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Convergence and Accuracy Analysis for a
Distributed Static State Estimator based on

Gaussian Belief Propagation
Damian Marelli, Tianju Sui†, Minyue Fu, Fellow IEEE, and Ximing Sun

Abstract—This paper focuses on the distributed static esti-
mation problem. A Belief Propagation (BP) based estimation
algorithm is studied for its convergence and accuracy. More
precisely, we give conditions under which the BP based dis-
tributed estimator is guaranteed to converge and we give concrete
characterizations for its accuracy. Our results reveal new insights
and properties of this distributed algorithm, leading to better
theoretical understanding of static distributed state estimation
and new applications of the algorithm.

Index Terms—Distributed State Estimation, Belief Propaga-
tion, Convergence Analysis, Accuracy Analysis.

I. INTRODUCTION

Large-scale systems, such as power grid, sensor monitor-
ing networks and telecommunication systems, are receiving
increasing attention in different fields. As the data size in the
system increases rapidly, the classical centralized estimation
approach is no longer suitable because it is often impractical
to congregate all the information in a central computing
processor and it is unnecessary for each node to estimate the
global state. Instead, the distributed estimation approach is
required where every node in the network estimates its own
state using its own measurements and information shared from
its neighbouring nodes, and this is done in an iterative fashion.

An example of distributed estimation is the sensor net-
work localization problem where each node (sensor) needs
to estimate its own location using relative measurements (e.g.,
relative distances or relative positions) between sensors and the
absolute locations of some (a few) anchor nodes [1],[2]. In this
case, it is unnecessary for each sensor to localize other nodes.
A distributed method is preferred so that estimation is done in
each node, rather than relying on a central processor [3],[4].

For large-scale systems, the goal for static state estimation
is that the composite estimate of the whole system, consisting
of all local estimates, should approach the optimal estimate
obtained by a centralized estimation method using all the
measurements. The technical difficulty for a large-scale system
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is much higher than that for a small-scale one. Several
approaches are available in the literature for solving the
distributed weighted least-squares (WLS) problem. In [5],[6],
each node runs a local estimator for the composite state and
a consensus based algorithm is used to achieve the averaging
of local information vectors and information matrices (which
are related to state estimates and covariances, respectively),
resulting in the asymptotic convergence of the local estimates.
In [3], a gradient based algorithm (see Step 4 of Algorithm 2
in [3]) is used to solve the distributed WLS problem. In [7],
a novel algorithm for distributed WLS is developed based on
the Richardson method for solving linear equations. However,
these algorithms all have relatively slow convergence. In [8],
a project based algorithm is proposed to solve the distributed
WLS problem. This algorithm can converge in a finite number
of iterations, but the computational complexity for each node
in each iteration is proportional to the network size, thus not
suitable for large-scale systems.

In this paper, we study a distributed algorithm for static state
estimation suitable for large-scale systems. This algorithm is
based on the celebrated Pearl’s Belief Propagation (or Belief
Propagation (BP) for short) algorithm for statistical learning.
Originally proposed by Pearl [9] in 1982, BP (also known
as sum-product message passing), is a message passing al-
gorithm for computing marginal probability density functions
(PDFs) on Bayesian networks (directed and acyclic graphs)
and Markov random fields (undirected and cyclic graphs).
Note that the static state estimation problem can be formulated
as the marginal PDF computation problem (more on this later).
It is well known that, for acyclic graphs (graphs without
loops), the BP successfully computes marginal PDFs in a finite
number of iterations. The knowledge that the BP algorithm
outperforms other distributed iterative methods can be traced
back to the invention of the BP algorithm [9], and has been
supported by lots of empirical evidences. The best example
is the use of the algorithm in turbo decoding, which makes
it possible for practical communications systems to approach
the theoretical barrier of Shannon Channel Capacity! (See [10]
and references therein.)

However, an unsolved fundamental question is that, for a
cyclic network graph, under what conditions will BP iterations
converge? For a general cyclic graph, [11], [12], [13], [14],
[15] studied the convergence condition for BP. However, these
references only gave partial answers. Explicit comparisons
with Jacobi and Richardson iterations can be found in [7] and
[16]. In [7], we compared a distributed algorithm based on
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Richardson method and a distributed algorithm based on Gaus-
sian BP, and the advantage of the latter was explained. Jacobi
iterations apply to systems with diagonal dominance. In [16],
Gaussian BP was studied for generalised diagonally dominant
systems by using the so-called walk summability approach
to draw the connection between Gaussian BP iterations and
Jacobi iterations (which are linear iterations). The advantage of
Gaussian BP is implied by the fact that Gaussian BP iterations
absorb a lot more “walks” than the Jacobi iterations do for the
same iteration number, resulting in much faster calculation.

