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Covariance Intersection for Partially
Correlated Random Vectors

Zongze Wu , Qianqian Cai , and Minyue Fu , Fellow, IEEE

Abstract—This paper generalizes the well-known covari-
ance intersection algorithm for distributed estimation and
information fusion of random vectors. Our focus will be on
partially correlated random vectors. This is motivated by
the restriction of the standard covariance intersection algo-
rithm, which treats all random vectors with arbitrary cross
correlations and the restriction of the classical Kalman filter,
which requires complete knowledge of the cross correla-
tions. We first give a result to characterize the conservatism
of the standard covariance intersection algorithm. We then
generalize the covariance intersection algorithm to two ran-
dom vectors with a given correlation coefficient bound and
show in what sense the resulting covariance bound is tight.
Finally, we generalize the notion of correlation coefficient
bound to multiple random vectors and provide a covariance
intersection algorithm for this general case. Our results
will make the already popular covariance intersection more
applicable and more accurate for distributed estimation and
information fusion problems.

Index Terms—Covariance intersection (CI), distributed
estimation, multisensor data fusion, multisensor informa-
tion fusion.

I. INTRODUCTION

W ITH the rapid development and wide deployment of
low-cost sensors and sensor networks, the problems

of distributed estimation and information fusion (or data fu-
sion) have become an important research topic in estimation
theory [1]. Multisensor information fusion and network-based
distributed estimation go hand by hand, and they form an emerg-
ing technology which finds wide applications in surveillance,
remote sensing, autonomous vehicles, monitoring of complex
machinery, medical diagnosis, robotics, video and image pro-
cessing, vehicle localization, diffusion Kalman filtering, dis-
tributed estimation, and NASA Mars rover [2]–[9], [11]–[17],
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see [18] for a recent survey on multisensor fusion. As stated in
[18], “the essence of multisensor fusion techniques is to com-
bine data from multiple sensors and related information from
associated databases, to achieve improved accuracies and more
specific inferences than that could be achieved by the use of a
single sensor alone.”

A main stumbling block in multisensor information fusion
is the potential unknown correlations (or cross covariance) of
the measurements at different sensors. This prevents the use of
Kalman-filter-based fusion techniques, which need to know the
joint distribution of the sensor measurement noises. It is also
known that naive fusion of the correlated measurements by ig-
noring their correlations may lead to vastly incorrect estimation
results [19]. To deal with the unknown correlation problem, the
so-called covariance intersection (CI) algorithm became avail-
able. This algorithm was first proposed by Uhlmann in 1996 [2]
and Julier and Uhlmann in 1997 [3]. Since its invention, a wide
range of applications has been found, as cited in [4]–[9], [11]–
[18]. Also, many modifications and theoretical interpretations
of the CI method have been provided since its invention, in-
cluding [5], [10], [15], [20], [22]–[26]. In particular, it is shown
in [10] that CI is the optimal bounding algorithm in certain
sense for two estimates under completely unknown correla-
tions. See [18] and [26] for a larger list of references and their
descriptions.

The CI algorithm plays a specially important role in dis-
tributed estimation and distributed fusion applications, where,
instead of gathering the measurements of all the sensors and
processing them centrally, each local sensor (or node) pro-
cesses its own data and exchanges the local estimate with their
neighboring nodes sensors so that global estimates are fused
using these local estimates, see, e.g., [7], [13], [14], [27]–[29].
Distributed estimation and distributed fusion have less com-
municational burden, higher survivability, better flexibility, and
reliability [26]. More importantly, these distributed algorithms
tend to be more scalable to large networks.

The standard CI algorithm deals with the problem of mixing
two random vectors (RVs) in an unbiased linear manner and
gives an upper bound on the covariance of the mixed RV. This
algorithm has two main drawbacks.

1) The algorithm gives an upper bound on the covariance
of the sum of two correlated RVs. Many interpretations
of the algorithm have been made to justify it. But the
conservatism of the upper bound has not been clearly
characterized. It is not clear either under what conditions
this upper bound is tight.
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2) There is no restriction on the degree of correlation, mean-
ing that the result does not apply to partially correlated
RVs.

Partial correlations are important to deal with because the very
reason for fusion of multiple estimates is that they contain some
uncorrelated information, thus treating them with “maximal”
correlations is certainly not an ideal approach. One example
of partial correlation is that two sensors may measure the state
of the same object, but they contain independent measurement
noises, which would induce a partial correlation between their
estimates. Another example is when two estimates are such
that each contains an independent component and a common
component, which is the case motivating the so-called split CI
algorithm, see [20]. The third example is the well-celebrated
distributed statistical learning algorithm (an excellent classical
example of data fusing algorithms) called belief propagation
(BP) when applied to a networked system with a cyclic graph
[30], [31]. In a BP algorithm, local estimates and their covari-
ances at each subsystem are constantly shared and mixed with
those from the neighboring subsystems, and feedback of the
mixed information through loops would cause partial correla-
tions. Partial correlations caused by feedback of estimates are
also common in distributed Kalman-filter-based fusion algo-
rithms [7] and distributed least-squares estimation [32].

Generalizations of the CI algorithm exist to handle partial cor-
relations. For example, the split CI algorithm mentioned above
was proposed in [20] and studied in more details in [15] and
[21] to allow the covariances of each RV to be composed of a
common component. This applies to the case where the error in
the estimates can be decomposed into two mutually independent
components. Unfortunately, many partially correlated estimates
do not have such a nice decomposition. Hanebeck et al. [33],
and Reece and Roberts [34] consider the joint covariance of two
RVs with a given correlation coefficient bound and provide an
upper bound for the joint covariance to improve the CI solution,
but its optimality property is not studied.

This paper aims to deal with the aforementioned drawbacks.
We first provide a tight result on CI for two RVs. This re-
sult gives an insight into the conservatism of the standard
CI algorithm. On the other hand, we show that the standard
CI algorithm is indeed optimal when a covariance upper bo-
und is needed for the mixed RV and the trace of this upper
bound is minimized. We then introduce the Pearson’s corre-
lation coefficient bound to describe the degree of correlation
permitted by RVs and consider the CI problem for two RVs
with a given correlation coefficient bound. The optimal solution
is given when a covariance upper bound is needed for the mixed
RV and the trace of this upper bound is minimized. This result
generalizes the standard CI algorithm to two partially corre-
lated RVs and gives an exact characterization of its optimality
property. We also provide an alternating projection algorithm to
solve the optimal scaling parameter and mixing gain matrices.

