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A Barycentric Coordinate-Based Approach to
Formation Control Under Directed and

Switching Sensing Graphs
Tingrui Han, Zhiyun Lin, Senior Member, IEEE, Ronghao Zheng, and Minyue Fu, Fellow, IEEE

Abstract—This paper investigates two formation control
problems for a leader–follower network in 3-D. One is called
the formation marching control problem, the objective of which
is to steer the agents to maintain a target formation shape while
moving with the synchronized velocity. The other one is called
the formation rotating control problem, whose goal is to drive the
agents to rotate around a common axis with a target formation.
For the above two problems, we consider directed and switch-
ing sensing topologies while the communication is assumed to
be bidirectional and switching. We develop approaches utilizing
barycentric coordinates toward these two problems. Local con-
trol laws and graphical conditions are acquired to ensure global
convergence in both scenarios.

Index Terms—Barycentric coordinate, formation control,
leader–follower network, switching sensing graph.

I. INTRODUCTION

FORMATION control has attracted much interest due to its
tremendous engineering applications [1]. Recently, many

works have been reported on this topic such as [2]–[4], some
of which focus on swarm and flocking [5]–[7], containment
control [8]–[10] and achieving a given pattern [11]–[16].

In the light of the kind of sensed variables for formation
control, the reference [17] divides the existing literature into
three categories, that is, position-, displacement-, and distance-
based control, which are outlined as follows.
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A. Position-Based Control

Each agent is able to sense its position in a global coordinate
system, then it is controlled to reach a target formation, which
is prescribed by the desired position in the global coordinate
system.

B. Displacement-Based Control

Each agent is able to sense the relative positions of its
neighbors in a global coordinate system, then it is con-
trolled to reach a target formation, which is prescribed by
the desired displacements in the global coordinate system.
Thus, displacement-based control requires that the axes of
the agents’ local coordinate systems should have the same
orientations.

C. Distance-Based Control

Each agent is able to sense the relative positions of its neigh-
bors in its own local coordinate system, then it is controlled
to reach a target formation, which is prescribed by the desired
interagent distances. This indicates that the agents do not need
to have a common orientation of local coordinate systems.

Most recently, an approach based on barycentric coordinates
for formation shape control is introduced in [18]–[20] which
can be executed in local frames. This is because the barycentric
coordinate is a geometric notion characterizing the relative
positions of a point with respect to other points in absence of
the global frame [21]. We sum up the barycentric-coordinate-
based control as below.

D. Barycentric-Coordinate-Based Control

Each agent is able to sense the relative positions of its
neighbors in its own local coordinate system like the one
for distance-based control, and is controlled to reach a tar-
get formation, which is prescribed by the desired barycentric
coordinates of every agent with respect to its neighbors.

As a comparison, the barycentric-coordinate-based control
requires less advanced sensing capability than position-based
and displacement-based control, and needs less interactions
among agents than distance-based control, as shown in Fig. 1.

Along the recent research based on barycentric coordi-
nates, [18] and [19] adopt complex barycentric coordinates
to solve the formation control problem in 2-D. Later on, the
work [20] implements real barycentric coordinates to settle
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Fig. 1. Sensing capability versus interactions.

the formation control problem in higher dimensions. In the
existing works mentioned above, [18] and [20] both assume
that the sensing topology is fixed. However, discussing switch-
ing topologies becomes more attractive due to the existence of
sensing failure. From this perspective, [19] considers switching
topologies, but only a peculiar switching signal is discussed,
that is, an agent can either sense all its neighbors or sense
none of them. Besides, the developed controller in [19] is not
fully distributed because the computation of some parame-
ters involves the knowledge concerning the whole network.
Motivated by this need, our previous work [22] studies the
formation control problem over switching topologies for a
leader–follower network under the premise that the followers
lie in the convex hull spanned by the leaders in the target con-
figuration. The controller in [22] is fully distributed, however,
a convexity assumption is imposed on the desired formation
shape, which limits the applicability.

In this paper, we aim to remove the convexity assumption
in [22] by allowing the interaction weights to be negative,
which makes the setup general enough to include any desired
formation pattern. According to the practical demand in engi-
neering, two formation control problems are investigated in
this paper, namely, formation marching control problem and
formation rotating control problem. The task of formation
marching is to drive the agents to realize any target forma-
tion while moving with the synchronized velocity. Formation
marching can be often seen in UAVs maneuvering and tar-
get detecting. The goal of formation rotating is to steer the
agents to move around a common axis with any specified
formation shape. Formation rotating control can find many
useful applications such as satellites and spacecrafts flying
around the earth and circular mobile sensor networks col-
lecting measurements [23]–[25]. References [26], [27] study
formation rotating control problems, where Lin et al. uti-
lized the Lyapunov-based approach, which, however, is only
workable for undirected and fixed topologies. In this paper,
although considering directed and switching scenarios, we can
also show that the formation rotating control can be achieved
by utilizing the barycentric-coordinate-based control.

To overcome the difficulties induced by switching topolo-
gies for the above two problems, a communication graph is
introduced and an auxiliary state information is exchanged,
with which a fully distributed control law is developed for

each problem. To show global convergence toward the desired
formation shape under switching topologies, the idea of per-
sistent excitation is adopted. With this method, the graphical
conditions are obtained to ensure that all the agents are able to
globally converge to the desired formation. As the first attempt
to develop the barycentric-coordinate-based control for gen-
eral switching topologies, single-integrator kinematic model
for each agent is considered in this paper. With the purpose
of extending the results to the second-order cases or more
complex agent dynamics, one way is to take advantage of the
backstepping philosophy, that is to say, design the accelera-
tion input such that the velocity signal in the second-order case
converges to the designed velocity input in the paper [20].

The rest of this paper is organized as follows. We review
some preliminaries about graph theory in Section II and two
formation control problems are formulated in Section III. We
develop a control law for the formation marching control and
prove its convergence in Section IV. Moreover, a control law
is proposed for the formation rotating control and its sta-
bility is analyzed in Section V. Three simulation examples
are presented in Section VI to validate our theoretical results.
Section VII concludes this paper and points out possible future
research.

Notation: R represents the set of real numbers. Denote 1n

the n-dimensional vector of ones and In the identity matrix of
order n. The symbol ⊗ is the Kronecker product.

II. PRELIMINARIES

A directed graph is defined by G = (V, E), which consists
of a vertex set V of elements called nodes and a set E ⊂ V×V
of ordered pairs of nodes called edges. For each node i ∈ V ,
denote N+

i = {j ∈ V : ( j, i) ∈ E} the set of its in-neighbors
while N−

i = {h ∈ V : (i, h) ∈ E} represents the set of its
out-neighbors.

An n × n Laplacian matrix L corresponding to a directed
graph G is defined as

L(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

−wij if i �= j and j ∈ N+
i

0 if i �= j and j �∈ N+
i∑

k∈N+
i

wik if i = j

where L(i, j) is the (i, j)-th entry of L and wij ∈ R\{0} is called
the weight on edge ( j, i).

For a directed graph G = (V, E), a node v is said to be
k-reachable from a subset R ⊂ V if there exists a path from
a node in R to node v after deleting any k − 1 nodes except
node v.

A time-varying graph is defined as G(t) = (V, E(t)), rep-
resenting a graph with its edge set changing over time. The
union graph G([t1, t2]) is defined by

G([t1, t2]) =
⎛

⎝V,
⋃

t∈[t1,t2]

E(t)

⎞

⎠.