The distributed algorithm we study is the Gaussian BP
algorithm [17], a variant of BP algorithm specialized to
Gaussian distributions. The algorithm computes iteratively the
mean and variance (or covariance) of each marginal. Several
conditions ensuring the convergence of the marginal means
and variances have been proposed [17], [16], [18], [19]. But
several major drawbacks exist. Firstly, the convergence condi-
tions are too difficult to check. For examples, the convergence
condition for the mean in [19] requires the evaluation of the
spectral radius of an infinite dimensional matrix. Secondly,
the convergence conditions are too strict. For examples, the
work in [17] requires a strict diagonal dominance condition for
measurements and [20] extends [17] by relaxing the condition
to generalised diagonal dominance. Thirdly, characterization
of the convergence rate is difficult. For example, the conver-
gence rate description in [21] is not explicit. Finally, most
of these convergence analysis are done only for scalar sub-
systems (i.e., the state variable of each node is a scalar). Since
the state components for each node are not independent in
general, results for scalar variables are not applicable to vector
variables. The only noticeable exception is perhaps the work of
[22] which generalizes the convergence conditions of [19]. But
as in [19], the convergence analysis relies on the evaluation of
the spectral radius of an infinite dimensional matrix, limiting
the results to theoretical interests only.

In this paper, viewing the iterations of the distributed static
state estimation algorithm as a dynamic process, we provide
conditions under which its stability (i.e., the convergence of
the distributed state estimator) is guaranteed. We focus on the
networks for which each node has a vector variable and we
want to determine the convergence rates of the state estimate
and covariance for each node. In contrast to [19] and [22], we
provide conditions under which we can qualify the estimation
error generated by the distributed algorithm for each iteration
number. In particular, our estimation error and covariance
formulas clearly explain the impact of the so-called cycle-free
depth of each node to the estimation accuracy.

The significance of our work lies in both theoretical con-
tributions and potential applications. Firstly, convergence and
accuracy analysis for the distributed static state estimator is
theoretically meaningful. Secondly, the distributed estimation
algorithm is shown to have very good performance on large-
scale systems with large cycle-free depth.

The rest of this paper is organized as follows. In Section III,
the problem formulation and distributed state estimator are
given. Section IV studies the convergence of the information
matrices. Section V investigates the convergence of the state
estimates. The accuracy of the information matrices and state

estimates are analyzed in Section VI and VII, respectively.
Concluding remarks are stated in Section VIII. Most of the
proofs are moved to the full version [23].

II. PRELIMINARY FOR BELIEF PROPAGATION

The BP algorithm [9] concerns with a system represented by
a bipartite graph with I variable nodes and V factor nodes, as
depicted in the Fig. 1. Each variable node i is associated with
a random vector xi ∈ Rni and each factor node v is connected
to a subset of variable nodes, Fv ⊂ {1, 2, . . . , I}. Denoting
the joint (or global) variable by X = {xi : i = 1, 2, . . . , I},
it is assumed that its joint PDF f(X) can be expressed in a
factor form:

f(X) =

V∏
v=1

fv (Xv) ,

where Xv = {xi : i ∈ Fv}, v = 1, 2, . . . , V . Each fv(Xv)
represents a piece of partial “knowledge” about X .

1
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Fig. 1. Bipartite graph: circles = variable nodes; squares = factor nodes

The goal of BP is to compute, at each node i, the marginal
gi(xi) of f(X), which is defined by

gi(xi) =

∫
f(X)d(X \ xi), (1)

where X \ xi is the set obtained from X by removing
xi. The algorithm resorts to iterative computation and local
communication between connected variable nodes and factor
nodes. More specifically, the algorithm starts by each factor
node v sending to each variable node i ∈ Fv the following
marginal PDF (called message)

m
(0)
v→i(xi) =

∫
fv(Xv)d(Xv \ xi). (2)

Then, at each iteration k = 1, 2, . . ., each variable node i sends
to every connected factor node v the following message:

m
(k)
i→v(xi) =

∏
w∈Ni\v

m
(k)
w→i(xi), (3)

where Ni is the set of factor nodes connected to variable
node i. Similarly, each factor node v sends to every connected
variable node i the following message:

m
(k)
v→i(xi) =

∫
fv(Xv)

∏
j∈Fv\i

m
(k−1)
j→v (xj)d(Xv \ xi). (4)

The desired marginal at node i and iteration N is estimated:

g
(N)
i (xi) =

∏
w∈Ni

m
(N)
w→i(xi), (5)
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modulo a constant scalar to make its integral equal 1.
It is clear that this is a fully distributed algorithm because

only local information gets exchanged and used without the
need for any global information. Note that BP is also known
as the sum-product algorithm because (2)-(4) use sums (i.e.,
integrals) and products.