Another major contribution of this paper is to generalize the
results to multiple RVs. We first introduce an appropriate gen-
eralization of the correlation coefficient bound to multiple RVs.
We then provide a CI upper bound for the mixed RV for a given
correlation coefficient bound. This CI upper bound resembles
the known CI upper bound for the multiple RV case but involves

more complicated parameterization to handle the partial corre-
lations. In deriving this result, we also point out the fundamental
technical difficulty in obtaining a tight upper bound for the mul-
tiple RV case. To minimize the proposed CI upper bound, we
also study the optimal mixing gain matrices for the RVs and the
optimal scaling parameters for the covariances. The convexity
property of the proposed CI upper bound is presented, which is
then used to derive an alternating projection algorithm to solve
the optimal scaling parameters and mixing gain matrices for the
multiple RV case.

The rest of the paper is organized as follows: Section II pro-
vides a tight bound on CI with the purpose to reveal exactly the
conservatism of the standard CI algorithm. Section III solves
the problem of CI for two partially correlated RVs. Section IV
generalizes the results in Section III to multiple RVs. Three
illustrating examples are given, two in Section II and one in
Section IV. Section V concludes the paper.

II. TIGHTER TRACE BOUND ON THE COVARIANCE OF

FUSED ESTIMATES

To motivation this section, we first revisit the problem for-
mulation and solution for CI. Let a and b be two unbiased
estimates of an RV x. The autocovariances Pa = E{aaT } > 0
and Pb = E{bbT } > 0 are known but their cross correlation
Pab = E{abT } is unknown. The fusion of the two estimates
above involves constructing a linearly combined estimate

c = K1a + K2b (1)

with some constant matrices K1 and K2 constrained by K1 +
K2 = I to ensure that c is unbiased. The problem of CI is
twofold [5].

1) For a given pair of K1 and K2 , find a covariance upper
bound P̂ ≥ Pc = E{ccT }.

2) Find the pair of K1 and K2 , such that the upper bound P̂ is
optimal in some sense, e.g., minimal trace or determinant
(we will focus on the trace in this paper).

The standard solution is given by the CI algorithm [3]:

P̂−1 = ωP−1
a + (1 − ω)P−1

b , (2)

K1 = ωP̂P−1
a , K2 = (1 − ω)P̂P−1

b (3)

with ω ∈ [0, 1] which can be easily searched to minimize the
trace or determinant of P̂ .

The motivation for this section stems from the fact that such
“optimized” K1 and K2 do not necessarily produce a fused
estimate c in (1) with a minimal Pc , e.g., in terms of its trace.
The reason for this observation is that K1 and K2 are actually
optimized for the upper bound P̂ , not directly for the covariance
of Pc .

The purpose of this section is to give a tighter bound on Tr(Pc)
than offered by CI. To this end, we will first assume that K1 and
K2 are given, and for notational convenience, let K1 and K2 be
absorbed (or by viewing K1a as a and K2b as b). We will give
a tight trace bound on Pc for c = a + b, i.e., we will compu-
te the exact worst-case trace of the covariance for the sum of
these two RVs. This result will then be extended to the case
where the two correlated RVs are mixed using linear combi-
nation to give a tighter bound than offered by the standard CI
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algorithm. Our analysis is based on the so-called nuclear norm
(or trace norm) for matrices [35].

Definition 1: For a matrix A ∈ Rm ×n , denote by ‖A‖� its
nuclear norm (also known as trace norm) which is defined by

‖A‖� =
min {m,n}∑

i=1

σi(A) = Tr
(√

AT A
)

(4)

where σi(A) are the singular values of A and Tr(·) is the trace
operator.

The nuclear norm enjoys the following basic properties. These
properties are well known. For example, Property 3 is the basis
of semidefinite programming formulations of the trace norm
(see, e.g., [35]), and Property 4 can be found in [36]. But we
provide a proof for completeness.

Lemma 1: The properties below hold for the nuclear norm:
1) ‖A‖� = ‖AT ‖� for any matrix A.
2) ‖A‖� = Tr(A) for any symmetric and positive semidef-

inite A.
3) 2‖ABT ‖� ≤ Tr(AT A) + Tr(BT B) for any dimension-

compatible matrices A and B.
4) ‖ABT ‖� ≤√Tr(AT A)Tr(BT B) for any dimension-

compatible matrices A and B.
Proof: The first two properties follow directly from the def-

inition. The inequality above is verified as follows: Take the
singular value decomposition ABT = UΣV T with unitary ma-
trices U and V and diagonal Σ > 0. Then

‖ABT ‖� = Tr(Σ) = Tr(UT ABT V ) = Tr(ABT Γ)

with Γ = V UT . Note that Γ is unitary. It follows from the first
property that

2‖ABT ‖� = Tr(ABT Γ + ΓT BAT )

≤ Tr(AT A + BT ΓΓT B)

= Tr(AT A + BT B).

Finally, using the third property but taking Ã = γ1/2A and B̃ =
γ−1/2B with some scalar γ > 0 (to be specified), we obtain

2‖ABT ‖� ≤ γTr(AT A) + γ−1Tr(BT B).

If Tr(AT A) = 0, we have 2‖ABT ‖� ≤ γ−1Tr(BT B) for
any γ, thus 2‖ABT ‖� = 0 =

√
Tr(AT A)Tr(BT B). If

Tr(AT A) > 0, taking

γ =
(
Tr(AT A))

)−1/2 (
Tr(BT B))

)1/2

the above becomes

2‖ABT ‖� ≤ 2
√

Tr(AT A)Tr(BT B).

This completes the proof. �
The following result gives a tight bound on the covariance of

the sum of two RVs with a unknown cross correlation.
Lemma 2: Given two correlated zero-mean RVs a, b ∈ Rn ,

suppose E{aaT } = Pa > 0 and E{bbT } = Pb > 0 are known
but E{abT } = Pab is unknown. Let Pa = XXT and Pb =
Y Y T be any decompositions of Pa and Pb , respectively, with
X,Y ∈ Rn×n . Then

max
Pa b

Tr(E{(a + b)(a + b)T })=‖Pa‖� +‖Pb‖� +2‖Y T X‖� .

Proof: For the given a, b, we have

Tr(E{(a + b)(a + b)T }) = Tr(Pa + Pb + Pab + PT
ab).

Since Pa and Pb are symmetric, we have

Tr(Pa + Pb) = Tr(Pa) + Tr(Pb) = ‖Pa‖� + ‖Pb‖� .

Also note that Tr(PT
ab) = Tr(Pab). Therefore, it suffices to

show that

max
Pa b

Tr(Pab) = ‖Y T X‖� .

Note that Pab is naturally constrained by
[

Pa Pab

P T
ab Pb

]
≥ 0

which is the same as PabP
−1
b P T

ab ≤ Pa . Using the decomposi-
tions of Pa and Pb , the above becomes

(X−1Pab(Y T )−1)(X−1Pab(Y T )−1)T ≤ I.

This implies that

X−1Pab(Y T )−1 = Γ, ΓΓT ≤ I.

That is, Pab is fully parameterized by

Pab = XΓY T , ΓΓT ≤ I.

