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Abstract—In this paper, we present a fully distributed bisection
algorithm for the economic dispatch problem (EDP) in a smart grid
scenario, with the goal to minimize the aggregated cost of a net-
work of generators, which cooperatively furnish a given amount of
powerwithin their individual capacity constraints. Our distributed
algorithm adopts the method of bisection, and is based on a con-
sensus-like iterative method, with no need for a central decision
maker or a leader node. Under strong connectivity conditions and
allowance for local communications, we show that the iterative
solution converges to the globally optimal solution. Furthermore,
two stopping criteria are presented for the practical implemen-
tation of the proposed algorithm, for which sign consensus is de-
fined. Finally, numerical simulations based on the IEEE 14-bus
and 118-bus systems are given to illustrate the performance of the
algorithm.
Index Terms—Consensus, distributed algorithm, distributed

convex optimization, economic power dispatch, smart grid.

I. INTRODUCTION

T HE economic dispatch problem (EDP) has been actively
studied in the electric power industry for optimal opera-

tion and planning of energy resources. This problem is usually
formulated as an optimization problem [1]. The classic EDP
is mainly concerned with the economic dispatch of fossil-fired
power generation systems to achieve minimum operational
costs within capacity limits. In this scenario, the operation
and planning for power generation systems can be done by
one or several central decision makers. Many types of cost
functions are available. A convex and piecewise linear cost
function is used in [2], but a quadratic cost function is usually
preferred [1]. Many centralized solutions have been proposed
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to solve EDP. In [1], the conventional Lagrangian relaxation
approach and first order gradient method are given. In [3], a
strategy based on a direct search method with multi-level con-
vergence is proposed to solve EDP with transmission capacity
constraints. In [4], an algorithm based on evolutionary pro-
gramming (EP), tabu search (TS), and quadratic programming
(QP) methods is proposed to solve the non-convex economic
dispatch problem (NEDP). A parallel micro genetic algorithm
(PMGA) is employed in [5] to solve ramp-rate constrained
EDP with non-monotonically and monotonically increasing
incremental cost functions.
Distributed algorithms for control, estimation, and opti-

mization have been intensively investigated for large-scale
systems [6]. Spatially distributed large-scale systems intercon-
nected by a communication network are ubiquitous in the real
world, where the traditional centralized control algorithms are
inefficient. A smart grid with distributed renewable power gen-
eration is a typical such large-scale system. A lot of work has
been done about distributed optimization (e.g., [7]–[9]) using
distributed gradient method, distributed sub-gradient method,
alternating direction method of multipliers (ADMM), and so
on. In general, compared with centralized algorithms, dis-
tributed algorithms have many advantages, including enhanced
robustness, reduction in communication between agents, and
uniform power consumption for each agent.
Tomeet environmental targets, to accommodate a greater em-

phasis on demand response (DR) [10], and to support plug-in
hybrid electric vehicles (PHEVs) [11], [12], distributed gener-
ation, and storage capabilities, traditional power grids need to
become “smart grids”. This is an area being heavily studied in
recent years [13]. In a smart grid integrating distributed gen-
eration, renewable power sources, and a communication net-
work, it is desirable to solve the EDP in a distributed fashion. In
fact, a lot of such work has been done so far. In [14] and [15],
the authors propose a consensus based algorithm to realize de-
centralized economic dispatch, where a master node aware of
the total power demand is required to ensure the equality be-
tween the total power supply and demand. In [16], the authors
present a ratio consensus based decentralized algorithm to find
the optimal incremental cost, under the assumption that each
node (i.e., generator) knows the parameters of all the nodes. In
[17], an algorithm based on a consensus and innovation frame-
work is proposed, where the consensus termmakes all the nodes
agree with each other to realize their common goal of estimating
the global price index, while the innovation term makes all the
nodes estimate the index according to the local knowledge of
loads. In [18], the authors propose an algorithm for EDP with
a quadratic cost function, which can be treated as a distributed
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implementation of standard Lambda-Iteration method, without
requiring other nodes' parameters.
In this paper, a distributed bisection algorithm based on a

consensus-like iterative method is proposed to solve the EDP.
Compared with the existing work, our algorithm has the fol-
lowing features.