III. PROBLEM FORMULATION

Consider a system with I unknown local states
x1, x2, . . . , xI and each of them corresponds to a sensing
node. Since we focus on the static estimation problem, the
local states are unknown time-invariant vectors. Following
the notations in BP, we call the sensing nodes variable nodes
and xi ∈ Rni is a vector. Associated with the system are
two kinds of measurements (also vectors), the so-called self
measurement for node i,

zi = Cixi + vi, (6)

and (pair-wise) Joint measurement between nodes i and j,

zi,j = Ci,jxi + Cj,ixj + vi,j . (7)

In the above, the matrices Ci, Ci,j and Cj,i are known; vi
and vi,j are independent Gaussian measurement noises with
known covariances Ri > 0 and Ri,j > 0, respectively. Note
that: 1) the factor node (i, j) is unordered, i.e., (i, j) = (j, i);
2) zi,j = zj,i and vi,j = vj,i; 3) It is not necessary for all
variable nodes to have self measurements or all variable node
pairs to have joint measurements. In fact, joint measurements
are typically sparse for large graphs.

The problem of distributed WLS estimation is to compute
the maximum likelihood (ML) estimate for each xi and
the corresponding estimation error covariance using a fully
distributed algorithm. It is clear that the likelihood functions
given by the self and joint measurements are, respectively,

fi(xi) = p (zi|xi)
∼ N (zi − Cixi, Ri), (8)

fi,j(xi, xj) = p (zi,j |xi, xj)
∼ N (zi,j − Ci,jxi − Cj,ixj , Rij), (9)

where N (µ,Σ) stands for a Gaussian PDF with mean µ
and covariance Σ. It is noted that, in our setting, fi(xi) in
(8) corresponds to the variable node and fi,j(xi, xj) in (9)
corresponds to the factor node.

The joint likelihood function for X = {xi : i = 1, 2, . . . , I}
becomes

f(X) =
∏
i

fi(xi)
∏
(i,j)

fi,j(xi, xj). (10)

Therefore, the maximum likelihood function for each xi is
given by

gi(xi) =

∫
f(X)d(X \ xi), (11)

which is exactly the task of static distributed state estimator.
The Gaussian BP algorithm computes the mean and covari-

ance for each gi(xi) iteratively. That is, for each iteration k,
each node i computes an estimate of the mean, x̂i(k), and an

estimate of the covariance Σi(k). The detailed algorithm and
its derivation can be found in [17]. In this paper, we simply
rewrite the Gaussian BP algorithm for the measurements (6)-
(7). This is listed in Algorithm 1.

Two variables in Algorithm 1 are of particular importance:

αi(N) = Qi(N)x̂i(N); Qi(N) = Σ−1
i (N), (12)

which we call information vector and information matrix, or
information parameters collectively.

The convergence and accuracy analysis in our paper requires
the following key assumption.

Assumption 1. For all i = 1, 2, . . . , I and j ∈ Ni,

Ωi,j = CT
i R
−1
i Ci +

∑
w∈Ni\j

CT
i,wR

−1
i,wCi,w > CT

i,jR
−1
i.j Ci,j .

(13)

Remark 1. Roughly speaking, (13) means that, for each node
i, the information contribution from any single neighbouring
node j (i.e., CT

i,jR
−1
i,j Ci,j) is strictly smaller than the sum of

that from node i (i.e., CT
i R
−1
i Ci) and all other neighbouring

nodes w ∈ Ni\j (i.e., CT
i,wR

−1
i,wCi,w). In particular, Assump-

tion 1 implies that Ωi,j > 0 for all (i, j). It also implies that,
for every leaf node1 i, CT

i R
−1
i Ci > 0 (or equivalently, Ci has

full column rank), due to the fact that the sum term in Ωi,j is
void in this case.

Remark 2. Due to the strict inequality above, it is clear that
Assumption 1 is equivalent to the existence of some constant
0 < η < 1 such that

ηΩi,j ≥ CT
i,jR

−1
i,j Ci,j (14)

for all j ∈ Ni. We will use this property in the sequel.

To a given set of variable and factor nodes, we associate an
undirected graph, called the canonical graph, which we denote
by G. This graph has a node associated with each variable node
i = 1, . . . , I , and an edge between nodes i and j, if there exists
joint measurement zi,j , i.e., for all j ∈ Ni. Moreover, the edge
(i, j) is unordered and we also call it factor node (i, j).

It is well known that the Algorithm 1 converges to the
correct marginals in a finite number of iterations when G is
acyclic [24]. In fact, the required number of iterations equals
to the diameter of the graph, i.e., the maximum distance of
any pair of variable nodes, where the distance of two nodes
is the number of edges of the shortest path between them.
The fundamental challenge in this paper is to understand
how the algorithm performs for cyclic graphs. As mentioned
in Section I, the goal of this paper is of twofold: First,
we want to provide conditions to guarantee the convergence
of Algorithm 1 when the induced bipartite graph is cyclic.
Secondly, when convergence occurs, we want to quantify the
accuracy of the distributed state estimate, i.e., the difference
between our state estimate and the true (or global) maximum
likelihood estimate in (11).

