2 + Ã′
22 P2 Ã22 + σ2

{
C̃(1)

22

}′
P2 C̃(1)

22 + σ2
{

C̃(2)
22

}′
P2 C̃(2)

22 .

(84)

Defining U ′Xk = X̄k =
[

X̄( 1 )
k

X̄( 2 )
k

]
, where the dimension of X̄(2)

k

is the same as the rank of P2 . Thus, from (64), we have

U ′Xk+1 = U ′ÃUU ′Xk + U ′C̃UU ′Xkwk

i.e.

X̄(1)
k+1 = Ã11X̄(1)

k + Ã12X̄(2)
k + (C̃11X̄(1)

k + C̃12X̄(2)
k )wk ,

(85)

X̄(2)
k+1 = Ã22X̄(2)

k + C̃22X̄(2)
k wk . (86)

First, we will show the stability of (Ã22 , C̃22).
Actually, recall from (71) and (83), we have that

N∑

k=0

E[(X̄(2)
k )′Q̃2X̄(2)

k ] =
N∑

k=0

E(X′
k Q̃Xk )

= E(X′
0PX0) − E(X′

N +1PXN +1)

= E[(X̄(2)
0 )′P2X̄(2)

0 ] − E[(X̄(2)
N +1)

′P2X̄(2)
N +1]. (87)

Similar to Lemma 4, we conclude X̄(2)
0 is an unobservable state

of (Ã22 , C̃22 , Q̃1/2
2 ) if and only if E[(X̄(2)

0 )′P2X̄(2)
0 ] = 0. Since

P2 > 0, thus (Ã22 , C̃22 , Q̃1/2
2 ) is exact observable. Therefore,

following from the derivation of (71)–(79), we know that

lim
k→+∞

E(X̄(2)
k )′X̄(2)

k = 0 (88)

i.e., (Ã22 , C̃22) is stable in the mean square sense.
Next, the stability of (Ã11 , C̃11) will be shown as below.
We choose X̄(2)

0 = 0, then from (86), we have X̄(2)
k = 0 for

any k ≥ 0. In this case, (85) becomes

Zk+1 = Ã11Zk + C̃11Zkwk (89)

where Zk is the value of X̄(1)
k with X̄(2)

k = 0. Thus, for an

arbitrary initial state Z0 = X̄(1)
0 , we have

E[Ỹ ′
k Ỹk ] = E[X′

k Q̃Xk ] = E[(X̄(2)
k )′Q̃2X̄(2)

k ] ≡ 0. (90)

From the exact detectability of (Ã, C̃, Q̃1/2), it holds

lim
k→+∞

E(X̄′
k X̄k ) = lim

k→+∞
E(X̄′

kU ′UX̄k )

= lim
k→+∞

E(X′
kXk ) = 0. (91)

Therefore, in the case of X̄(2)
0 = 0, (91) indicates that

lim
k→+∞

E(Z′
kZk ) = lim

k→+∞
E[(X̄(1)

k )′X̄(1)
k ]

= lim
k→+∞

{E[(X̄(1)
k )′X̄(1)

k ] + E[(X̄(2)
k )′X̄(2)

k ]}

= lim
k→+∞

E(X̄′
k X̄k ) = 0. (92)

i.e., (Ã11 , C̃11) is mean square stable.
Third, we will show that system (1) is stabilizable in the mean

square sense.

In fact, we denote Ã =
[

Ã1 1 0
0 Ã2 2

]
, C̃ =

[
C̃1 1 0
0 C̃2 2

]
. Hence,

(85) and (86) can be reformulated as

X̄k+1 =
{

ÃX̄k +
[

Ã12
0

]

Uk

}

+
{

C̃X̄k +
[

C̃12
0

]

Uk

}

wk

(93)

where Uk is as the solution to (86) with the initial condi-
tion U0 = X(2)