For a time-varying graph G(t), a node v is called jointly k-
reachable from a set R if there exists T > 0 such that for all
t, node v is k-reachable from R in the union graph G([t, t+T)),
where T is called the period.
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For a graph G = (V, E), a spanning k-tree of G rooted at
R = {r1, r2, . . . , rk} ⊂ V is a subgraph of G such that:

1) every node r ∈ R has no in-neighbor;
2) every node v /∈ R has k in-neighbors;
3) every node v /∈ R is k-reachable from R.
For a graph G = (V, E), a spanning k-forest of G rooted at

R = {r1, r2, . . . , rm} ⊂ V with m ≥ k is a subgraph of G such
that:

1) every node r ∈ R has no in-neighbor;
2) every node v /∈ R has k in-neighbors;
3) every node v /∈ R is k-reachable from R.
Remark 1: We would like to mention that a spanning k-tree

has exactly k roots while a spanning k-forest may have more
than k roots.

A configuration in R
3 of n nodes is defined by their coor-

dinates in R
3, denoted as p = [pT

1, . . . , pT
n]T ∈ R

3n, where
pi ∈ R

3 for i = 1, . . . , n. Moreover, we say p is generic if the
coordinates p1, . . . , pn do not satisfy any nontrivial algebraic
equation with integer coefficients [28].

A framework in R
3 is a graph G equipped with a configu-

ration p, denoted as (G, p). Two frameworks (G, p) and (G, q)
are called similar if

pi − pj = γA
(
qi − qj

)
for all i, j ∈ V

where γ > 0 is a scaling factor and A is a unitary matrix.
For a matrix A ∈ R

n×n, the associated graph is defined as
G(A), which has n nodes labeled by 1, . . . , n, and an edge
( j, i) exists if and only if the (i, j)-th entry of A is nonzero.

III. PROBLEM FORMULATION

In engineering applications, agents may perform marching
when maneuvering and searching target. Moveover, in some
scenarios, agents may execute circular motions such as flying
around a landmark. Thereby, two specific problems toward
formation control will be studied in this paper. One of them
is called the formation marching control problem, the goal of
which is to steer the agents to form a target formation shape
while moving with the synchronized velocity. The other one is
called the formation rotating control problem, whose objective
is to drive the agents rotating around a common axis with a
target formation shape.

Measurements between agents may be unidirectional due
to the limit of equipped devices such as cameras which only
have a conical field of vision. In addition, measurements may
fail sometimes due to severe environment factors. So a more
general setup with directed and switching sensing graphs is
adopted to model the multiagent systems in this paper.

We consider a leader–follower network of N agents in the
three dimensions, where there are m leaders labeled from 1 to
m and N−m followers labeled from m+1 to N. Define a target
configuration p = [pT

l , pT
f ]T ∈ R

3N for all the agents where
pl = [pT

1, . . . , pT
m]T aggregates the states of the leaders while

pf = [pT
m+1, . . . , pT

N]T aggregates the states of the followers.
Throughout this paper, a vector notation equipped with the
subscript l is used to represent the aggregated state for the
leaders and likewise f is used for the followers.

Denote the global coordinate system by �g and the agent
i’s local coordinate system by �i. Let zi ∈ R

3 be the 3-D
position of agent i in the global frame �g. Moreover, let z(i)j
be the value of agent j’s position in agent i’s local frame �i,
and from now on we use the superscript (i) to represent the
value in �i. Let Oi be the origin of �i in �g, that is, O(i)i = 0.
Define Ri the rotation matrix from �i to �g, i.e., zj − Oi =
Ri(z

(i)
j − O(i)i ), j ∈ V. Furthermore, define Rij the rotation

matrix from �j and �i, i.e., z(i)j − O(i)j = Rij(z
( j)
j − O( j)

j ).

Suppose each agent is governed by the following dynamics:

ż(i)i (t) = u(i)i (t), i = 1, . . . ,N (1)

where ui
i(t) ∈ R

3 represents the control input of agent i.
The leaders are said to be in a similar formation pl if their

positions satisfy

zi(t0) = γApi + c, i = 1, . . . ,m (2)

where A ∈ R
3×3 is a unitary matrix, c ∈ R

3 is a constant vector
implying the translation, and γ > 0 is a scaling factor. We
assume in this paper that the leaders are in a similar formation
pl and we concentrate on devising controllers for the followers.

It is assumed that each agent is provided with sensors such
as cameras and manages to sense the relative positions of its
neighbors in its local frame. A time-varying graph Ḡ(t) =
(V, Ē(t)) is adopted to model the sensing graph, where V =
Vl ∪ Vf with Vl = {1, . . . ,m} and Vf = {m + 1, . . . ,N}. That
is to say, ( j, i) ∈ Ē(t) indicates that agent i has the ability to
sense the relative position of agent j in �i at time t. Let N̄+

i (t)
be the set of agent i’s in-neighbors in graph Ḡ(t) and likewise
N̄−

i (t) denotes the set of agent i’s out-neighbors. Note that
j ∈ N̄+

i (t) if and only if ( j, i) ∈ Ē(t).
Moreover, each agent is assumed to equip devices to com-

municate with other agents. However, the devices implemented
for sensing and communication may be different. Thus, We
adopt another time-varying graph H(t) to model the com-
munication graph, where an edge ( j, i) indicates that agent
j can transmit information to agent i. Usually, devices sup-
port two-way communication and communication distance is
longer than sensing distance, which makes it reasonable to
have the following assumption.

Assumption 1: The communication graph H(t) is bidirec-
tional. Moreover, the communication graph H(t) contains the
sensing graph Ḡ(t) as a subgraph at any time t.

Moreover, the following assumptions are also made
throughout this paper.

Assumption 2: The target configuration p = [pT
l , pT

f ]T is
generic.

Assumption 3: Agent i has access to the rotation matrix
Rij, j ∈ N̄+

i (t).
Assumption 4: The interval between any two switching

instants satisfies a dwell time condition. That is to say, there
exists τD > 0 such that

ti+1 − ti ≥ τD for all i = 0, 1, . . .

if the sensing graph Ḡ(t) switches at t0, t1, t2, . . . .
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Fig. 2. Simple illustrative example for formation marching.

Fig. 3. Simple illustrative example for formation rotating.

A. Formation Marching Control Problem

The objective is to steer all the agents converge to form
a similar formation with a common velocity vr(t). A simple
illustrative example for formation marching is given in Fig. 2.

Let the motion of the leaders be governed by

ż(i)i (t) = v(i)r (t), i = 1, . . . ,m (3)

where v(i)r (t) is the common velocity. Assume that each agent
i, i = 1, . . . ,N, has access to the velocity v(i)r (t).

Remark 2: For the situation that v(i)r (t) is only known to a
subset of the followers, some techniques can be included to
make it possible (see [22]).

For simplicity of analysis, we write (3) in �g as

żi(t) = vr(t), i = 1, . . . ,m. (4)

We next give the precise definition about achieving a similar
formation for the formation marching control.