1A variable node is called a leaf node if it is connected by only one edge.
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Algorithm 1 A BP-based Distributed Static State Estimator
1) Initialization: At time k = 0, factor node (i, j) sends to
each connected variable node i:

αi,j→i(0) = CT
i,jR

−1
i,j zi,j ,

Qi,j→i(0) = CT
i,jR

−1
i,j Ci,j . (15)

2) Main loop: At time k = 1, 2, · · · , do:
2.1) Each variable node i computes

αi(k) = CT
i R
−1
i zi +

∑
j∈Ni

αi,j→i(k − 1),

Qi(k) = CT
i R
−1
i Ci +

∑
j∈Ni

Qi,j→i(k − 1), (16)

and (if required at this iteration)

x̂i(k) = Q−1
i (k)αi(k),

Σi(k) = Q−1
i (k). (17)

2.2) Each variable node i sends to each factor node (i, j)
with j ∈ Ni:

αi→i,j(k) = αi(k)− αi,j→i(k − 1),

Qi→i,j(k) = Qi(k)−Qi,j→i(k − 1), (18)

2.3) Each factor node (i, j) sends to each variable node j
with j ∈ Ni:

αi,j→j(k) = CT
j,iR

−1
i,j→j(k)zi,j→j(k),

Qi,j→j(k) = CT
j,iR

−1
i,j→j(k)Cj,i, (19)

where

zi,j→j(k) = zi,j − Ci,jQ
−1
i→i,j(k)αi→i,j(k),

Ri,j→j(k) = Ri,j + Ci,jQ
−1
i→i,j(k)CT

i,j . (20)

IV. CONVERGENCE ANALYSIS FOR INFORMATION
MATRICES

In this section, we provide our first key result which
shows that the information matrices Qi(k) always converge
exponentially to a positive definite matrix, under Assumption
1. In addition, the rate of convergence is also characterized.

Firstly, some preliminary lemmas are required.

Lemma 1. For any k ∈ N, 1 ≤ i ≤ I and j ∈ Ni,

Qi→i,j(k + 1) ≤ Qi→i,j(k);

Qi,j→j(k + 1) ≤ Qi,j→j(k);

Ri,j→j(k + 1) ≥ Ri,j→j(k). (21)

In particular, Qi→i,j(k) ≤ Ωi,j for all k ≥ 1.

Proof. Given in Lemma 1 of the full version [23].

Lemma 2. Under Assumption 1, for every 1 ≤ i ≤ I and
j ∈ Ni, we have

Qi→i,j(∞) = lim
k→∞

Qi→i,j(k) > 0;

Ri,j→j(∞) = lim
k→∞

Ri,j→j(k) <∞.

Proof. Given in Lemma 2 of the full version [23].

Next, we give the main result on convergence. Define

∆Qi→i,j(k) = Q
−1/2
i→i,j(∞)Qi→i,j(k)Q

−1/2
i→i,j(∞)− I;

∆Qi,j→j(k) = Q
−1/2
i,j→j(∞)Qi,j→j(k)Q

−1/2
i,j→j(∞)− I;

∆Ri,j→j(k) = R
−1/2
i,j→j(∞)Ri,j→j(k)R

−1/2
i,j→j(∞)− I.

Also, let constants ρ > 0 and α > 0 be defined as follows:

ρ = max
i,j
‖R−1/2

i,j→j(∞)Ci,jQ
−1
i→i,j(∞)CT

i,jR
−1/2
i,j→j(∞)‖, (22)

α = max
i,j
‖Q−1/2

i→i,j(∞)Ωi,jQ
−1/2
i→i,j(∞)− I‖. (23)

Note that ρ < 1 follows from Ri,j > 0 and

Ri,j→j(∞) = Ri,j + Ci,jQ
−1
i→i,j(∞)CT

i,j .

Lemma 3. Under Assumption 1, for every node i, its neighbor
node j and all k ∈ N, we have

0 ≤ ∆Qi→i,j(k) ≤ αρk−1I. (24)

Proof. Given in Lemma 3 of the full version [23].

Since ultimately we are only interested in the information
matrices Qi(k), we get the following result from Lemma 3.

Theorem 1. Under Assumption 1, it holds that Qi(k) →
Qi(∞) > 0 as k → ∞, for every node i of G. Moreover,
by defining

∆Qi(k) = Q
−1/2
i (∞)Qi(k)Q

−1/2
i (∞)− I,

it holds, for every node i of G and all k ∈ N, that

0 ≤ ∆Qi(k) ≤ αρk−1I, (25)

where ρ and α are defined in (22) and (23), respectively. As
analyzed before, we have ρ < 1.

Proof. Given in Theorem 1 of the full version [23].

Remark 3. The result in Theorem 1 shows that the information
matrix(i.e., the inverse of covariance matrix) from Algorithm 1
exponentially converges under Assumption 1, and the conver-
gence rate is ρ < 1.