1) Our algorithm requires no global information of the
system. In [18], a distributed algorithm is proposed, but
global parameters including network topology and gen-
erators' parameters are needed to design an appropriate
learning gain to guarantee convergence. In [16], each
node needs to know some parameters of all other nodes,
which implies that the computation and communication
package size grow at least linearly with the network
size, while in our algorithm each node only needs to
know its local parameters.

2) No master or leader node aware of the total power de-
mand is needed in our algorithm, whereas such a node
is required in [14]–[16], [19]. In our algorithm, none of
the nodes knows the total demand, yet the demand and
supply balance is guaranteed by the algorithm. For that
purpose, every bus in the power grid, with pure load,
pure generation, or both, is modelled as a node, which
merely knows its local power demand (the demand from
loads attached to it). However, in [18], the nodes only
represent buses with a generator aware of its associated
power demand (including the power demand of the pure
generation buses in its neighborhood).

3) Our algorithm only assumes that the communication
network is a strongly connected directed graph, whereas
in [14], [15], and [17], an undirected graph is assumed.
Communications may be subject to packet loss, device
failure, or asymmetric bandwidth allocations, which
makes the directed graph model more reasonable and
general. However, it is well-known in the field of
distributed control and computation that convergence
analysis is much more challenging in the directed graph
setting.

4) The algorithm developed in this paper can handle EDP
with general convex cost functions, whereas the algo-
rithm proposed in [18] is hard to be applied to EDP with
general convex functions, due to the difficulty in guar-
anteeing its convergence in such a situation.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first give some basic concepts and re-
sults in graph theory, and then present a consensus-like iterative
method. Then we formulate the EDP as a convex optimization
problem with both equality and inequality constraints, and in-
troduce its centralized solution.

A. Graph Theory
A directed graph (or just digraph) consists of

a non-empty finite set of nodes and a fi-
nite set of ordered edges . For node , its
in-neighbor set and out-neighbor set are denoted by

and ,
i.e., node receives information from its in-neighbors and sends

out information to its out-neighbors. The in-degree and out-de-
gree of node are the cardinalities of and , denoted by

and , respectively. A path in graph
is a finite sequence of edges in connecting a sequence of dis-
tinct nodes in , and the length of a path is the number of its
edges. The diameter of a connected directed graph , denoted
by , is defined as the length of the longest among the shortest
paths connecting any two nodes. The of is defined
as the greatest common divisor of all the lengths of cycles in .
We call the graph is if and if

. We assume that each node can communicate with itself,
i.e., , thus and the graph is aperiodic. A
graph is strongly connected if there is a path from any node to
any other node in the graph, which is assumed throughout the
paper. We also say that a non-negative matrix is as-
sociated with graph , where if and only if .

B. Consensus-Like Iterative Algorithm
We start by introducing a result about non-negative matrices.

Then we present a consensus-like iterative algorithm that was
first introduced in [20].
Lemma 1: [21] A non-negative matrix is primi-

tive, if and only if its associated graph is strongly connected
and aperiodic.
For a strongly connected digraph , define a nor-

malized adjacency matrix as
if ,
otherwise.

(1)

One can easily verify that is associated with and is column
stochastic, i.e., is (row) stochastic. From the properties of
stochastic matrix, we have and ,
where . Since is strongly connected with
self-loops, from Lemma 1, is primitive, and thus is also
primitive. From Perron-Frobenius Theorem [22], we have

(2)

where is the right eigenvector associated
to the eigenvalue 1 of , with the properties for all and

.
Endow each node in the graph with a local

variable , and denote the global variable by the column
vector . Let us consider the following
consensus-like iterative algorithm with the iteration index de-
noted by and initial value :

(3)

This can be implemented in a distributed form, i.e.,

(4)

From (2) and (3), the iterative algorithm has the following
property:

(5)

where denotes an equilibrium point of system (3).
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We call this algorithm “consensus-like” because, if the ma-
trix is such that (which happens when is doubly
stochastic, i.e., both row and column stochastic), all the 's
reach the average consensus asymptotically, i.e., they all con-
verge to the same average of the initial [23].
Remark 1: To guarantee the convergence of the “consensus

like” iteration, a strongly connected digraph with self-loops is
required. Besides, each node needs to know its out-degree
for sake of the distributed implementation. As for communica-
tion, each node sends out , instead of ,
which is slightly different from the consensus algorithm. This
consensus-like iterative algorithm is also used for the study of
ratio consensus in [16], [20], and [24].