Definition 1: A similar formation p = [pT
l , pT

f ]T is said to be
globally uniformly asymptotically achieved for the formation
marching control problem if for any δ > 0 and for any ε > 0
there exists T > 0 such that for any t0 and for any zi(t0)
satisfying ‖zi(t0)− γApi − c‖ < δ, i = 1, . . . ,N

(∀t ≥ t0 + T)(∀i)

∥
∥
∥
∥zi(t)− γApi − c −

∫ t

t0
vr(τ )dτ

∥
∥
∥
∥ < ε (5)

where A, c, and γ are determined in (2).
Then we are able to give the description for the forma-

tion marching control problem as below. Suppose the leaders
are in a similar formation pl and governed by (4). Given
Assumptions 1–4 and relative position measurements z(i)j −z(i)i

for j ∈ N̄+
i (t), design a fully distributed control law u(i)i

for each follower i, and find the corresponding graphical
conditions, under which (5) is satisfied.

B. Formation Rotating Control Problem

The objective is to drive all the agents surround a common
axis with a similar formation. We use a unit vector i0 ∈ R

3

which passes a point ρ0 ∈ R
3 to represent this axis, denoted

by i0(ρ0). That is, all the agents finally move on the circular
orbits around i0(ρ0) while keeping a desired formation shape.
A simple illustrative example for formation rotating is shown
in Fig. 3.

Fig. 4. Geometric explanation for the orthogonal projection operator.

We assume the synchronized angular velocity ω = 1 for
simplicity since it follows the same analysis if ω takes other
values. Moreover, we introduce a new coordinate system �i′
for each agent i such that the z-axis of �i′ is parallel to i0.
Let �i′ and �i share the common origin. The rotation matrix
from �i to �i′ is denoted as Ri′i ∈ R

3×3, that is, z(i
′)

i = Ri′iz
(i)
i ,

where the superscript (i′) represents the value in �i′ .
Remark 3: Notice that we do not define the x-axis and y-

axis of �i′ explicitly, so Ri′i can take different values. However,
it does not affect the analysis and conclusions.

The next assumption is required to achieve formation
rotating.

Assumption 5: Each leader i manages to sense the relative
position ρ(i)0 −z(i)i and each agent i has access to the vector i(i)0 .

Remark 4: For the situation that the vector i(i)0 is only
known to a subset of the agents, i(i)0 can be known to all the
agents through communication if Assumption 3 holds.

Let the motion of the leaders be governed by

ż(i)i = −R−1
i′i R

(π

2

)
Ri′iP

(
i(i)0

)(
ρ
(i)
0 − z(i)i

)
, i = 1, . . . ,m

(6)

where the function P(x) is the orthogonal projection operator
on the unit vector x defined by P(x) = I − xxT. Geometrically,
P(x) is an orthogonal projection matrix that projects any vec-
tor onto the orthogonal compliment of x. See Fig. 4 for an
illustration. And R(π/2) is attained by the rotation matrix

R(·) =
⎡

⎣
cos(·) − sin(·) 0
sin(·) cos(·) 0

0 0 1

⎤

⎦.

Denote Ri′ the rotation matrix from �i′ to �g, that is,

zj − Oi′ = Ri′(z
(i′)
j − O(i

′)
i′ ), j ∈ V. Then we can write the

dynamics (6) in the global frame �g as

żi = −R−1
i′ R

(π

2

)
Ri′P(i0)(ρ0 − zi), i = 1, . . . ,m. (7)

Remark 5: Note that the dynamics (7) indicates that every
leader moves surrounding i0(ρ0) anticlockwise (looking along
the negative direction of i0) with the angular velocity ω = 1.

We next give the formal definition about achieving the
similar formation for the formation rotating control problem.

Definition 2: A similar formation p = [pT
l , pT

f ]T is said to be
globally uniformly asymptotically achieved for the formation
rotating control problem if for any δ > 0 and for any ε > 0
there exists T > 0 such that for any t0 and for any zi(t0)
satisfying ‖zi(t0)−γApi −c‖ < δ, i = 1, . . . ,N, then it holds
that for all t ≥ t0 + T

∥
∥
∥zi(t)− R−1

i′ R(t − t0)Ri′(γApi + c − ρ0)− ρ0

∥
∥
∥ < ε (8)

where A, c, and γ are determined in (2).
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Now, we can give the description for the formation rotating
control problem. Suppose that the leaders are already in a sim-
ilar formation pl and governed by (6). Given Assumptions 1–5
and relative position measurements z(i)j − z(i)i for j ∈ N̄+

i (t),

design a fully distributed control law u(i)i for each follower
i, and find the corresponding graphical conditions, under
which (8) is satisfied.

IV. FORMATION MARCHING CONTROL

In this section, we first focus on designing a fully distributed
control law for formation marching control problem. Then
more insight behind the ideas of barycentric-coordinate-based
control is introduced. At last, we conduct the convergence
analysis for the whole leader–follower network under the
proposed control law.

A. Distributed Control Law

The basic idea to utilize the barycentric-coordinate-based
control is to establish the barycentric coordinate representa-
tion for each agent i with respect to its in-neighbors. At least
four in-neighbors are necessary to have this representation.
Thus, if |N̄+

i (t)| < 4, then agent i will not make use of
the sensed measurements and just abandon them. In term of
this mechanism, an interaction graph G(t) = (V, E(t)) is
constructed depending on which in-neighbors are chosen to
interact. Denote N+

i (t) the set of agent i’s in-neighbors in G(t)
and N−

i (t) the set of agent i’s out-neighbors. In other words,
if |N̄+

i (t)| < 4, then N+
i (t) = ∅. Otherwise, N+

i (t) = N̄+
i (t).

We develop the following linear switching control law for
each follower i = m + 1, . . . ,N:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ̇i = −1

2
ξi −

∑

j∈N+
i (t)

kij(t)
(

z(i)j − z(i)i

)

ż(i)i = v(i)r (t)−
∑

j∈N+
i (t)

kij(t)ξi +
∑

j∈N−
i (t)

kji(t)Rijξj

(9)

where ξi is an auxiliary state with the values for the leaders
being zero, i.e., ξ1 = · · · = ξm = 0, and kij(t) ∈ R\{0} is the
weight associated with edge ( j, i) in G(t) satisfying

∑

j∈N+
i (t)

kij(t)(pj − pi) = 0. (10)

Remark 6: By Assumption 4 and the design of kij(t)s we
know that kij(t)s are piecewise constant.

Remark 7: Notice that computing kij(t)s from (10) is dis-
tributed and can be carried out by each agent i with known
pi and pj ( j ∈ N+

i (t)). Moreover, z(i)j − z(i)i ( j ∈ N+
i (t))

is acquired by onboard sensors and kjiRijξj ( j ∈ N−
i (t)) is

attained through communication. Thus, the controller (9) is
fully distributed, namely, all the parameters can be determined
in a distributed way. An illustration of information flow includ-
ing sensing and communication is displayed in Fig. 5, where
the solid lines represent the measurements obtained by sen-
sors and the dashed lines stand for the information exchange
through communication.

Fig. 5. Illustration of information flow including sensing and communication
for (9).

Now we define ζi = Riξi and it is obtained that

ζi = Riξ̇i = −1

2
Riξi −

∑

j∈N+
i (t)

kij(t)Ri

(
z(i)j − z(i)i

)

= −1

2
ζi −

∑

j∈N+
i (t)

kij(t)
(
zj − zi

)

and we also have

żi = Riż
(i)
i

= Riv
(i)
r (t)−

∑

j∈N+
i (t)

kij(t)Riξi +
∑

j∈N−
i (t)

kji(t)RiRijξj

= vr(t)−
∑

j∈N+
i (t)

kij(t)ζi +
∑

j∈N−
i (t)

kji(t)ζj.