V. CONVERGENCE ANALYSIS FOR THE ESTIMATES

In this section, we proceed to study the convergence of the
estimates x̂i(k). Under Assumption 1, we establish a necessary
and sufficient condition for the asymptotic convergence of
the estimates. This result is general and non-conservative but
requires checking the stability of a high-dimensional matrix.
We then provide a sufficient condition for convergence of the
estimates which can be easily verified in a distributed fashion,
with low computational complexity. As a by-product, we also
provide an alternative proof for the known result that the
estimates always converge for graphs with at most a single
cycle [25].

From (16) and (18), we get

αi→i,j(k + 1) = CT
i R
−1
i zi +

∑
w∈Ni\j

αi,w→i(k).
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Similarly, from (19) and (20), we get

αi,w→i(k) =CT
i,wR

−1
i,w→i(k)zw,i

− CT
i,wR

−1
i,w→i(k)Cw,iQ

−1
w→i,w(k)αw→i,w(k).

Combining the above two equations gives the following dy-
namics:

αi→i,j(k + 1)

=βi→i,j(k)

−
∑

w∈Ni\j

CT
i,wR

−1
i,w→i(k)Cw,iQ

−1
w→i,w(k)αw→i,w(k),

where

βi→i,j(k) = CT
i R
−1
i zi +

∑
w∈Ni\j

CT
i,wR

−1
i,w→i(k)zw,i. (26)

It is easy to check with Algorithm 1 that the above holds for
all k ≥ 1, provided that, in the equation above, we initialize
all αi→i,j(0) = 0.

Defining

x̃i→i,j(k) = Q
−1/2
i→i,j(k)αi→i,j(k),

bi→i,j(k) = Q
−1/2
i→i,j(k + 1)βi→i,j(k),

ai→i,j(k) = CT
j,iR

−1
i,j→j(k)Ci,jQ

−1/2
i→i,j(k),

we get the following alternative dynamics:

x̃i→i,j(k + 1) =bi→i,j(k)−Q−1/2
i→i,j(k + 1)

·
∑

w∈Ni\j

aw→i,w(k)x̃w→i,w(k).

Let S be any ordered sequence of all (i → i, j). Form the
column vector x̃(k) by stacking up all the x̃i→i,j(k) according
to S, and similarly form b(k) by stacking up all the bi→i,j(k).

For each (i → i, j), define the row vector Ai→i,j(k) with
its (w → i, w)-th element equal to −Q−1/2

i→i,j(k+ 1)aw→i,w(k)
for each w ∈ Ni\j, and all other elements zero. That is,

Ai→i,j(k)x̃(k)

=−Q−1/2
i→i,j(k + 1)

∑
w∈Ni\j

aw→i,w(k)x̃w→i,w(k).

Then we have the following dynamics for x̃(k):

x̃(k + 1) = A(k)x̃(k) + b(k), (27)

where A(k) is a matrix formed by stacking up all the row
vectors Ai→i,j(k) according to S. This leads to the following
main result on the convergence of x̃(k), which in turn guar-
antees the convergence of x̂i(k) due to the convergence of
Qi→i,j(k).

Lemma 4. Under Assumption 1, the estimate x̃(k) converges
asymptotically to (I − A(∞))−1b(∞) if the matrix A(∞) is
stable (i.e., all of its eigenvalues are strictly within the unit
circle). Conversely, if A(∞) is not stable, then for almost all
measurements of zi and zi,j , x̃(k) will diverge as k →∞.

Proof. Given in Lemma 4 of the full version [23].

We have the following key property for A(∞).

Lemma 5. Under Assumption 1, the diagonal elements of
A(∞) are zero. Moreover, for every (i→ i, j), we have

Ai→i,j(∞)AT
i→i,j(∞) ≤ ρI.

Proof. Given in Lemma 5 of the full version [23].

For a given canonical graph G, denote by Ḡ the reduced
graph obtained by repeatedly removing the leaf nodes until
there are no more leaf nodes (i.e., all the variable nodes are
on a cycle), or Ḡ is a singleton (i.e., it contains a single variable
node). Without loss of generality, let the remaining nodes be
1, 2, . . . , Ī . Further denote by Ā(∞) the matrix obtained by
removing the rows and columns of A(∞) associated with
indices (i → i, j) for i > Ī . For the case Ḡ is a singleton,
Ā(∞) is void. We have the following important result:

Lemma 6. The matrix A(∞) is stable if and only if Ā(∞) is
stable. In particular, A(∞) is always stable if G is acyclic.

Proof. Given in Lemma 6 of the full version [23].

Using the result above, we can restate Lemma 4 as follows:

Theorem 2. Under Assumption 1, every estimate x̂i(k), i =
1, 2, . . . , I , converges asymptotically if the matrix Ā(∞) is
stable. Conversely, if Ā(∞) is not stable, then for almost all
measurements of zi and zi,j , x̂i(k) will diverge as k →∞.