C. Problem Formulation
The EDP we study in this paper is to minimize the aggregate

cost of all the generators in the power grid on the premise that
all the generators cooperatively provide a required amount
of power within their individual generation capacities. We
only consider active power in this paper and we ignore power
transmission loss and transmission capacity constraints, which
is valid for many power networks. Each generator is associated
with a local variable , i.e., the (active) power generated
by generator , and a cost function .
In this paper, we deal with the EDP with general cost func-

tions satisfying the assumption below:
Assumption 1: For every , is

strictly convex and twice continuously differentiable with

where denotes the set of nonnegative real numbers, and the
equality holds at isolated points only.
One can easily verify that the commonly used quadratic cost

functions, given as follow, are special cases satisfying Assump-
tion 1:

(6)

where , , and are cost parameters. For simplicity
of expression in the following sections, we use an equivalent
function by changing a constant term:

(7)

with constants and .
The following is an example of a non-quadratic cost function

with an natural exponential term [1]:

with , , and .
We remark that many generators, especially distributed en-

ergy resources (DER) feeding on renewable energy, are often
uncontrollable. For such a generator , we may assume that a
fixed amount of power [17]. These generators can be viewed
as negative loads and added to the positive loads, i.e., the load

for the associated bus will be replaced with . With

the above convention, we can assume, without loss of gener-
ality, that every generator has variable generation capacity.
Denote the total number of buses in the grid by and the

number of buses with power generators by . In general, each
bus can be with a generator only, loads only, or both. Since not
all the buses are attached to power generators, we have .
Denoting by the power demand (load) of bus , the aggregate
power demand is given by

where , if bus is a pure generation bus.
For generators with variable generation capacities, denoting

by and the lower and upper bounds of , we have

In the framework assumed above, the EDP can be formulated
as follows:

(8)

(9)

(10)

It is obvious that the EDP is feasible if and only if

(11)

Note that the optimization problem (8)–(10) also finds ap-
plication in other problems, including optimal resource alloca-
tion problem (ORAP) for parallel computing [7], and demand
side management (DSM) for power systems, especially for di-
rect load control of smarter control systems [25].
Throughout the paper, we assume that communication net-

works are imposed on the power grid so that each bus corre-
sponds to a node in the communication network. Here we set
up two communication networks, denoted by
and , respectively. The node set consists
of all the buses in the grid, while consists of all the
generation buses, i.e., and

. Define and as the sets of direc-
tional communication paths between nodes in and , re-
spectively. It is assumed that both and are strongly con-
nected digraphs with self loops. To make our distributed solu-
tion meaningful, we also assume that and are sparse
graphs in the sense that

Except for the ability of exchanging information, the ability
of local computation is also required for each node. Besides,
every node knows its local power demand , cost function

and capacity constraints and , but they do not need
to know other nodes' parameters.
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D. Centralized Solution to EDP

It is clear that the EDP is a convex optimization problem,
and Assumption 1 guarantees a unique optimal solution for the
problem (8)–(10). Many centralized algorithms have been de-
veloped for the convex optimization problem [26]. Furthermore,
the cost function is strictly convex and Slater condition holds
due to affine constraint (10). Thus, strong duality is guaranteed,
which allows us to solve the primal problem by solving its La-
grange dual problem [26]. The centralized solution is as follows.
Denote the incremental cost of generator by

which is continuous and strictly increasing with respect to ac-
cording to Assumption 1. Thus the inverse function of ,
denoted by , exists and is also continuous and strictly in-
creasing. Note that may not have a closed-form expres-
sion, but its numerical solution can be obtained using a bisection
method due to its continuity and strict monotonicity.
The Lagrange dual problem is given by

(12)

where

,
,

(13)
and is the Lagrange multiplier.
From the above, we have

,
,

.
(14)

If the primal solution is feasible, the Lagrange dual problem (12)
has a unique optimal solution , satisfying

Accordingly, the primal EDP has a unique optimal solution
given by , i.e.,

,
,

.
(15)

III. MAIN RESULTS

In this section, we present a distributed bisection method
to obtain the optimal Lagrange multiplier for the problem
(8)–(10). This is done based on the iterative algorithm (3), with
no need for a central decision maker or a leader node. We first
propose a distributed algorithm for gathering the aggregate
power demand, then show distributed feasibility test of EDP,
and finally give a distributed bisection algorithm for EDP.