Hence, the system (9) can be written in the global frame
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ̇i = −1

2
ζi −

∑

j∈N+
i (t)

kij(t)
(
zj − zi

)
,

żi = vr(t)−
∑

j∈N+
i (t)

kij(t)ζi +
∑

j∈N−
i (t)

kji(t)ζj.
(11)

Denote L(t) the Laplacian of G(t) with the weights kij(t)s
computed by (10), which has the following structure:

L(t) =
[

0m×m 0m×(N−m)

Llf (t) Lff (t)

]

. (12)

According to the design of kij(t)s, L(t) satisfies

(L(t)⊗ I3)p = 0 and L(t)1 = 0. (13)

B. Barycentric Coordinate-Based Idea

In this section, we aim to provide more insight behind the
ideas of barycentric-coordinate-based control. To give clearer
explanation about the basic idea, we consider a fixed graph G.

The barycentric coordinate is a geometric notion charac-
terizing the relative position of a point with respect to other
points. In the three dimensions, at least four other points
are needed for a point to have a barycentric coordinate
representation. Recall (10)

∑

j∈N+
i

kij
(
pj − pi

) = 0

where pi has a barycentric coordinate representation with
respect to its in-neighbors, that is

∑

j∈N+
i

kijpi =
∑

j∈N+
i

kijpj.
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The basic idea of barycentric-coordinate-based control is
that each follower drives

∑
j∈N+

i
kij(zj − zi) to zero. The fol-

lowing lemma shows that (L ⊗ I3)z = 0 and det(Lff ) �= 0
indicate that the followers reach the target formation.

Lemma 1: Suppose that the leaders are in a similar forma-
tion. If (L ⊗ I3)z = 0 and det(Lff ) �= 0, then

zf = (IN−m ⊗ γA)pf + 1N−m ⊗
(

c +
∫ t

t0
vr(τ )dτ

)

.

Proof: Note that (L ⊗ I3)p = 0 and L1 = 0. Then we have

(L ⊗ I3)

[

(IN ⊗ γA)p + 1N ⊗ (c +
∫ t

t0
vr(τ )dτ)

]

= (L ⊗ I3)(IN ⊗ γA)p = (L ⊗ γA)p

= (IN ⊗ γA)(L(t)⊗ I3)p = 0.

Since det(Lff ) �= 0, zf solved from (L ⊗ I3)z = 0 is unique.
Therefore, the conclusion follows.

The next lemma provides the fact that if the number of
the leaders is less than 4, then Lff must be singular. Before
that, we denote by L(G) the set of all Laplacian matrices with
nonzero weights on the edges in G. It is true that for any
matrix L ∈ L(G), we have L1 = 0. For a set R ⊂ V , let LR
be the sub-matrix constructed from L by removing the rows
and columns corresponding to R.

Lemma 2: Consider a graph G = (V, E) with n nodes and
generic ξ, ζ, η ∈ R

n. Given the set R = {r1, . . . , rm}, if m <

4, then det(LR) = 0 for any L ∈ {L ∈ L(G) : Lξ = 0,
Lζ = 0,Lη = 0}.

The proof of Lemma 2 is given in the Appendix. The next
theorem presents the relationship between the nonsingularity
of Lff and the topology connectivity of G.

Theorem 1: Consider a graph G = (V, E) with n nodes and
generic ξ, ζ, η ∈ R

n. Given the set R = {r1, . . . , rm} with
m ≥ 4, the following statements are equivalent.

1) Every node in V\R is 4-reachable from R.
2) For almost all1 L ∈ {L ∈ L(G) : Lξ = 0,Lζ = 0,

Lη = 0}, all the principal minors of LR are nonzero.
The proof of Theorem 1 is stated in the Appendix.
Remark 8: The basic idea of displacement-based control is

to run consensus on zi − pi for every agent where pi is the
target configuration. Thus, displacement-based control asks
for the common orientation of all the local frames due to
the presence of pi. However, the main idea of barycentric-
coordinate-based control is to drive

∑
j∈N+

i
kij(zj − zi) to

zero, where p is only used to compute kij. As a conse-
quence, barycentric-coordinate-based control makes it possible
to devise coordinate-free control laws. Moreover, Lemma 1
shows that the leaders are able to reconfigure the formation
shape while the followers can only act as dummies, which
cannot be achieved by displacement-based control.

Remark 9: Distance-based control utilizes nonlinear local
constraints, which only guarantees local asymptotic con-
vergence and is nonrobust with respect to distance mis-
matches [30]. Global convergence based on distance-based
control is only available for some special graphs [31] while

1The phrase “for almost all” means “for all values except those in some
proper algebraic variety with Lebesgue measure zero” [29].

barycentric-coordinate-based control makes global conver-
gence possible for more general graphs by using linear
distributed control laws. Moreover, barycentric-coordinate-
based control requires less edges to achieve a target for-
mation shape than distance-based control. Specifically, for
distance-based control, the underlying graph needs to be glob-
ally rigid, which requires more links between leaders and
followers compared with the graphical condition presented
in Theorem 1.

C. Stability Analysis

In this section, we provide the convergence analysis for
the whole system under the controller (11) for the formation
marching control problem.

Define z and ζ the aggregated vectors of all zis and ζis,
respectively. Under the distributed control law (11), the overall
closed-loop system can be written as
[

ż
ζ̇

]

=
([

0 −H(t)
L(t) −U

]

⊗ I3

)[
z
ζ

]

+
[

1N

0

]

⊗ vr (14)

where

H(t) =
[

0 0
0 LT

ff (t)

]

, U =
[

0 0
0 1

2 IN−m

]

.

The next theorem provides graphical conditions to ensure
global convergence for the whole system.

Theorem 2: Under control law (11), for almost all chosen
weights, a similar formation p = [pT

l , pT
f ]T can be globally

uniformly asymptotically achieved for the formation marching
control problem if the following two conditions hold.

1) Every follower is jointly 4-reachable from Vl in the
interaction graph G(t) with period T .

2) For any t and any follower i, there exists t′i ∈ [t, t + T)
such that NF

i ⊆ N+
i (t

′
i), where F is a spanning 4-forest

rooted at Vl in the union graph G([t, t + T)) and NF
i

represents the set of is in-neighbors in F .
Before presenting technical proof for Theorem 2, we

develop the next lemma and introduce a lemma summarized
from [32] which provides a persistently exciting condition
ensuring exponential stability for switching systems.

Given generic ξ, ζ, η ∈ R
n, denote 
i(F) = {L(i, :) : L ∈

L(F),Lξ = 0,Lζ = 0,Lη = 0} and 
i(G) = {L(i, :) : L ∈
L(G),Lξ = 0,Lζ = 0,Lη = 0}, where L(i, :) represents the
i-th row of L.

Lemma 3: Consider a graph G = (V, E) with n nodes and
a set R = {r1, . . . , rm} where m ≥ 4. Suppose that every node
in V\R is 4-reachable from R and F is a spanning 4-forest
rooted at R. If for any node i it holds that �i is a subspace
satisfying 
i(F) ⊂ �i ⊂ 
i(G), then for almost all2 L formed
by L(i, :) ∈ �i, all principal minors of LR are nonzero.