While the result above provides a necessary and sufficient
condition for the convergence of the estimates, checking Ā(∞)
is not an easy task for a large system. Our next aim is to
provide a sufficient condition for guaranteeing the stability of
Ā(∞) that is easily verifiable in a distributed fashion.

With some abuse of notation, we still denote by S a
sequence of (i → i, j) for Ḡ. In particular, we will choose
S = {S1, S2, . . . , SĪ} with Si denoting a sub-sequence
containing all (i → i, j) for j ∈ N̄i and N̄i denoting the
set of neighbouring nodes of i in Ḡ. We further denote by
Āi(∞) the square sub-matrix of Ā(∞) by keeping only the
rows with indices (i → i, j), j ∈ N̄i, and only columns with
indices (j → j, i), j ∈ N̄i. For better understanding of the
notation, an example is given below.

Example 1. Fig. 2 shows a simple canonical graph and the
structure of the associated A(∞), where ∗ stands for a non-
zero term. It is easy to verify that

A1(∞) = A3(∞) =

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

 ;

A2(∞) = A4(∞) =

[
0 ∗
∗ 0

]
.

We have the next result on the convergence of the estimates,
which can be checked in a distributed fashion.

Theorem 3. Recall that ρ is defined in(22). Suppose there
exists ρ ≤ ρ̄ < 1 such that Āi(∞)ĀT

i (∞) ≤ ρ̄I for every
1 ≤ i ≤ Ī which has at least three neighbouring nodes
in Ḡ. Under Assumption 1, for every i = 1, 2, . . . , I , x̂i(k)
converges exponentially with the rate ρ̄. In particular, if G only
has a single cycle (which means that every node i in Ḡ has
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Fig. 2. An example to show the structure of A(∞)

only two neighbouring nodes), x̂i(k) converges exponentially
with the rate of ρ.

Proof. Given in Theorem 3 of the full version [23].

Remark 4. Using Theorem 3, checking the convergence of
the estimates amounts to computing Āi(∞) and its maximum
singular value σi for each node with at least three neighbouring
nodes. The required ρ̄ can be made to be ρ̄ = maxi σ

2
i

using the fact that Āi(∞)ĀT
i (∞) ≤ σ2

i I . By Theorem 3, the
convergence of the estimates is guaranteed if ρ̄ < 1.
Remark 5. Algorithm 1 is designed for the static estimation
problem. As for the centralized (traditional) state estimation
case, this is a crucial step towards dynamic state estimation.
Generalization to distributed dynamic state estimation will be
a future topic. Since we have proved that the estimate using
our algorithm exponentially converges, the algorithm could
achieve good approximation for the optimal state estimate at
time k in a few steps during the time update from k to k+ 1
and the prediction for time k + 1 follows from neighbours’
state estimates. In particular, we note that, although linear
measurements (6)-(7) are assumed in this paper, it is shown
in [4] that (relative) distance measurements between adjacent
agents, which are seemingly nonlinear, can be effectively
transformed into linear measurements when applied in dis-
tributed dynamic state estimation. Thus, our algorithm can
be used in the update part of the distributed dynamic state
estimation problem involving distance measurements.

VI. ACCURACY ANALYSIS ON INFORMATION MATRICES

In Section IV, we studied the convergence of the informa-
tion matrices. In this section we study its accuracy, i.e., the
difference between the information matrices Qi(k) generated
by Algorithm 1 and the information matrices for the maximum
likelihood estimates.

Let Gi(d) denote the subgraph of G formed by nodes which
are within d hops away from node i. Denote by di the largest
integer such that Gi(di) is acyclic. We refer to di as the cycle-
free depth of node i, and dmin = mini di as the cycle-free
depth of G. If G is acyclic, we use the convention that di =
∞ for all i, and in this case, Gi(di) = G. It is emphasized
that the cycle-free depth is a property of each vertex, and that
it is upper bounded by the diameter of the graph and lower
bounded by the length of the shortest cycle in the graph.

Recall that, for the measurements (6) and (7), the cor-
responding joint likelihood function f(X) is given by (8),

(9) and (10). The marginal gi(xi) of X is given by (11).
Denote by x̂ML

i and ΣML
i the mean and covariance of xi

corresponding to gi(xi), respectively. The superscript “ML”
stands for maximum likelihood, due to the fact that gi(xi) is
Gaussian and thus x̂ML

i is the maximum likelihood estimate of
xi. Also define the ML information matrix QML

i = (ΣML
i )−1.