Hence

Tr(Pab) = Tr(XΓY T ) = Tr((Y T X)Γ).

Denote by Y T X = UΣV T the singular value decomposi-
tion of Y T X , i.e., U and V are unitary matrices and Σ =
diag{σ1 , σ2 , . . . , σn} containing the singular values of Y T X .
Then

Tr((Y T X)Γ) = Tr(UΣV T Γ) = Tr(ΣV T ΓU) = Tr(ΣΠ)

with Π = V T ΓU . It is clear that ΓΓT ≤ I if and only if
ΠΠT ≤ I . Note that the diagonal elements πii of Π satisfies
the constrains that |πii | ≤ 1, which follows from the simple
calculation that

1 = eT
i ei ≥ eT

i ΠΠT ei =
n∑

j=1

π2
ij ≥ π2

ii .

In the above, ei is the column vector with all entries equal to 0
except that the ith entry is 1. Using the above

Tr(ΣΠ) =
n∑

i=1

σiπii ≤
n∑

i=1

σi.

It is clear that the inequality is reached by choosing Π = I .
Hence

max
Pa b

Tr(Pab) = ‖Y T X‖� .

This completes the proof. �
Remark 1: Lemma 2 provides the solution for the maximum

Tr(E{(a + b)(a + b)T }) without giving its maximizer Pab ex-
plicitly. It is actually known that the maximizer is the geometric
mean of Pa and Pb , see [37] and references therein.
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Remark 2: The standard CI algorithm is obtained based on
the following upper bound (see [3]):

max
Pa b

Tr(Pa + Pb + Pab + PT
ab) ≤ (

√
Tr(Pa) +

√
Tr(Pb))2 .

To show the conservatism of this upper bound, we take the
following example.

Example 1: Consider the case with

Pa = diag{1, 4}, Pb = diag{4, 1}. (5)

It is easy to compute that (
√

Tr(Pa) +
√

Tr(Pb))2 = 20,
whereas ‖Pa‖� + ‖Pb‖� + 2‖Y T X‖� = 18.

The following is our first main result on the tight bound for
the trace of the covariance for linearly fused estimates.

Theorem 1: Given two correlated zero-mean RVs a, b ∈ Rn

with known E{aaT } = Pa > 0 and E{bbT } = Pb > 0 but un-
known E{abT } = Pab , consider the following RV:

c = K1a + K2b

where K1 ,K2 ∈ Rn×n are nonsingular matrices. Let Pa =
XXT and Pb = Y Y T be any decompositions of Pa and Pb ,
respectively, with X,Y ∈ Rn×n . Then

max
Pa b

Tr(E{ccT }) = ‖K1PaKT
1 ‖� + ‖K2PbK

T
2 ‖�

+ 2‖Y T KT
2 K1X‖� . (6)

Moreover, the following inequality holds:

max
Pa b

Tr(E{ccT })≤
(√

Tr(K1PaKT
1 )+

√
Tr(K2PbKT

2 )
)2

.

Proof: Taking ã = K1a and b̃ = K2b, we have E{ããT }
= Pã = K1PaKT

1 , E{b̃b̃T } = Pb̃ = K2PbK
T
2 , E{ãb̃T } =

Pãb̃K1PabK
T
2 . The first result is obtained by directly apply-

ing Lemma 2. The inequality follows by applying the fourth
property of the nuclear norm in Lemma 1. More precisely, tak-
ing the matrices A and B in Lemma 1 as A = Y T KT

2 and
B = XT KT

1 , we have

‖K1PaKT
1 ‖� + ‖K2PbK

T
2 ‖� + 2‖Y T KT

2 K1X‖�

≤
(√

Tr(K1PaKT
1 ) +

√
Tr(K2PbKT

2 )
)2

.

This completes the proof. �
Example 2: We now apply Theorem 1 to show a tighter trace

bound can be obtained than that given by the standard CI algo-
rithm. Consider the two estimates a and b with autocovariances
in (5). If we apply the standard CI algorithm, we obtain, from
(2), that

P̂ = diag
{

1
ω + 0.25(1 − ω)

,
1

0.25ω + (1 − ω)

}
.

By minimizing Tr(P̂ ), we get the optimal ω = 0.5, and the
corresponding Tr(P̂ ) = 3.2 and

K1 = diag{0.8, 0.2}; K2 = diag{0.2, 0.8}. (7)

Also interestingly, if we take the above K1 and K2 and apply
(5), we actually obtain

max
Pa b

Tr(E{ccT }) = 2.88.

In comparison, we apply Theorem 1 and for simplicity, we
restrict K1 = diag{k1 , k2} and K2 = diag{1 − k1 , 1 − k2}.
Note that we can take X = diag{1, 2} and Y = diag{2, 1}.
Applying (6) and (4) gives

max
Pa b

Tr(E{ccT }) = k2
1 + 4k2

2 + 4(1 − k1)2 + (1 − k2)2

+ 4(|k1(1 − k1)| + |k2(1 − k2)|)
= (|k1 | + 2|1 − k1 |)2 + (2|k2 | + |1 − k2 |)2 .

Minimizing the above gives the optimal k1 = 1 and k2 = 0,
which yields

max
Pa b

Tr(E{ccT }) = 2; K1 = diag{1, 0}; K2 = diag{0, 1}.

It is clear that this is a much tighter bound than that given
by the standard CI algorithm. It can be verified (although not
shown here) that this is also the optimal solution for general (not
necessarily diagonal) K1 and K2 .

III. CI WITH PARTIAL CORRELATIONS

In this section, we address the second shortcoming of the
standard CI algorithm by generalizing it to RVs with partial
correlations. This allows less conservative covariance bounds
to be obtained. We also generalize the tight bound result (see
Theorem 1) to RVs with partial correlations.

Our first task is to characterize the “degree” of correlation
between two RVs. To this end, we introduce the so-called Pear-
son’s correlation coefficient.

A. Pearson’s Correlation Coefficient

For two random variables (scalars) a and b with means μa

and μb and variances σ2
a and σ2

b , respectively, their correlation
can be characterized by the well-known Pearson’s correlation
coefficient defined by

ρab =
E{(a − μa)(b − μb)}

σaσb
.

Generalizing this notion to RVs, we let a, b ∈ Rn with means
μa and μb and covariances Pa > 0 and Pb > 0, respectively.
Let Pa = XXT and Pb = Y Y T be any decompositions with
X,Y ∈ Rn×n . Then, the correlation coefficient bound for a
and b is given by

ρab = σmax
(
X−1E{(a − μa)(b − μb)T }(Y T )−1) (8)

where σmax denotes the maximum singular value. Although X
and Y are not unique, it is clear that ρab is the same for any
X,Y . We note that this notion of correlation coefficient bound
is also used in [33] and [34].

The definition of correlation coefficient bound in (8) has a
simple interpretation, as stated in the result below.