We postpone the proof of Lemma 3 to the Appendix.
Denote the set T� = {ti} of elements in [0,∞), where there

exists a positive � such that for all ti, tj ∈ T� (ti �= tj), it holds
that |ti − tj| ≥ �. Furthermore, let � be the set of functions

2The phrase “for almost all L” can be understood by “for almost all kijs
used to construct L.”
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v(·) defined on [0,∞), where for every v(·) there exists T�
such that:

1) v(t) and v̇(t) are continuous and bounded on [0,∞)\T�;
2) v(t) and v̇(t) have finite limits as t → t+i and t → t−i ,

where ti ∈ T�.
Lemma 4 [32]: Let V(·) : R+ → R

n×r be a regulated
matrix function (one-sided limits exist for all t ∈ R+), and
satisfy for some positive δ and α1, and all t ∈ R+

∫ t+δ

t
‖V(τ )‖2dτ < α1. (15)

Suppose also that the entries of V(·) lie in �. Let M be a real
constant n × n matrix with M + MT = −In and let B be a real
constant n × r matrix with rank r. Then

ẋ =
[

0 −VBT

BVT M

]

x (16)

is exponentially stable if and only if for some positive δ and
α2, and all t ∈ R+

∫ t+δ

t
V(τ )VT(τ )dτ ≥ α2I. (17)

Lemma 5 [33]: Consider m matrices A1, . . . ,Am ∈ R
n×n.

If rank(A1 + A2 + · · · + Am) = n, then the matrix AT
1A1 +

AT
2A2 + · · · + AT

mAm is positive definite.
Proof of Theorem 2: Denote y = z − 1N ⊗ ∫ t

t0
vr(τ )dτ and

the system (14) becomes
[

ẏ
ζ̇

]

=
([

0 −H(t)
L(t) −U

]

⊗ I3

)[
y
ζ

]

. (18)

Since the fact

(L(t)⊗ I3)
[
(IN ⊗ γA)p + 1N ⊗ c

]

= (L(t)⊗ γA)p = (IN ⊗ γA)(L(t)⊗ I3)p = 0

we get that
{

y∗ = (IN ⊗ γA)p + 1N ⊗ c
ζ ∗ = 0

(19)

is an equilibrium point of system (18), which implies that
{

z∗(t) = (IN ⊗ γA)p + 1N ⊗
(

c + ∫ t
t0

vr(τ )dτ
)

ζ ∗ = 0

is an equilibrium solution of system (14).
Recall that the leaders are in a similar formation, that is

to say, yl(t) = y∗
l . Apply the coordinate transformation ef =

yf − y∗
f for the followers and we have
[

ėf

ζ̇f

]

=
([

0 −LT
ff (t)

Lff (t) − 1
2 In

]

⊗ I3

)[
ef

ζf

]

. (20)

Notice that the system (20) can be derived by substituting

x =
[

ef

ζf

]

,M = −1

2
In ⊗ I3,B = In ⊗ I3, and V = LT

ff ⊗ I3

into (16) in Lemma 4. In what follows, we prove that all the
conditions described in Lemma 4 are satisfied.

Suppose the graph G(t) switches at t0, t1, t2, . . .. From
Assumption 4 we know that ti+1 − ti ≥ τD for all i =
0, 1, 2 . . . . Moreover, we are always able to find a τM > τD

large enough such that ti+1 − ti ≤ τM for all i = 0, 1, 2, . . . . If
for some interval [ti, ti+1) there is no such a τM , then [ti, ti+1)

can be partitioned to satisfy this condition.
Suppose every follower is jointly 4-reachable from Vl. Then

there exits T > 0 such that every follower is 4-reachable from
Vl in the union graph G([t, t + T)) for all t.

Since Lff (t) is piecewise constant, it is obtained that Lff (t)
is regulated. We choose δ as δ = T + 2τM. Since kij(t)s are
taken from a finite set, we attain that ‖Lff (t)‖2 is uniform
upper-bounded, which indicates that there exists a positive α1
such that for all t, it holds that

∫ t+δ

t
‖LT

ff (τ )‖2dτ < α1.

Therefore, according to Lemma 4, it remains to show that there
exists a positive α3 such that for all t, it holds that

∫ t+δ

t
LT

ff (τ )Lff (τ )dτ ≥ α3I. (21)

In the following, we will prove that (21) is satisfied.
Considering any t, without loss of generality, denote t ∈
(tl1, tl1+1] and t + δ ∈ [tl2, tl2+1). We let

W :=
∫ t+δ

t
LT

ff (τ )Lff (τ )dτ.

Moreover, we define

H := LT(tl1+1)L(tl1+1)+ · · · + LT(tl2−1)L(tl2−1)

and

X := L(tl1+1)+ · · · + L(tl2−1).

Thus, for almost all L(t), the inequality

L(tk)(i, j) �= 0, k = l1 + 1, . . . , l2 − 1

leads to the fact that X(i, j) �= 0, which implies that

G(X) = G(L(tl1+1)) ∪ · · · ∪ G(L(tl2−1)).

Furthermore, it is also known that

G([tl1+1, tl2)) = G(L(tl1+1)) ∪ · · · ∪ G(L(tl2−1)) = G(X).

Since (X ⊗ I3)p = 0 and X1N = 0, the matrix X can be also
regarded as a Laplacian matrix with the following structure:

[∗ ∗
∗ Xff

]

where Xff = Lff (tl1+1)+ · · · + Lff (tl2−1).

Due to tl1+1 − t ≤ τM and t + δ − tl2 ≤ τM , we have tl2 −
tl1+1 ≥ T. Hence, every follower is 4-reachable from Vl in the
union graph G([tl1+1, tl2)). According to the second graphical
condition in Theorem 2, G([tl1+1, tl2)) has a spanning 4-forest
F and NF

i ⊆ Ni(t′) for some t′ ∈ [tl1+1, tl2). Thus, we can
infer that for each i, the set {X(i, :)} induced by all possible
Xs satisfies {L(i, :) : L ∈ L(F), (L ⊗ I3)p = 0} ⊂ {X(i, :)}.
Then it follows from Lemma 3 that:

det
(
Xff
) �= 0. (22)
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Now we come to look at H which has the following form:

[∗ ∗
∗ Hff

]

where

Hff = LT
ff (tl1+1)Lff (tl1+1)+ · · · + LT

ff (tl2−1)Lff (tl2−1).

By Lemma 5 and the inequality (22), it is certain that

det
(
Hff
) �= 0.

Together with the fact that Hff is positive semi-definite, it can
be obtained that Hff is positive definite.

Note that the matrix W can be written as

W = LT
ff (tl1)Lff (tl1)(tl1+1 − t)

+ LT
ff (tl1+1)Lff (tl1+1)(tl1+2 − tl1+1)+ · · ·

+ LT
ff (tl2−1)Lff (tl2−1)(tl2 − tl2−1)

+ LT
ff (tl2)Lff (tl2)(t + δ − tl2).

Since we have shown that Hff is positive definite, in implies
that for any vector v �= 0 it holds that vTHff v > 0. So it can
be easily obtained that for any vector v �= 0, it holds that
vTWv > 0. Thus, W is also positive definite. To prove (21)
holds, it is required to show that the smallest eigenvalue of W
is uniform lower bounded on t.