i

1u 2u 3u

1s 2s

1w 2w 3w 4w

1u 2u 3u

i

1s

Fig. 3. Conversion of a cyclic graph into an acyclic graph

Now, for any node i ∈ G, we introduce a reduced graph
G̃i, which will hold the key to the accuracy analysis. Draw
the graph G as depicted in Fig. 3(a). Let di be the cycle-
free depth for node i, as defined earlier. In Fig. 3(a), di = 2.
Denote by u1, u2, . . . , the leaf nodes of Gi(di) and denote by
s1, s2, . . . , the nodes outside of Gi(di) which are connected
to the leaf nodes and called child nodes. There are two cases
for each child node: It connects to either one leaf node only
or multiple leaf nodes. In Fig. 3(a), s1 connects to one leaf
node of Gi(di)(i.e., u1) and s2 connects to two leaf nodes of
Gi(di)(i.e., u2 and u3). The reduced graph G̃i is depicted in
Fig. 3(b). This is done as follows: For each child node s, firstly
remove all of its connecting nodes that are not in Gi(di + 1).
Then, if s is connected to multiple leaf nodes of Gi(di), split
s into multiple copies, one for each connecting leaf node. In
Fig. 3(b), w1, . . . , w4 are all removed and s2 is split into s1

2

and s2
2. For each child node si that connects to only one leaf

node of Gi(di), let its self measurement in the reduced graph
G̃i be zsi = Csixsi + vsi with noise covariance Rsi for vsi .
Then, for each child node sti that connects to p leaf nodes of
Gi(di), we take

zsti = Csixsti + vsti = zsi

with noise covariance pRsi for vsti , where p is the number of
connecting leaf nodes of Gi(di) for si.

We have the following result, which shows that the informa-
tion matrices from Algorithm 1 converge to ML information
matrices exponentially as the cycle-free depths increase.

Theorem 4. Under Assumption 1, for every node i in G, we
have

0 ≤ Qi(di)−QML
i ≤ α̃iρ̃

di−1
i QML

i , (28)

where α̃i and ρ̃i are similar to α in (23) and ρ in (22), but
for the reduced graph G̃i.

Proof. Given in Theorem 4 of the full version [23].
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Using Theorem 1, the result in Theorem 4 can be stated in
a different way in terms of the accuracy of Qi(∞).

Corollary 1. Recall that α̃i, ρ̃i, α, ρ are defined in the The-
orem 4 and di is the cycle-free depth of node i. Under
Assumption 1, we have, for every node i in G,

− αρdi−1

1 + αρdi−1
QML

i ≤ Qi(∞)−QML
i ≤ α̃iρ̃

di−1
i QML

i . (29)

In particular, as di →∞, Qi(∞)→ QML
i .

Proof. Given in Corrolary 1 of the full version [23].

Remark 6. We mention two properties about the α̃i and ρ̃i.
Firstly, it is clear that for an acyclic graph G, α̃i = α and
ρ̃i = ρ for any i. Secondly, since each reduced graph is for
a given node i and is typically a small graph (with cycle-free
depth of di + 1), α̃i and ρ̃i can be computed quickly (with
di + 1 iterations).

VII. ACCURACY ANALYSIS FOR THE ESTIMATES

In this section, we study the accuracy of the state estimate
from Algorithm 1. Our goal is to characterize explicitly how
the distributed state estimate accuracy for node i is related to
its cycle-free depth di.

Without loss of generality and for notational simplicity, we
study node 1 in this section. Let d1 be the cycle-free depth of
node 1. We can redraw the original graph G (i.e., Fig. 3(a)) as
a d1 +2 layer graph in Fig. 4(a), in which node 1 is placed on
the top layer (layer 1), followed by all the nodes one lop away
from node 1 as layer 2, then by all the nodes two hops away
from node 1 as layer 3, and so on, until layer (d1 + 1) which
contains all the nodes d1 hops away from node 1. All other
nodes (i.e., nodes outside of G1(d1)) are lumped into layer
d1 + 2. This graph can then be redrawn again as a line graph
Gl(i.e., Fig. 4(b)) by grouping all the nodes in layer i as a
super node i (denoted by SN i) with state x̌i which is formed
by stacking up all the states in layer i. In particular, x̌1 = x1.
The self measurement for super node i will be denoted by ži,
i = 1, 2, . . . , di +2, and the edge measurement between super
nodes i and i+1 will be denoted by ži,i+1, i = 1, 2, . . . , di+1.
The notations of Či, Či,j , Ři and Ři,j are similarly defined.
For notational simplicity, we denote d1 + 2 by n.

i

1u 2u 3u

1s 2s

1w 2w 3w 4w

1SN

2SN

3SN

4SN

Fig. 4. Conversion of a graph with d1 = 2 into a 4-layer line graph

Denoting x̌ = col{x̌1, x̌2, . . . , x̌n}, we have the following
result on the maximum likelihood estimate for x̌ in the
trimmed line graph Gl(i.e., Fig. 4(b)).