Lemma 3: Given a scalar constant 0 ≤ ρ ≤ 1 and two RVs
a, b ∈ Rn with means μa and μb and covariances Pa > 0 and
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Pb > 0, respectively, their correlation coefficient ρab , as defined
in (8), has ρab ≤ ρ if and only if

[
ρPa Pab

P T
ab ρPb

]
≥ 0. (9)

Proof: From (8), it is clear that if ρ = 0, then ρab = 0
which implies that Pab = 0, hence (9) holds. Conversely, if
(9) holds for ρ = 0, then Pab = 0 which implies ρab = 0 and
ρ = 0. Therefore, we only need to consider ρ > 0. For this case,
ρab ≤ ρ if and only if

σmax(P−1/2
a PabP

−1/2
b ) ≤ ρ

which is equivalent to

P−1/2
a PabP

−1
b P T

abP
−1/2
a ≤ ρ2I

or

Pab(ρPb)−1PT
ab ≤ ρPa .

Using Schur complement, the above is equivalent to (9). �
The result above means that ρab is the minimum value of ρ to

satisfy (9). For this reason, we will call any ρ ≥ ρab a correlation
coefficient upper bound. In practice, it is often difficult to obtain
the exact ρab , but obtaining an upper bound may often be easier.
In the sequel, we will assume that an correlation coefficient
upper bound is available.

We now generalize Lemma 2.
Lemma 4: Given two correlated zero-mean RVs a, b ∈ Rn ,

suppose E{aaT } = Pa > 0 and E{bbT } = Pb > 0 are known
and their correlation coefficient is bounded by ρ ∈ [0, 1]. Let
Pa = XXT and Pb = Y Y T be any decompositions of Pa and
Pb , respectively, with X,Y ∈ Rn×n . Then

max
Pa b

Tr(E{(a + b)(a + b)T })=‖Pa‖� +‖Pb‖� +2ρ‖Y T X‖� .

Proof: The proof is modified from that of Lemma 2. As in
that proof, it suffices to show that

max
Pa b

Tr(Pab) = ρ‖Y T X‖� . (10)

This is done by invoking (9), which, by Schur complement,
is the same as PabP

−1
b P T

ab ≤ ρ2Pa . Following the same de-
composition for Pa and Pb as in that proof, we get the same
characterization for Pab as Pab = XΓY T , except the new con-
straint ΓΓT ≤ ρ2I . Taking the singular value decomposition of
Y T X = UΣV T and the defintion of Π = V T ΓU , the new con-
straint on Π becomes ΠΠT ≤ ρ2I . Following the same steps as
in that proof, we also obtain

Tr(Pab) = Tr((Y T X)Γ) = Tr(ΣΠ) ≤ ρTr(Σ)

with the equality reached when Π = ρI . Hence, (10) holds. �
The result above leads to a direct generalization of Theorem 1

to correlated RVs with a given correlation coefficient bound. The
proof is omitted.

Theorem 2: Given two correlated zero-mean RVs a, b ∈ Rn

with known E{aaT } = Pa > 0 and E{bbT } = Pb > 0 and
their correlation coefficient is bounded by ρ ∈ [0, 1], consider
the following RV

c = K1a + K2b

where K1 ,K2 ∈ Rn×n are nonsingular matrices. Let Pa =
XXT and Pb = Y Y T be any decompositions of Pa and Pb ,
respectively, with X,Y ∈ Rn×n . Then

max
Pa b

Tr(E{ccT }) = ‖K1PaKT
1 ‖� + ‖K2PbK

T
2 ‖�

+ 2ρ‖Y T KT
2 K1X‖� . (11)

Moreover, the following inequality holds:

max
Pa b

Tr(E{ccT }) ≤
(√

Tr(K1PaKT
1 ) +

√
Tr(K2PbKT

2 )
)2

− (1 − ρ)‖Y T KT
2 K1X‖� .

Theorem 2 gives a way to optimize the weighting matrices K1
and K2 . That is, they can be computed by minimizing the right-
hand side of (11). However, simple optimization algorithms are
difficult to obtain due to the presence of the trace norm. Next, we
give a generalized CI algorithm to handle the partially correlated
estimates. For this, we need to introduce a technical lemma first.

Lemma 5: Given two symmetric and positive-definite co-
variance matrices Pa, Pb ∈ Rn×n and a correlation coefficient
bound ρ ∈ [0, 1], consider the set of zero-mean RV pairs

Ω = {(a, b) : E{aaT } = Pa,E{bbT } = Pb, ρab ≤ ρ}.
Let K1 ,K2 ∈ Rn×n be given nonsingular matrices and consider
the RV

c = K1a + K2b (12)

for any (a, b) ∈ Ω and denote Pc = E{ccT }. Then, the optimal
solution to the following problem

min Tr(P̂ ) subject to P̂ ≥ Pc, ∀(a, b) ∈ Ω

is given by

P̂ = (1 + γρ)K1PaKT
1 + (1 + γ−1ρ)K2PbK

T
2 (13)

with

γ =
(
Tr(K1PaKT

1 )
)−1/2 (

Tr(K2PbK
T
2 )
)1/2

(14)

and the corresponding minimum Tr(P̂ ) is given by

Tr(P̂ ) = Tr(K1PaKT
1 ) + Tr(K2PbK

T
2 )

+ 2ρ
(
Tr(K1PaKT

1 )Tr(K2PbK
T
2 )
)1/2

. (15)

Proof: From the definition of c, we have

Pc = K1PaKT
1 + K2PbK

T
2 + K1PabK

T
2 + K2P

T
abK

T
1

= K1PaKT
1 + K2PbK

T
2

+ K1P
1/2
a ΓP

1/2
b KT

2 + K2P
1/2
b ΓT P 1/2

a KT
1

where Γ = P
−1/2
a PabP

−1/2
b with ΓT Γ ≤ ρ2I . Taking A =

(ργ)1/2K1P
1/2
a and B = (ργ)−1/2ΓK2P

1/2
b for any γ > 0 and

using ABT + BAT ≤ AAT + BBT , it follows that

Pc ≤ (1 + γρ)K1PaKT
1 + (1 + γ−1ρ)K2PbK

T
2 .

That is, the right-hand side above serves as an upper bound for
Pc for any γ > 0. It is easy to verify that minimizing the trace of
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the right-hand side above yields the solution to γ in (14), and the
corresponding minimum trace is given by (15). Now we claim
that P̂ in (13) with γ in (14) is the upper bound of Pc with the
minimum trace. Indeed, if this is not true, there will be another
upper bound P̃ of Pc with its trace less than that given by (15).
Then, using the well-known S-procedure [38] (also see [39]),
Pc ≤ P̃ for all Γ with ΓT Γ ≤ ρ2I if and only if there exists
some scalar γ > 0, such that

(1 + γρ)K1PaKT
1 + (1 + γ−1ρ)K2PbK

T
2 ≤ P̃ .