Notice that Lff (t)s are taken from a finite set. Moreover, the
number of switches during [t, t + δ) is not more than �δ/τD�,
which indicates that H is also taken from a finite set. Since
for all i = 0, 1, 2, . . . , it holds that τD ≤ ti+1 − ti ≤ τM.

Moreover, it is also known that 0 ≤ tl1+1 − t ≤ τM and 0 ≤
t + δ − tl2 ≤ τM. Hence, we can infer from the expression of
W that there exists α3 > 0 such that for all t

W ≥ α3I.

Thus, the state [eT
f , ζ

T
f ]T will converge to zero exponen-

tially, which equivalently indicates that zf converges to z∗
f

exponentially. Therefore, the conclusion follows.
Remark 10: Considering static topologies, it follows from

Theorem 1 that the graphical condition that every follower
is 4-reachable from Vl is necessary for global convergence
under (9). Moreover, we can infer from Theorem 2 that this
graphical condition is also sufficient since for static topologies
condition (1) implies condition (2). To sum up, 4-reachability
is necessary and sufficient for static topologies to ensure con-
vergence. For switching topologies, Theorem 2 shows that
the graph does not need to satisfy 4-reachability all the time.
It only requires that the union graph satisfies the conditions
frequently, which is much milder.

V. FORMATION ROTATING CONTROL

In this section, we first develop a fully distributed con-
trol law for the formation rotating control problem and then
analyze its stability.

A. Distributed Control Law

In this section, a fully distributed control law is proposed
for the formation rotating control problem.

Let ηi be the estimation of ρ(i)0 − z(i)i for every agent i.
Indeed, for the leaders, we have ηi = ρ

(i)
0 − z(i)i . Then we give

the following estimation algorithm for each follower i:

η̇i = −ż(i)i +
∑

j∈N+
i (t)

(z(i)j − z(i)i + Rijηj − ηi). (23)

Define xi = Riηi and we obtain that

ẋi = Riη̇i = −Riż
(i)
i +

∑

j∈N+
i (t)

Ri

(
z(i)j − z(i)i + Rijηj − ηi

)

= −żi +
∑

j∈N+
i (t)

(
zj − zi + RiRijηj − xi

)

= −żi +
∑

j∈N+
i (t)

(
zj − zi + xj − xi

)
.

Thus, the algorithm (23) can be written in �g as

ẋi = −żi +
∑

j∈N+
i (t)

(
zj − zi + xj − xi

)
. (24)

Lemma 6: Under (24), for each follower i, xi globally uni-
formly asymptotically converges to ρ0 −zi if and only if every
follower is jointly reachable from the leaders.

Proof: Let yi = xi − (ρ0 − zi) and it is known that yi = 0
for i = 1, . . . ,m. Moreover, we attain that

ẏi = ẋi + żi =
∑

j∈N+
i (t)

(
yj − yi

)
, i = m + 1, . . . ,N. (25)

Notice that (25) is the well-known consensus algorithm with
the states of the leaders being zero. With the same technique
used in the proof of [22, Th. 5.1], we directly obtain that yi

uniformly asymptotically converges to zero if and only if every
follower is jointly reachable from the leaders.

By the transformation yi = xi − (ρ0 − zi) we can rewrite the
controller (7) as

żi = −R−1
i′ R

(π

2

)
Ri′P(i0)xi, i = 1, . . . ,m. (26)

Next, we are able to propose the controller for the followers:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż(i)i = −R−1
i′i R

(π

2

)
Ri′iP

(
i(i)0

)
ηi −

∑

j∈N+
i (t)

kij(t)ξi

+
∑

j∈N−
i (t)

kji(t)Rijξj,

ξ̇i = −R−1
i′i R̂Ri′iξi − 1

2
ξi −

∑

j∈N+
i (t)

kij(t)
(

z(i)j − z(i)i

)

(27)

where

R̂ =
⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦

and kijs are designed in the same way as the control law (11).
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Define ζi = Riξi and we derive that

ζ̇i = Riξ̇i = −RiR
−1
i′i R̂Ri′iR

−1
i Riξi − 1

2
ζi

−
∑

j∈N+
i (t)

kij(t)
(
zj − zi

)

= −R−1
i′ R̂Ri′ζi − 1

2
ζi −

∑

j∈N+
i (t)

kij(t)
(
zj − zi

)
.

Moreover, we also have

żi = Riż
(i)
i = −RiR

−1
i′i R

(π

2

)
Ri′iP

(
i(i)0

)
ηi

−
∑

j∈N+
i (t)

kij(t)ζi +
∑

j∈N−
i (t)

kji(t)ζj

= −R−1
i′ R

(π

2

)
Ri′P(i0)xi

−
∑

j∈N+
i (t)

kij(t)ζi +
∑

j∈N−
i (t)

kji(t)ζj.

Hence, the control law (27) can be written in the global
coordinate system by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

żi = −R−1
i′ R(

π

2
)Ri′P(i0)xi −

∑

j∈N+
i (t)

kij(t)ζi

+
∑

j∈N−
i (t)

kji(t)ζj

ζ̇i = −R−1
i′ R̂Ri′ζi − 1

2
ζi −

∑

j∈N+
i (t)

kij(t)
(
zj − zi

)
.

(28)

B. Stability Analysis

In this section, we analyze the convergence of the whole
system under the controller (28).

The next theorem presents the same conditions as the ones
in Theorem 2 to guarantee global convergence.

Theorem 3: Under control law (28), for almost all chosen
weights, a similar formation p = [pT

l , pT
f ]T can be globally

uniformly asymptotically realized for the formation rotating
control problem if the following two conditions hold.

1) Every follower is jointly 4-reachable from Vl in the
interaction graph G(t) with period T .

2) For any t and any follower i, there exists t′i ∈ [t, t + T)
such that NF

i ⊆ N+
i (t

′
i), where F is a spanning 4-forest

in the union graph G([t, t + T)) and NF
i represents the

set of i’s in-neighbors in F .
The proof of Theorem 3 requires a lemma concerning

cascade systems.
Lemma 7 [34]: Consider the following nonlinear time-

varying system:

ẋ1 = f1(t, x1)+ g(t, x)x2 (29)

ẋ2 = f2(t, x2) (30)

where x = [xT
1, xT

2]T. The system (29) and (30) is globally
uniformly asymptotically stable if the following conditions are
satisfied.

1) For each r > 0 there exists c̄(r) > 0 such that if
‖x(t0)‖ < r then ‖x(t; t0, x(t0))‖ ≤ c̄(r).

2) System ẋ1 = f1(t, x1) is globally uniformly asymptoti-
cally stable.

3) System (30) is globally uniformly asymptotically stable.
Proof of Theorem 3: Let

ψi = R−1
i′ R(t0 − t)Ri′(zi − ρ0)+ ρ0.

Then for the leaders, we know that

ψ̇i = R−1
i′ Ṙ(t0 − t)Ri′(zi − ρ0)+ R−1

i′ R(t0 − t)Ri′ żi

= R−1
i′ Ṙ(t0 − t)Ri′g(zi − ρ0)− R−1

i′ R(t0 − t)R
(π

2

)
Ri′P(i0)xi

= R−1
i′

⎡

⎣
− sin(t − t0) cos(t − t0) 0
− cos(t − t0) − sin(t − t0) 0

0 0 0

⎤

⎦
(

z(i
′)

i − ρ
(i′)
0

)

+ R−1
i′

⎡

⎣
− sin(t − t0) cos(t − t0) 0
− cos(t − t0) − sin(t − t0) 0

0 0 1

⎤

⎦P
(

i(i
′)

0

)
x(i

′)
i .