Intuitively speaking, to solve the EDP in a fully distributed
fashion, the total power demand shall be ob-
tained by all the generators using some distributed algorithm.
We term such a problem as the sum consensus problem, i.e.,
every node gets a common value equal to the sum of all the
nodes' initial values, using a distributed method. A special in-
stance of the sum consensus problem is the so-called network
size problem, where the goal is to use a fully distributed al-
gorithm to find out the number of nodes in a connected net-
work [27], [28]. This is a special instance of the sum consensus
problem by setting all the initial values to 1. It is known that
if each node has bounded memory, communication and compu-
tation, and the network is anonymous (i.e., each node does not
have a unique global identifier), then a sufficiently large network
size can not be computed using a fully distributed algorithm
[28]. A challenge for us is to get over this technical difficulty.

A. Distributed Algorithm for Aggregate Demand
The first step of solving EDP is to collect the aggregate power

demand . From our discussion above with re-
gard to the sum consensus problem, we understand that it is a
difficult task to compute directly. Instead, our algorithm is
to make every node (generation bus) in get a value such
that . As we will show in the next subsection,
it turns out that such values of will be sufficient to solve the
EDP. Our algorithm is developed based on the aforementioned
consensus-like algorithm, with novelty in how to transfer the
aggregate power demand from the graph to using a
fully distributed algorithm, i.e., we go from to

.
For , define an associated normalized adja-

cency matrix as
if
otherwise

(16)

where is the out-degree of node . Similarly, for
, define an associated normalized adjacency

matrix as
if
otherwise

(17)

where is the out-degree of node .
For every node , we first establish an auxiliary variable

with initial value , and then run the following
iterations until convergence:

(18)

where denotes the in-neighbor set of node in . De-
noting , from (5), we have

(19)

where is the right eigenvector for the
eigenvalue 1 of , with the properties for all and

. In words, 's are the scaled local power demands. Using
the auxiliary variables 's, the demand information is gathered
in .
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Once (18) converges, for any node , we establish an
auxiliary variable initialized with

and then run the following iterations until convergence:

(20)

Denoting , from (5), we have

(21)

Variables 's are the scaling ratios between graph and .
We will use them to transfer the demand information from
to . Next, for every node , we establish an auxiliary
variable with initial value

(22)

and then run the following iterations until convergence:

(23)

where denotes the in-neighbor set of node in . De-
noting , from (5) and (22), we have

(24)

where is the right eigenvector for the
eigenvalue 1 of , with the properties for all and

.
Variables are the scaled power demand held by the gen-

erator buses only. Using the above procedures, we can get the
needed demand information 's in a distributed fashion. We
summarize below the distributed algorithm above.
Remark 2: It is clear that the algorithm above is fully dis-

tributed because each node only uses local information and in-
formation from its neighbors without any central processing or
leader node. We will thereinafter show that based on Algorithm
1, our distributed bisection algorithm does not need a central in-
formation collector to compute , and the total power demand

is not needed explicitly for solving the EDP.

Algorithm 1: Distributed Algorithm for

Require: : the local power demand, ;

Ensure: ;

1: In graph , each node runs (18) to get in (19);

2: In graph , each node runs (20) to get in (21);

3: In graph , each node runs (23) to get in (24);

B. Distributed Algorithm for Feasibility Test

Before proceeding to the distributed solution to EDP, we pro-
pose a distributed iterative algorithm based on (4) for feasibility
test.
Recall the EDP is feasible if and only if (11) holds. For any

node , consider two variables , , with their
initial values given by

Run the following iterations simultaneously:

(25)

(26)

It is clear that the above converges. Denote their asymptotic
values by and , respectively. From (5), we have

(27)

(28)

for all . Since every , the feasibility condition (11)
holds if and only if

(29)

for any , where is obtained from (24). Moreover, if
the above holds for one node, then it holds for all other nodes.
For clarity, the result above is summarized in the following

algorithm.