Taking the trace on both sides above, note that the left-hand
side is no less than that given by (15). It is clear that this will
contradict the fact that the trace of P̃ is less than that given by
(15). Hence, the upper bound P̂ for Pc with the minimum trace
is given by (13) with γ in (14). �

We see from Lemma 5 that the covariance upper bound (13)
given by the standard CI algorithm is tight when all the RV pairs
(a, b) in the set Ω are considered.

Using Lemma 5, we obtain the following generalized CI
algorithm to handle partially correlated estimates.

Theorem 3: Given two symmetric and positive-definite co-
variance matrices Pa, Pb ∈ Rn×n and a correlation coefficient
bound ρ ∈ [0, 1], consider the set of RV pairs

Ω = {(a, b) : E{a} = E{b}, cov(a) = Pa,

cov(b) = Pb, ρab ≤ ρ}. (16)

For any K1 ,K2 ∈ Rn×n , consider the unbiased linear combi-
nation (12). Then, the optimal solution to the following problem

min Tr(P̂ ) subject to

P̂ ≥ cov(c), ∀(a, b) ∈ Ω; K1 + K2 = I (17)

is given by

P̂ =
(
(1 + γρ)−1P−1

a + (1 + γ−1ρ)−1P−1
b

)−1
(18)

and

K1 = (1 + γρ)−1 P̂P−1
a ; K2 = (1 + γ−1ρ)−1 P̂P−1

b (19)

with some γ > 0. Alternatively, the solution above is given by

P̂ =
(
w1P

−1
a + w2P

−1
b

)−1

and

K1 = w1 P̂P−1
a ; K2 = w2 P̂P−1

b

with

w−1
1 = δ−1

1 ρ + 1 − ρ; w−1
2 = δ−1

2 ρ + 1 − ρ

subject to δ1 > 0, δ2 > 0 and δ1 + δ2 = 1.
Proof: Following from Lemma 5 and its proof, for fixed

K1 ,K2 , the optimal upper bound for cov(c) is given by

P (γ) = (1 + γρ)K1PaKT
1 + (1 + γ−1ρ)K2PbK

T
2 (20)

with γ chosen to minimize its trace. Therefore, the optimal
K1 ,K2 is obtained by

min
K 1 ,K 2

min
γ>0

Tr(P (γ))

subject to K1 + K2 = I . Since minimizations are done with
respect to both (K1 ,K2) and γ, we can swap them the order of
minimizations. Swapping the minimization steps and fixing γ,
we first consider

min
K 1 ,K 2

Tr(P (γ)) subject to K1 + K2 = I.

Replacing K2 = I − K1 and using the fact that

∂Tr(XPXT )
∂X

= 2XP

we have

∂Tr(P (γ))
∂K1

= 2((1 + γρ)K1Pa + (1 + γ−1ρ)(K1 − I)Pb).

Setting it to zero, we obtain the optimal solution for K1 as

K1 = (1 + γ−1ρ)Pb((1 + γρ)Pa + (1 + γ−1ρ)Pb)−1

= ((1 + γρ)−1P−1
a + (1 + γ−1ρ)−1P−1

b )−1

· (1 + γρ)−1P−1
a .

It follows that

K2 = ((1 + γρ)−1P−1
a + (1 + γ−1ρ)−1P−1

b )−1

· (1 + γ−1ρ)−1P−1
b .

Plugging in K1 and K2 above into P (γ) yields

P (γ) = ((1 + γρ)−1P−1
a + (1 + γ−1ρ)−1P−1

b )−1 .

The alternative solution is given by taking w1 = (1 + γρ)−1 ,
w2 = (1 + γ−1ρ)−1 , δ1 = (1 + γ)−1 and δ2 = (1 + γ−1)−1 . It
is straightforward to verify that

w−1
1 = δ−1

1 ρ + 1 − ρ; w−1
2 = δ−1

2 ρ + 1 − ρ

with δ1 > 0, δ2 > 0 and δ1 + δ2 = 1 for γ > 0. �
Remark 3: When ρ = 0 (i.e., a and b are uncorrelated),

the solution above is optimized by taking any γ, which gives
P̂ = (P−1

a + P−1
b )−1 . When ρ = 1 (i.e., a and b are maximally

correlated), the solution above becomes the standard CI algo-
rithm, and our result coincides with a recent result (Theorem 3
in [10]) about the optimality of the CI algorithm. For a gen-
eral 0 < ρ < 1, the solution P̂ in (18) decreases as ρ decreases
because both 1/(1 + γρ) and 1/(1 + γ−1ρ) monotonically in-
crease as ρ decreases.

Our next result addresses the problem of searching for the
optimal γ to minimize the trace of P̂ in (18).

Lemma 6: Given any symmetric and positive-definite ma-
trices Pa and Pb and correlation coefficient bound 0 < ρ ≤ 1,
consider the matrix function P̂ of γ as defined in (18). Suppose
γ ∈ (0,∞) is a stationary point of Tr(P̂ ), then it must be the
unique global minimum point in (0, ∞).

Proof: Denote

Δ = P̂−1 = (1 + γρ)−1P−1
a + (1 + γ−1ρ)−1P−1

b .

Let γ be a given stationary point of Tr(P̂ ). Using the fact that

∂Δ−1

∂γ
= −Δ−1 ∂Δ

∂γ
Δ−1
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we have

∂

∂γ
Tr(Δ−1) = −Tr

(
Δ−1 ∂Δ

∂γ
Δ−1

)
= 0;

∂2

∂γ2 Tr(Δ−1) = 2Tr
(

Δ−1 ∂Δ
∂γ

Δ−1 ∂Δ
∂γ

Δ−1
)

− Tr
(

Δ−1 ∂2Δ
∂γ2 Δ−1

)
.

Note that
∂Δ
∂γ

= − ρ

(1 + γρ)2 P−1
a +

ρ

(γ + ρ)2 P−1
b ;

∂2Δ
∂γ2 =

2ρ2

(1 + γρ)3 P−1
a − 2ρ

(γ + ρ)3 P−1
b

=
2ρ2

(1 + γρ)3 P−1
a − 2

γ + ρ

(
∂Δ
∂γ

+
ρ

(1 + γρ)2 P−1
a

)

= − 2ρ(1 − ρ2)
(1 + γρ)3(γ + ρ)

P−1
a − 2

γ + ρ

∂Δ
∂γ

.

It follows that

∂2

∂γ2 Tr(Δ−1) = 2Tr
(

Δ−1 ∂Δ
∂γ

Δ−1 ∂Δ
∂γ

Δ−1
)

+
2

γ + ρ
Tr
(

Δ−1 ∂Δ
∂γ

Δ−1
)

+
2ρ(1 − ρ2)

(1 + γρ)3(γ + ρ)
Tr
(
Δ−1P−1

a Δ−1) .