0 . The stability of (Ã11 , C̃11) and (Ã22 , C̃22) as
proved above indicates that (Ã, C̃) is stable in the mean square
sense. Obviously from (88) it holds limk→+∞ E(U ′

kUk ) = 0
and

∑∞
k=0 E(U ′

kUk ) < +∞. Using [6, Proposition 2.8 and
Remark 2.9], we know that there exists a constant c0 such that

∞∑

k=0

E(X̄′
k X̄k ) < c0

∞∑

k=0

E(U ′
kUk ) < +∞. (94)

Hence, limk→+∞ E(X̄′
k X̄k ) = 0 can be obtained from (94). Fur-

thermore, it is noted from (91) that

lim
k→+∞

E(x′
kxk )= lim

k→+∞
[(xk − Exk )′(xk − Exk ) + Ex′

kExk ]

= lim
k→+∞

E(X′
kXk ) = lim

k→+∞
E(X̄′

k X̄k ) = 0.

Note that the system (Ã, C̃) given in (64) is just the mean-field
system (1) with the controller (47). In conclusion, the mean-field
system (1) is stabilizable in the mean square sense.

In the following, we will show that the stabilizing controller
(47) minimizes cost function (3).

In fact, from (65), there holds that

E(x′
N +1PxN +1) + Ex′

N +1 P̄ExN +1

− [E(x′
0Px0) + Ex′

0 P̄Ex0 ]

= −E

N∑

k=0

[x′
kQxk + Ex′

k Q̄Exk + u′
kRuk + Eu′

k R̄Euk ]

+ E

N∑

k=0

[uk − Euk −K(xk − Exk )]′Υ(1)

× [uk − Euk −K(xk − Exk )]

+
N∑

k=0

[Euk − (K + K̄)Exk ]′Υ(2)[Euk − (K + K̄)Exk ]

(95)
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where Υ(1) , M (1) , Υ(2) , M (2) are given in (35)–(38), and K, K̄
satisfy (41) and (42).

From limk→+∞ Ex′
kxk = 0, obviously we can obtain that

limN →+∞[E(x′
N +1PxN +1) + Ex′

N +1 P̄ExN +1] = 0. Thus,
letting N → +∞, the cost function (3) can be rewritten from
(95) as follows:

J = E(x′
0P0x0) + Ex′

0 P̄0Ex0

+ E

∞∑

k=0

[uk − Euk −K(xk − Exk )]′Υ(1)

× [uk − Euk −K(xk − Exk )]

+ E

∫ ∞

0
[Euk − (K + K̄)Exk ]′Υ(2)[Euk − (K + K̄)Exk ].

(96)

It is noted from Assumption 1 that Υ(1) ≥ 0 and Υ(2) ≥ 0,
then the cost function (3) is minimized by the controller (47),
and the optimal cost function is given as (48).

Finally, uk ∈ U∞ can be shown as below.
In this case, for the stabilizing controller (47), i.e., uk =

Kxk + K̄Exk , we have

E(u′
kuk ) = E[x′

kK′Kxk + Ex′
k (K̄′K + K′K̄ + K̄′K̄)Exk ].

(97)

From (59), we know that
∑∞

k=0 E(x′
kxk ) < +∞, therefore∑∞

k=0 E(u′
kuk ) < +∞ can be induced from (97), i.e., uk ∈ U∞

can be verified.
“Necessity:” Under Assumption 1 and the exact detectability

of system (5), if system (1) is mean square stabilizable, we will
show the ARE (34) has a unique positive semidefinite solution.
From Lemma 3, we know that ARE (34) admits a positive
semidefinite solution.

In what follows, we will show the uniqueness of P and P̄ .
In fact, let S and S̄ be another solution of (34) satisfying

S > 0 and S + S̄ > 0, i.e.