With the fact that for the leaders, xi = ρ0 − zi and the z-axis
of �i′ is parallel to i0. Thus, we deduce that ψ̇i = 0.

Next we consider the following:

ψ̇i = R−1
i′ Ṙ(t0 − t)Ri′(zi − ρ0)+ R−1

i′ R(t0 − t)Ri′ żi

= R−1
i′

⎡

⎣
− sin(t − t0) cos(t − t0) 0
− cos(t − t0) − sin(t − t0) 0

0 0 0

⎤

⎦
(

z(i
′)

i − ρ
(i′)
0

)

− R−1
i′ R(t0 − t)R

(π

2

)
Ri′P(i0)(yi + ρ0 − zi)

+ R−1
i′ R(t0 − t)Ri′

⎛

⎜
⎝
∑

j∈N−
i (t)

kji(t)ζj −
∑

j∈N+
i (t)

kij(t)ζi

⎞

⎟
⎠

= −R−1
i′ R(t0 − t)R(

π

2
)Ri′P(i0)yi + R−1

i′ R(t0 − t)Ri′

×
⎛

⎜
⎝
∑

j∈N−
i (t)

kji(t)ζj −
∑

j∈N+
i (t)

kij(t)ζi

⎞

⎟
⎠.

We define

φi = R−1
i′ R(t0 − t)Ri′ζi

and

fi(t) = −R−1
i′ R(t0 − t)R

(π

2

)
Ri′P(i0)yi.

For the leaders, we have ψ̇i = 0 and φ̇i = 0. For the followers,
it is obtained that

φ̇i = R−1
i′ Ṙ(t0 − t)Ri′ζi + R−1

i′ R(t0 − t)Ri′ ζ̇i

= R−1
i′ Ṙ(t0 − t)Ri′ζi + R−1

i′ R(t0 − t)Ri′

×
⎛

⎜
⎝−R−1

i′ R̂Ri′ζi − 1

2
ζi −

∑

j∈N+
i (t)

kij(t)
(
zj − zi

)

⎞

⎟
⎠

= R−1
i′ Ṙ(t0 − t)Ri′ζi − R−1

i′ R(t0 − t)R̂Ri′ζi − 1

2
φi

−
∑

j∈N+
i (t)

kij(t)
(
ψj − ψi

)

= −1

2
φi −

∑

j∈N+
i (t)

kij(t)
(
ψj − ψi

)
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and

ψ̇i =
∑

j∈N−
i (t)

kji(t)φj −
∑

j∈N+
i (t)

kij(t)φi + fi.

Note that ψi(0) = zi(0) and φi(0) = ζi(0). Let
{
ψ∗ = (IN ⊗ γA)p + 1N ⊗ c
φ∗ = 0

and apply the coordinate transformation ef = ψf − ψ∗
f . Then

we obtain
[

ėf

φ̇f

]

=
([

0 −LT
ff (t)

Lff (t) − 1
2 In

]

⊗ I3

)[
ef

φf

]

+
[

ff
0

]

. (31)

We have shown in Section IV that
[

ėf

φ̇f

]

=
([

0 −LT
ff (t)

Lff (t) − 1
2 In

]

⊗ I3

)[
ef

φf

]

is globally uniformly asymptotically stable. Moreover, from
Lemma 6 we also obtain that yi globally uniformly asymp-
totically converges to zero. Consequently, on the basis of
Lemma 7, to complete the proof it only remains to verify
that the condition (1) in Lemma 7 is satisfied.

Let

C(t) =
([

0 −LT
ff (t)

Lff (t) − 1
2 In

]

⊗ I3

)

and

b(t) =
[

ff (t)
0

]

, μ =
[

ef

φf

]

.

For each r > 0, suppose
∥
∥
∥
∥

[
μ(t0)
yf (t0)

]∥
∥
∥
∥ < r

then we know ‖μ(t0)‖ < r and ‖yf (t0)‖ < r. The solu-

tion of (31) can be expressed by μ(t) = e
∫ t

t0
C(τ )dτ

μ(t0) +
∫ t

t0
e
∫ t
τ C(t′)dt′b(τ )dτ. Take norm on both sides and we have

‖μ(t)‖ ≤
∥
∥
∥
∥e
∫ t

t0
C(τ )dτ

∥
∥
∥
∥‖μ(t0)‖ +

∫ t

t0

∥
∥
∥e
∫ t
τ C(t′)dt′

∥
∥
∥‖b(τ )‖dτ.

Since the system (20) is exponentially stable, there must exist

positive k and λ such that ‖e
∫ t

t0
C(τ )dτ‖ ≤ ke−λ(t−t0), which

leads to the fact that

‖μ(t)‖ ≤ ke−λ(t−t0)‖μ(t0)‖ +
∫ t

t0
ke−λ(t−τ)‖b(τ )‖dτ.

Note that every state yi(t) is a convex combination of
y1(t0), . . . , yN(t0) [35, p. 78]. So it is valid that ‖yi(t)‖ < r,
and together with the fact that ‖fi(t)‖ ≤ ‖yi(t)‖, we can infer
that ‖b(t)‖ is upper bounded by a function c̄y(r). Hence, we
have

‖μ(t)‖ ≤ ke−λ(t−t0)‖μ(t0)‖ + c̄y(r)
∫ t

t0
ke−λ(t−τ)dτ

≤ k‖μ(t0)‖ + kc̄y(r)

λ
≤ kr + kc̄y(r)

λ
.

Fig. 6. Target configuration.

Fig. 7. Switching graph G(t) that switches between two graphs.

Fig. 8. Graphs G1 and G2 switch every 10 s.

Therefore, there exists c̄(r) such that

∥
∥
∥
∥

[
μ(t)
yf (t)

]∥
∥
∥
∥ < c̄(r).

Hence, ψi converges to γApi +c globally uniformly asymp-
totically. Equivalently, zi globally uniformly asymptotically
converges to R−1

i′ R(t − t0)Ri′(γApi + c − ρ0) + ρ0. Hence,
the conclusion follows.

Remark 11: To meet Assumption 3, one sufficient condi-
tion is that the orientations of all local coordinate systems
are consistent. However, this is not necessary. For instance,
with extra edges for information exchange, Assumption 3
can be satisfied. Apart from edge ( j, i) ∈ E , by adding
(i, j), (k, j), (k, i) ∈ E , agent i manages to sense zi

j − zi
i and

zi
k − zi

i while j can get zj
i − zj

j and zj
k − zj

j. Then Rij can be
computed by solving the equation as below

⎧
⎨

⎩

z(i)j − z(i)i = −Rij

(
z( j)

i − z( j)
j

)

z(i)j − z(i)i + Rij

(
z( j)

k − z( j)
j

)
= z(i)k − z(i)i .
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Fig. 9. (a) Trajectories of formation marching. (b) Error between the real position and the target position. (c) Error between the true velocity and the target
velocity. (d) Norm of the control input.

Fig. 10. Error between the real position and the target position for the case
T = 20.

VI. SIMULATIONS

In this section, we present three simulation examples to
illustrate our theoretical results.