Note in the above that the second term is zero and the first and
third terms are nonnegative. The third term is zero only if ρ = 1.
Also, the first term is zero only if

∂

∂γ
Δ = 0

which holds only when Pb = αPa for some scalar α > 0. Thus,
the sum above is zero only if ρ = 1 and Pb = αPa for some
scalar α > 0. In this case

P̂ =
(

1
1 + γ

+
1

α(1 + γ−1)

)−1

Pa =
1 + γ

1 + α−1γ
Pa .

It can be easily verified that the term (1 + γ)(1 + α−1γ)−1 does
not have a stationary point in (0, ∞). Hence, at the given sta-
tionary point γ ∈ (0, ∞), the second-order derivative of Tr(P̂ )
must be positive. That is, γ must be a strict local minimum
point. It is clear that this is also a global minimum point and a
unique one because otherwise there will be at least two distinct
minimum points, which implies that there will be another local
maximum point (an equilibrium point) in between which is not
possible by what we have just shown. �

Remark 4: We have excluded ρ = 0 in the above lemma.
For ρ = 0, γ does not play a role and the resulting P̂ = (P−1

a +
P−1

b )−1 as mentioned in Remark 3.
Following the lemma above, we give an alternating projection

algorithm for optimizing the γ.
The convergence property of the algorithm above is stated

below.

Algorithm 1: (Alternating Projection for Optimizing γ).
Step 1: Initialize γ = 1;
Step 2: Compute P̂ , K1 and K2 as in (18)–(19);
Step 3: Compute γ as in (14) and return to Step 2 until

convergence.

Theorem 4: Given any symmetric and positive-definite ma-
trices Pa and Pb and correlation coefficient bound 0 < ρ ≤ 1,
the algorithm above convergences to the optimal solution for
minimizing the trace of P̂ in (18).

Proof: Consider the upper bound P (γ) as defined in (20). It
is clear from Theorem 3 that for a given γ > 0, (18) and (19)
give the optimal solution for K1 and K2 to minimize Tr(P (γ)).
Then, from Theorem 1, for the given K1 and K2 , P (γ) = P̂ is
minimized by taking (14). Each iteration (Steps 2, 3) above will
reduce Tr(P̂ ) unless γ is an interior stationary point, which by
Lemma 4, is the global minimum point. Hence, γ converges to
either an interior stationary point or a boundary point (0 or ∞).
In either case, Tr(P̂ ) will be minimized. �

IV. GENERALIZATION TO MULTIPLE RVS

In this section, we generalize the results in the previous sec-
tion to multiple RVs. We first provide a reinterpretation of
Lemma 5 and Theorem 3, which will allow generalization to
multiple RVs. The key is to exploit Lemma 3, which leads to
a natural generalization of the notion of correlation coefficient
bound to multiple RVs.

Definition 2: Given a constant vector ρ = [ρ1 ρ2 . . . ρm ]
with 0 ≤ ρi ≤ 1 for all i and RVs a1 , a2 , . . . , am ∈ Rn , the set
of these RVs is said to have correlation coefficient bound of ρ if

P(ρ)
m =

⎡

⎢⎢⎢⎣

ρ1P1 P12 P13 . . . P1m

P21 ρ2P2 P23 . . . P2m

...
...

...
...

...
Pm1 Pm2 . . . Pm (m−1) ρm Pm

⎤

⎥⎥⎥⎦ ≥ 0. (21)

Lemma 7: Given m symmetric and positive-definite covari-
ance matrices P1 , P2 , . . . , Pm ∈ Rn×n and a correlation coeffi-
cient bound 0 ≤ ρ ≤ 1, consider the set of zero-mean RVs

Ω={(a1 , a2 , . . . , am ) : E{aia
T
i } = Pi, 1 ≤ i ≤m;P(ρ)

m ≥0}.
Let K1 ,K2 , . . . ,Km ∈ Rn×n be given nonsingular matrices
and consider the RV

c = K1a1 + K2a2 + · · · + Km am (22)

for any (a1 , a2 , . . . , am ) ∈ Ω and denote Pc = E{ccT }. Define

P (δ1 , δ2 , . . . , δm ) =
m∑

i=1

w−1
i KiPiK

T
i (23)

with

w−1
i = δ−1

i ρi + 1 − ρi (24)

δi ∈ (0, 1), i = 1, 2, . . . ,m, subject to δ1 + δ2 + · · · + δm

= 1. Then, for any δi, i = 1, 2, . . . ,m, as defined above

Pc ≤ P (δ1 , δ2 , . . . , δm ), ∀(a1 , a2 , . . . , am ) ∈ Ω.



626 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 3, MARCH 2018

Moreover, Tr(P (δ1 , δ2 , . . . , δm )) is minimized by taking

δi = (ρiTr(KiPiK
T
i ))1/2

⎛

⎝
m∑

j=1

(ρjTr(KjPjK
T
j ))1/2

⎞

⎠
−1

(25)
which results in

min Tr(P (δ1 , δ2 , . . . , δm ))

=
m∑

i=1

(1 − ρi)Tr(KiPiK
T
i ) +

(
m∑

i=1

√
ρiTr(KiPiKT

i )

)2

.

(26)

Proof: Denoting

P(m−1),1 = [Pm1 Pm2 . . . Pm (m−1) ];

K1 = [K1 K2 . . . Km−1 ]

and using (21), we can express Pc as

Pc =
m∑

i=1

(1 − ρi)KiPiK
T
i

+ [K1P
(ρ)
m−1K

T
1 + Km (ρm Pm )KT

m

+ K1PT
(m−1),1K

T
m + KmP(m−1),1KT

1 ] (27)

where P(ρ)
m−1 is obtained from P(ρ)

m−1 by removing the last row
and last column. We focus on the bracketed term above (the
term inside [·]). From (21), we know that

PT
(m−1),1 = (P(ρ)

m−1)
1/2F (ρm Pm )1/2

for some F with FT F ≤ I . As in the proof of Lemma 5, by
applying the S-procedure [38] to (27), we obtain that

Pc ≤
m∑

i=1

(1 − ρi)KiPiK
T
i + (1 + γ−1

m )Km (ρm Pm )KT
m

+ (1 + γm )K1P
(ρ)
m−1K

T
1 (28)

for any γm > 0. Note that the term K1P
(ρ)
m−1K

T
1 is the same as

the bracketed term in (27) except that the dimension is reduced.
We apply the derivation above repeatedly to yield

Pc ≤
m∑

i=1

(1 − ρi)KiPiK
T
i

+ (1 + γ−1
m )Km (ρm Pm )KT

m

+ (1 + γm )(1 + γ−1
m−1)Km−1(ρm−1Pm−1)KT

m−1

+ . . . . . .