S = Q + A′SA + σ2C ′SC − [T (1) ]′[Δ(1)]†T (1) , (98)

S̄ = Q̄ + A′SĀ + σ2C ′SC̄ + Ā′SA + σ2C̄ ′SC

+ Ā′SĀ + σ2C̄ ′SC̄ + (A + Ā)′S̄(A + Ā)

+ [T (1) ]′[Δ(1)]†T (1) − [T (2) ]′[Δ(2) ]†T (2) (99)

where

Δ(1) = R + B′SB + σ2D′SD, T (1) = B′SA + σ2D′SC,

Δ(2) = R + R̄ + (B + B̄)′(S + S̄)(B + B̄)

+ σ2(D + D̄)′S(D + D̄),

T (2) = (B + B̄)′(S + S̄)(A + Ā)

+ σ2(D + D̄)′S(C + C̄)

and the regular condition holds:

Δ(i) [Δ(i) ]†T (i) = T (i) , i = 1, 2.

It is noted from the “sufficiency proof” that the optimal cost
function has been proved to be (48), i.e.

J∗ = E(x′
0Px0) + Ex′

0 P̄Ex0 = E(x′
0Sx0) + Ex′

0 S̄Ex0 .
(100)

For any initial state x0 satisfying x0 
= 0 and Ex0 = 0, (100)
implies that

E[x′
0(P − S)x0 ] = 0

thus, we can conclude that P = S.
Moreover, if x0 = Ex0 is an arbitrary deterministic initial

state, it follows from (100) that

x′
0(P + P̄ − S − S̄)x0 = 0

which indicates P + P̄ = S + S̄.
Hence, we have S = P and S̄ = P̄ , i.e., the uniqueness has

been proven. The proof is complete. �

APPENDIX F
PROOF OF THEOREM 4

Proof: “Sufficiency”: Under Assumption 1 and the exact ob-
servability of (A, Ā, C, C̄,Q1/2), if the coupled ARE (34) has
a unique positive definite solution, P > 0 and P + P̄ > 0, we
shall show that mean-field system (1) is stabilizable with con-
troller (47) in the mean square sense.

Following from Remark 7, if (A, Ā, C, C̄,Q1/2) is exact ob-
servable, we know system (Ã, C̃, Q̃1/2) is exact observable.

By following the discussions of (71)–(79) in the proof of
Theorem 3, then system (Ã, C̃) is mean square stable. There-
fore, mean-field system (1) can be mean square stabilizable with
the controller (47).

“Necessity”: Suppose Assumption 1 and the exact observabil-
ity of (5) hold, if the system (1) is mean square stabilizable, we
will show that the coupled ARE (34) admits a unique positive
definite solution.

First, under Assumption 1, from Lemma 3 and (98)–(100),
we know that the coupled ARE (34) admits a unique solution
satisfying P ≥ 0 and P + P̄ ≥ 0. In what follows, P > 0 and
P + P̄ > 0 will be shown.

In fact, suppose this is not true, since E(x′
0x0) = E(X′

0X0),
then there exists X0 
= 0 (i.e., x0 
= 0) satisfying E(X′

0PX0)
= 0, the symbols P , Xk are given in (5) and Lemma 4.

From Lemma 4, we know that the mean square stabilization of
system (1) with controller (47) is equivalent to the mean square
stable of system (46) (Ã, C̃, Q̃1/2), and the solution to ARE
P, P̄ satisfies Lyapunov equation (43)–(44). Next, by following
from the derivation of (65) and letting the initial state be X0
defined above, we obtain

0 ≤
N∑

k=0

E(X′
k Q̃Xk ) = −E(X′

N PXN ) ≤ 0 (101)

which indicates Q̃1/2Xk ≡ 0, a.s.
On the other hand, as stated in Remark 7, the exact observ-

ability of system (Ã, C̃, Q̃1/2) can be obtained from the exact
observability of system (5). Thus, we can conclude X0 = 0,
which contradicts with X0 
= 0. Therefore, we can conclude
P > 0 and P + P̄ > 0.
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Finally, by following (96), we know that the stabilizing con-
troller (47) minimizes the cost function (3). Moreover, similar
to (97), uk ∈ U∞ can be derived. The proof is complete. �
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