Lemma 7. The maximum likelihood estimate x̌ML for x̌ is
given by the solution of

Ax̌ML = B, (30)

where A > 0 is a tri-diagonal block matrix defined by

A11 = ČT
1 Ř
−1
1 Č1 + ČT

1,2Ř
−1
1,2Č1,2

Aii = ČT
i Ř
−1
i Či + ČT

i,i+1Ř
−1
i,i+1Či,i+1

+ ČT
i,i−1Ř

−1
i−1,iČi,i−1, i = 2, . . . , n− 1

Ann = ČT
n Ř
−1
n Čn + ČT

n,n−1Ř
−1
n−1,nČn,n−1

Ai(i+1) = ČT
i,i+1Ř

−1
i,i+1Či+1,i, i = 1, 2, . . . , n− 1

A(i+1)i = AT
i(i+1), Aij = 0, |i− j| > 1,

and B = col{B1, B2, . . . , Bn} with

B1 = ČT
1 Ř
−1
1 ž1 + ČT

1,2Ř
−1
1,2ž1,2

Bi = ČT
i Ř
−1
i ži + ČT

i,i−1Ř
−1
i−1,iži−1,i

+ ČT
i,i+1Ř

−1
i,i+1ži,i+1, i = 2, . . . , n− 1

Bn = ČT
n Ř
−1
n žn + ČT

n,n−1Ř
−1
n−1,nžn,n−1.

Proof. Given in Lemma 7 of the full version [23].

Next we give an alternative characterization for the state
estimate x̂1(d1).

Lemma 8. Under Assumption 1, the state estimate x̂1(d1)
from Algorithm 1 is given by the first block of x̌ which solves

Ax̌ = B, (31)

where A is obtained from A by removing its last row block
and last column block, and B is obtained from B by removing
its last row block.

Proof. Given in Lemma 8 of the full version [23].

The next result characterizes the estimation error of the state
estimate x̂1(d1).

Lemma 9. Let ∆x1(d1) = x̂1(d1) − xML
1 be the estimation

error for node 1. Then, under Assumption 1, we have

∆x1(d1)

=(−Ã−1
11 A12) . . . (−Ã−1

(n−1)(n−1)A(n−1)n)x̌ML
n , (32)

where

Ã11 = A11,

Ãii = Aii −AT
(i−1)iÃ

−1
(i−1)(i−1)A(i−1)i

for all i = 2, . . . , n− 1.

Proof. Given in Lemma 9 of the full version [23].

Theorem 5. Under Assumption 1, for node 1 in the graph G
with cycle-free depth d1, we have

∆x1(d1)TQ1(1)∆x1(d1) ≤ κηd1 , (33)
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with η < 1 defined in (14) and

κ =
∑
(t,j)

(xML
j )TCT

j,tR
−1
t,jCj,tx

ML
j

where (t, j) are such that node t is d1 hops away from node
1 and node j is connected to node t but d1 + 1 hops away
from node 1.

Proof. Given in Theorem 5 of the full version [23].

Similar to that in Corollary 1, the accuracy of ∆x1(∞) is
given in the Corollary 2.

Corollary 2. Let2

B(k) = Q1/2(k + 1)A(k)Q−1/2(k)

with A(k) defined in (27) and

Q(k) = diag (Qi→i,j(k) : (i→ i, j) ∈ S) .

Denote the maximum eigenvalue of B(∞) by β =
eig (B(∞)) < 1. Under Assumption 1, if d1 is large enough
so that ρd1−1 ' 0 and βd1−1 ' 0, then

‖∆x1(∞)‖2 . κηd1
∥∥Q−1

1 (1)
∥∥ .

Proof. Given in Corollary 2 of the full version [23].

Remark 7. The results in Theorem 5 and Corollary 2 show in a
very quantitative way that the accuracy of the state estimate de-
pends explicitly on 1) The number of links connecting Gi(di)
and outside; 2) the “size” of the state for each such node as
measured by (xML

j )TCT
j,tR

−1
t,jCj,tx

ML
j ≈ xTj C

T
j,tR

−1
t,jCj,txj ;

3) the decay rate η; 4) cycle-free depth di. Accurate state
estimates require a combination of fast decay rate, large cycle-
free depth, small number of links connecting the inside and
outside of the cycle-free region, and small state ”sizes” for
such nodes.

VIII. CONCLUSION

In this paper, a BP-based distributed static estimator for
large-scale networked systems is expressed in Algorithm 1. By
viewing its iterations as a dynamic process, we have carried
out a complete analysis for its convergence and accuracy.
We have given conditions under which the Algorithm 1
is guaranteed to converge, and we have provided concrete
characterizations of its accuracy. The influence of the so-called
cycle-free depth of each node to the accuracy is exploited.
As explained in the Remark 5, the Algorithm 1 can also be
effective in the dynamic state estimation by running several
iterations during the time update of system sampling. Our
results are expected to yield a theoretical understanding of
the distributed state estimation and may generate more appli-
cations for this powerful algorithm.

2recall from Section V that S is an ordered sequence of all (i → i, j)
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