+ (1 + γm ) . . . (1 + γ2)(1 + γ−1
1 )K2(ρ2P2)KT

2

+ (1 + γm ) . . . (1 + γ2)(1 + γ1)K1(ρ1P1)KT
1 (29)

for any γ1 > 0, γ2 > 0, . . . , γm > 0. Take

δ−1
m = (1 + γ−1

m )

δ−1
m−1 = (1 + γm )(1 + γ−1

m−1)

. . . . . .

δ−1
2 = (1 + γm ) . . . (1 + γ2)(1 + γ−1

1 )

δ−1
1 = (1 + γm ) . . . (1 + γ2)(1 + γ1).

It is clear that as all γi range from 0 to ∞, every δi ranges from
1 to 0. Also note that

(1 + γ−1)−1 + (1 + γ)−1 = 1

for any γ > 0, we obtain

(δ1 + δ2)−1 = (1 + γm ) . . . (1 + γ2).

Repeating the above, we obtain

(δ1 + δ2 + δ3)−1 = (1 + γm ) . . . (1 + γ3)

etc. Keep repeating the above yields δ1 + δ2 + · · · + δm = 1.
Therefore, the right-hand side of (29) equals P (δ1 , δ2 , . . . , δm )
in (23) if we take w−1

i = δ−1
i ρi + 1 − ρi for i = 1, 2, . . . ,m.

It remains to show (25). We get from (23) that

Tr(P (δ1 , δ2 , . . . , δm ))=
m∑

i=1

(δ−1
i ρi + (1 − ρi))Tr(KiPiK

T
i ).

Therefore, minimizing the above is the same as minimizing∑m
i=1 δ−1

i ti subject to the given constraint of δ1 , δ2 , . . . , δm ,
where ti = ρiTr(KiPiK

T
i ). This is easily given by the solution

δi =
√

ti

⎛

⎝
m∑

j=1

√
tj

⎞

⎠
−1

which is just (25).The expression (26) follows easily. �
Remark 5: Although Lemma 7 generalizes Lemma 5, there

is a main difference. First, Lemma 5 offers the optimal upper
bound P̂ of Pc with minimum trace. This turns out to be not
possible for the general case of m ≥ 3. This is due to the techni-
cal difficulty caused by the repeated use of S-procedure (see the
proof of Lemma 7 for details). It is a well-known fact that re-
peated use of S-procedure cannot guarantee a tight upper bound
in general, see, e.g., [40]. Hence, P (δ1 , δ2 , . . . , δm ) in (23) is
only an upper bound of Pc in Lemma 7.

Next, we generalize Theorem 3 to multiple RVs.
Theorem 5: Given m symmetric and positive-definite co-

variances P1 , P2 , . . . , Pm ∈ Rn×n , a mean value μ ∈ Rn and a
correlation coefficient bound (vector) 0 < ρ < 1, consider the
set of RVs

Ω = {(a1 , a2 , . . . , am ) : E{ai} = μ, cov(ai) = Pi,

i = 1, 2, . . . ,m;P(ρ)
m ≥ 0}. (30)

For any nonsingular matrices K1 ,K2 , . . . ,Km ∈ Rn×n

subject to

K1 + K2 + . . . + Km = I (31)



WU et al.: COVARIANCE INTERSECTION FOR PARTIALLY CORRELATED RANDOM VECTORS 627

consider the unbiased linear combination

c = K1a1 + K2a2 + · · · + Km am (32)

and its covariance upper bound P (δ1 , δ2 , . . . , δm ) for any
δ1 , δ2 , . . . , δm as defined in Lemma 7. Then, the minimum of
P (δ1 , δ2 , . . . , δm ) is given by

P̂ (δ1 , δ2 , . . . , δm ) = (w1P
−1
1 + w2P

−1
2 + · · · + wm P−1

m )−1

(33)
with wi defined in (24), i.e.

P̂ (δ1 , δ2 , . . . , δm ) ≤ P (δ1 , δ2 , . . . , δm )

for any nonsingular matrices K1 ,K2 , . . . ,Km subject to (31).
The minimum above is achieved by taking

Ki = wiP̂ (δ1 , δ2 , . . . , δm )P−1
i , i = 1, 2, . . . ,m. (34)

Proof: The proof is extended from that of Theorem 3.
Replace Km with I − K1 − K2 − · · · − Km−1 . Note that
P (δ1 , δ2 , . . . , δm ) is convex in Ki , the minimum is obtained
by differentiating P (δ1 , δ2 , . . . , δm ) with respect to Ki for
i = 1, 2, . . . ,m − 1 and setting them to zero. We obtain

w−1
i KiPi − w−1

m (I − K1 − K2 − . . . − Km−1)Pm = 0.

Defining

U = w−1
m Km Pm = w−1

m (I − K1 − K2 − · · · − Km−1)Pm

we have Ki = wiUP−1
i for i = 1, 2, . . . ,m − 1. Also, we have

Km = wm UP−1
m too. Substituting these solutions of Ki into

P (δ1 , δ2 , . . . , δm ) gives

P (δ1 , δ2 , . . . , δm ) = U

m∑

i=1

wiP
−1
i UT = UP̂−1UT

with P̂ in (33). Also, substituting these solutions of Ki into U
gives

U = w−1
m (I − K1 − K2 − · · · − Km−1)Pm

= w−1
m (I −w1UP−1

1 −w2UP−1
2 − · · · −wm−1UP−1

m−1)Pm

which gives U = P̂ (δ1 , δ2 , . . . , δm ). Hence, the minimum of
P (δ1 , δ2 , . . . , δm ) equals P̂ (δ1 , δ2 , . . . , δm ). Also, (34) is veri-
fied too. �

Our next task is to optimize the parameters δ1 , δ2 , . . . , δm .
That is, we need to solve the problem of

min Tr(P̂ (δ1 , δ2 , . . . , δm )) subject to

(δ1 , δ2 , . . . , δm ) ∈ D, (35)

where the constraint set

D = {(δ1 , δ2 , . . . , δm ) : δi ∈ (0, 1), i = 1, 2, . . . ,m;

δ1 + δ2 + · · · + δm = 1}. (36)

In other words, we need to generalize Lemma 6, Algorithm 1,
and Theorem 4 to multiple RVs.

Lemma 8: Given symmetric and positive-definite matrices
P1 , P2 , . . . , Pm and correlation coefficient bound (vector) 0 <
ρ < 1, consider the matrix function P̂ (δ1 , δ2 , . . . , δm )) as de-
fined in (33). Then, Tr(P̂ (δ1 , δ2 , . . . , δm )) is strictly convex
over D in (36).

Proof: Due to the constraint that

δm = 1 − δ1 − δ2 − . . . − δm−1

there are only m − 1 free variables. Denoting δ =
(δ1 , δ2 , . . . , δm−1) and Δ = P̂ (δ1 , δ2 , . . . , δm )−1 , we have (see
proof of Lemma 6)

∂2

∂δ2 Tr(Δ−1) = 2Tr
(

Δ−1 ∂Δ
∂δ

Δ−1 ∂Δ
∂δ

Δ−1
)

− Tr
(

Δ−1 ∂2Δ
∂δ2 Δ−1

)
.