We consider a system of four leaders which move in a simi-
lar formation and other six followers. The target configuration
p is supposed to be the one in Fig. 6, where the leader set is
Vl = {1, . . . , 4} and the follower set is Vf = {5, . . . , 10}.

We draw the interaction graph G(t) used in the simula-
tions in Fig. 7, and it can be checked that G(t) satisfies

Fig. 11. Formation shape can be reconfigured by the leaders.

the two conditions in Theorems 2 and 3 by selecting the
period as T = 2.

First, we carry out the simulations using the controller (4)
for the leaders and (11) for the followers. A simulation result
is plotted in Fig. 9, where Fig. 9(a) shows the trajectories
of all the agents and the position error, velocity error, and
controller input are plotted in Fig. 9(b)–(d), respectively. There
are glitches in the signals in Fig. 9(c) and (d) since switching
occurs during these time instants. But, we can still see from
the results that the agents globally reach the target similar
formation for the formation marching control.

Moreover, we change the switching signal in Fig. 7 such that
G1 and G2 switch every 10 s, shown in Fig. 8. The position
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Fig. 12. (a) Trajectories of formation rotating. (b) Error between the real position and the target position. (c) Error between the true velocity and the target
velocity. (d) Norm of the control input.

error for this situation is recorded in Fig. 10, from which we
can see that larger period T indicates slower convergence.

Second, we consider a scenario that all the agents have
reached the target similar formation for the formation march-
ing control as shown in Fig. 9(a). Then we impose extra force
on the leaders to change the leaders’ formation shape and also
use the same controller (11) for the followers. A simulation
result is given in Fig. 11, which demonstrates that the for-
mation shape of the whole group can be reconfigured by the
leaders while the followers only act as dummies.

Third, we adopt the control law (7) for the leaders and (28)
for the followers. A simulation result is plotted in Fig. 12,
where Fig. 12(a) shows the trajectories of all the agents and
the position error, velocity error, and controller input are plot-
ted in Fig. 12(b)–(d), respectively. We can see that a similar
formation is realized for the formation rotating control.

VII. CONCLUSION

This paper investigates the two formation control problems
for a leader–follower network in the three dimensions, that is,
formation marching control problem and formation rotating
control problem. By exchanging an auxiliary state via com-
munication, fully distributed control laws are developed for

both scenarios. Moreover, the same conditions are obtained to
guarantee global convergence for both problems.

One future study is to extend the control laws in this paper
to second-order cases or more complex agent dynamics. One
possible approach is to take advantage of the backstepping
philosophy. Specifically, design the acceleration input such that
the velocity signal in the second-order case converges to the
desired velocity signal produced by the proposed control laws
in this paper. Another future study is to consider controller
design with smooth velocities even in the presence of topology
switching, which seems to be interesting and practical.

APPENDIX

Proof of Lemma 2: We denote U = V\R and relabel the
nodes in R and U consecutively. As a result the matrix L is
transformed to the form

L′ :=
[

L11 L12
L21 L22

]

where L11 correspond to the nodes in R and L22 correspond
to the nodes in U . Thus, we have

[
L21 L22

]
1 = 0,

[
L21 L22

]
Pξ = 0

[
L21 L22

]
Pζ = 0,

[
L21 L22

]
Pη = 0.
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Due to that ξ, ζ , and η are generic, we know that the rows of
L22 lie in an (n−4)-dimensional linear subspace. Since m < 4,
we can infer that L22 is not of full row rank, which means
that det(LR) = 0 for any L ∈ {L ∈ L(G) : Lξ = 0,Lζ = 0,
Lη = 0}.

We summarize two results in [20] for proving Theorem 1.
Lemma 8 [20]: Consider a spanning 4-tree T = (V, E)

with n nodes and generic ξ, ζ, η ∈ R
n. Then for all L ∈ {L ∈

L(T ) : Lξ = 0,Lζ = 0,Lη = 0}, all principal minors of LR
are nonzero, where R is the root set.

Lemma 9 [20]: Consider a root set R = {r1, r2, . . . , rk}
such that any node in V\R is k-reachable from R. Then for
the Laplacian L of G with almost all weights wijs:

1) all the principal minors of LR are nonzero;
2) det(M) �= 0 where M is a sub-matrix of L by deleting

the rows corresponding to the k roots and any k columns.
Proof of Theorem 1: (1) =⇒ (2) If (1) holds, we add edges

(rk, r1), (rk, r2), (rk, r3), (rk, r4) for k = 5, . . . ,m and thus
construct a new graph, denoted by G′, which has a spanning
4-tree as its subgraph with the root set R′ = {r1, r2, r3, r4}.
We denote this spanning 4-tree by T and thus by Lemma 8
we know that all the principal minors of LR′ are nonzero for
any L ∈ {L ∈ L(T ) : Lξ = 0,Lζ = 0,Lη = 0}.

Notice that the difference between L ∈ {L ∈ L(G′) :
Lξ = 0,Lζ = 0,Lη = 0} and L′ ∈ {L′ ∈ L(T ) :
L′ξ = 0,L′ζ = 0,L′η = 0} is that some nonzero weights in L
become zero in L′. According to the fact that either a polyno-
mial is zero or it is not zero almost everywhere, we can infer
that for almost all L ∈ {L ∈ L(G′) : Lξ = 0,Lζ = 0,Lη = 0},
all the principal minors of LR′ are nonzero. Moreover, since
R′ ⊂ R, after relabeling the nodes properly, it is obtained that
for almost all L ∈ {L ∈ L(G) : Lξ = 0,Lζ = 0,Lη = 0}, all
the principal minors of LR are nonzero.
(2) =⇒ (1) Suppose that there exists a node i /∈ R such

that after deleting three nodes, without loss of generality, say
{1, 2, 3}, i is not reachable from R. Define a set U including
the nodes that are not reachable from R after removing nodes
1, 2, and 3. Denote Ū = V −U −{1, 2, 3}. Note that Ū cannot
be empty since there are m nodes in R. Moreover, it is true
that there is no edge leading from a node in Ū to a node in
U . After relabeling the nodes, the matrix L becomes the one
with the structure as

L′ :=
⎡

⎣
L11 L12 L13
L21 L22 0
L31 L32 L33

⎤

⎦

where L11 correspond to {1, 2, 3}, L22 correspond to the nodes
in U , and L33 correspond to the nodes in Ū . Thus, it is
known that

[
L21 L22 0

]
1 = 0,

[
L21 L22 0

]
Pξ = 0

[
L21 L22 0

]
Pζ = 0,

[
L21 L22 0

]
Pη = 0.

Since ξ, ζ , and η are generic, the rows of [L21 L22] lie in an
(n−|Ū |−4)-dimensional linear subspace. Moreover, [L21 L22]
has n − |Ū | − 3 rows. Thus, we can infer that [L21 L22] is not
of full row rank, which means det(LR) = 0 for any L ∈ {L ∈
L(G) : Lξ = 0,Lζ = 0,Lη = 0}.

Proof of Lemma 3: Note that each L(i, :) ∈ 
i(F) lies in a
1-D linear subspace. The proof of Theorem 1 indicates that if
the linear subspace formed by all possible L(i, :)s in �i con-
tains the 1-D linear subspace formed by all possible L′(i, :)s
in 
i(F), then for almost all L, all principal minors of LR are
nonzero.
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