The first term is above nonnegative definite, so it suffices to
show that the second term is positive definite over D. Indeed,
for i = 1, 2, . . . ,m − 1, it is easy to compute, using (24), that

∂Δ
∂δi

=
1

(ρi + (1 − ρi)δi)2 P−1
i

− 1
(ρm + (1 − ρm )δm )2 P−1

m

∂2Δ
∂δ2

i

= − 2(1 − ρi)
(ρi + (1 − ρi)δi)3 P−1

i

− 2(1 − ρm )
(ρm + (1 − ρm )δm )3 P−1

m

∂2Δ
∂δj∂δi

= − 2(1 − ρm )
(ρm + (1 − ρm )δm )3 P−1

m , j 	= i.

This yields

− Tr
(

Δ−1 ∂2Δ
∂δ2 Δ−1

)

= diag
{

2(1 − ρi)
(ρi + (1 − ρi)δi)3 Tr(Δ−1P−1

i Δ−1)
}

+
(

2(1 − ρm )
(ρm + (1 − ρm )δm )3 Tr(Δ−1P−1

m Δ−1)
)

eeT

where e = [1 1 . . . 1]T . It is clear that the second term above
is nonnegative definite and the first term is positive definite for
all 0 < ρ < 1. Hence, Tr(P̂ (δ1 , δ2 , . . . , δm )) is strictly convex
over D. �

Following the spirit of Algorithm 1, we apply Lemma 8 to
give an alternating projection algorithm for optimizing δ.

Algorithm 2: (Alternating Projection for Optimizing δ).

Step 1: Initialize δi = 1/m for i = 1, 2, . . . ,m;
Step 2: Compute wi , P̂ (δ1 , δ2 , . . . , δm ) and Ki for

i = 1, 2, . . . ,m using (24), (33), and (34);
Step 3: Compute δ as in (25) and return to Step 2 until

convergence.

The convergence property of the algorithm above is stated
below. The proof is omitted as it is similar to that of Theorem 4.

Theorem 6: Given symmetric and positive-definite matrices
P1 , P2 , . . . , Pm and correlation coefficient bound (vector) 0 <
ρ < 1, Algorithm 2 above convergences to the optimal solution
for minimizing the trace of P̂ (δ1 , δ2 , . . . , δm ) in (33).
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Remark 6: The alternating projection algorithm above is ex-
tremely efficient, as it does not involve any search (such as
gradient search) in each iteration. Simulations show that only
a few iterations (around 10) are sufficient. This observation of
efficiency is in line with the common observations of alternating
projection algorithms for semidefinite programming [41]. Note
that our algorithm is an instance of such algorithms. In terms
of the calculations required for each iteration, we note that the
inverse matrices P−1

i can be computed prior to the execution
of the algorithm and they need to be done only once, and that
calculations in (24), (25), and (34) are easy to do. The only
more involved calculation is the matrix inversion P̂ in (33) (the
variables δi are suppressed for simplicity). When the matrix di-
mension n is large, efficient inversion algorithms for symmetric
matrices [42] can be used.

Example 3: To demonstrate the obtained improvement by
taking into account of the correlation coefficient bound, we con-
sider the example with m = n (recalling that n is the dimension
of each RV) and

Pi = diag{q, . . . , q, 1, q, q, . . . , q}, i = 1, 2, . . . ,m

with q > 1, where the element 1 occurs at the ith diagonal
location. For simplicity, we take ρi to be identical, i.e., ρi = ρ0
for some constant ρ0 , i = 1, 2, . . . ,m.

Apply Theorem 5. Due to the symmetric structure of Pi , it
is easy to see that the optimal δi = 1/m, which in turn means
that the optimal wi = w0 = (mρ0 + 1 − ρ0)−1 . Subsequently,
the optimal covariance bound (33) can be computed to be

P̂ (δ1 , δ2 , . . . , δm ) = diag
{

1 + (m − 1)ρ0

1 + (m − 1)q−1

}
(37)

and the corresponding

Tr(P̂ (δ1 , δ2 , . . . , δm )) =
m + (m − 1)mρ0

1 + (m − 1)q−1 . (38)

The resulting optimal Ki in (34) are given by

Ki = wiP̂ (δ1 , δ2 , . . . , δm )P−1
i

=
1

1 + (m − 1)q−1 diag{q−1 , . . . , q−1 , 1, q−1 , . . . , q−1}.

To see the advantage of considering partial correlations, we
compare the bound in (37) with the relaxed Chebyshev centre
CI (RCC-CI) algorithm and the information-theoretic fast CI
(IT-FCI) algorithm in [26]. According to [26], both RCC-CI
and IT-FCI are instances of the generalized CI, which has the
following bound:

P̂wang =

(
m∑

i=1

δiP
−1
i

)−1

(39)

but each algorithm uses a different criterion to choose δi . Com-
paring with (33), it is clear that the above is the same as (33)
with ρi = ρ0 = 1. Since (38) uses the optimized δi (which is
also valid for ρ0 = 1), it follows that

Tr(P̂wang) ≥ m + (m − 1)m
1 + (m − 1)q−1

regardless how δi are chosen. In comparison with (38), we obtain

Tr(P̂ (δ1 , δ2 , . . . , δm ))
Tr(P̂wang)

≤ m + (m − 1)q0

2m − 1
.

The above clearly demonstrates the improvement by considering
partial correlations.

Another interesting observation about this example is that, as
q → ∞, the optimal Ki becomes

Ki → diag{0, . . . , 0, 1, 0, 0, . . . , 0}
which is independent of ρi . This is because in this case, the ith
estimate (ai) contains information in the ith component only,
which implies that the optimal mixing gain matrices in (32) must
be such that Ki “extract’s” the ith component of ai , regardless
of the correlation coefficient bounds. However, we see from (38)
that even in this case, the trace bound of P̂ (δ1 , δ2 , . . . , δm ) is
significantly reduced by considering ρi .

V. CONCLUSION

We have generalized the standard covariance intersection
algorithm to multiple RVs with any given correlation coefficient
bound. For the case with two RVs, the resulting covariance is
shown to be tight in the sense that it is the upper bound of the
covariance, with the minimum trace, for the mixed RV. For the
general case with more than two RVs, this optimality property
is technically difficult to achieve and the resulting covariance
is in general an upper bound of the covariance for the mixed
RV. We have also provided an alternating projection algorithm
to minimize the trace of the covariance by optimizing the asso-
ciated scaling parameters. We expect that our results will make
the already popular covariance intersection more applicable and
more accurate for distributed estimation and information fusion
problems.
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