Algorithm 2: Distributed Algorithm for Feasibility Test

Require: , and , ;

Ensure: feasible or not;

1: Initialization: , ;

2: Each node runs iteration (25) and (26);

3: if Inequality (29) is true then

4: Feasible

5: else

6: Infeasible

7: end if

C. Distributed Bisection Algorithm for EDP

We now propose a distributed algorithm for EDP, which is
operated in graph . Following from Algorithm 1, we assume
here that each node contains with .
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Let denote the iteration index for the bisection method.
We let each node establish two variables and , rep-
resenting the lower and upper bounds of the Lagrange multi-
plier. Their initial values are given such that is suffi-
ciently small and is sufficiently large, or alternatively
given by

We will explain how to compute these initial values using a
distributed algorithm later.
Define a variable , which acts as an approximation of the

Lagrange multiplier, as

(30)

Each node takes

(31)

establishes a local variable initialized by ,
and runs the following iterations:

(32)

Denoting and using (5), we have

(33)

where 's are the scaled generator outputs associated with
. Every node updates and by com-

paring and as follows:

for ,
for .

(34)
Although the update of and is done

locally, every node computes the same and
because (24), (33), and imply that

where is the sign function.
It is clear from (30) and (34) that exists

and that each node obtains locally its optimal solution from (31),
i.e.,

For clarity, we summarize the distributed bisection method
for this scenario in Algorithm 3. The convergence property of
Algorithm 3 is formally stated below.

Algorithm 3: Distributed Bisection Method for EDP

Require: : local power demand, ;

Ensure: : power assignment, ;

1: Each node gets using Algorithm 1;

2: Each node runs feasibility test using Algorithm 2;

3: Initialization and ;

4: if feasible then

5: for do

6: Each node computes ;

7: Each node computes ;

8: Each node runs iteration (32) to get ;

9: Each node computes and
according to (34).

10: end for

11: Each node computes ;

12: end if

Theorem 1: Under the assumption that the EDP (8)–(10) is
feasible, Algorithm 3 converges to the unique optimal solution
as .

Proof: For all , the function is monotonically
decreasing with respect to , therefore is monotonically
increasing. Especially, is strictly increasing with respect
to for

Define

Since the problem is feasible, the optimal Lagrange multiplier
must satisfy

Therefore, is strictly increasing with respect to
. Thus, for every node , is strictly

increasing with respect to . Therefore, Algorithm
3 converges. Moreover, since the optimal solution is unique,
Algorithm 3 converges to the unique one.
Remark 3: The algorithm above is fully distributed due to

the following properties. Information exchange between nodes
occurs only when running the consensus-like iteration (32). All
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the computations are performed locally. Also, each node only
requires knowledge of local parameters and , without need
for knowledge of other nodes' parameters.
Remark 4: Besides getting around the difficulty of directly

obtaining in a distributed fashion, another benefit of Algo-
rithm 1 is that it reduces the communication and computation
burden of the nodes representing buses with pure loads. The
utilization of the two networks and is motivated by the
fact that in reality generator buses only account for a relatively
small percentage in power systems. For instance, there are only
5 and 14 generator buses in the IEEE 14-bus and 118-bus test
systems [29]. Intuitively, it seems unnecessary for the non-gen-
erator buses to be involved in the overall process. But on the
other hand, the power demand is spatially distributed at almost
all the buses. To deal with this situation, two communication
networks and are constructed and Algorithm 1 is devel-
oped. After 's are computed using Algorithm 1, the remaining
part of Algorithm 3 only involves generation buses, i.e., the bi-
section steps are performed in only. As we will show in the
simulations, the utilization of the two networks greatly reduces
the aggregate communication volume.
We now address the issue of how to choose the initial values

and . Intuitively, the closer and are
to the optimal multiplier , the fewer steps of bisection are
needed. For Algorithm 3, if the EDP is feasible, we can ini-
tialize and using a minimum/maximum consensus
algorithm [30]. Note that for a strongly connected network, min-
imum/maximum consensus algorithm is a fully distributed iter-
ative algorithm.

Algorithm 4: Initialization of and

1: Each node initializes and ;

2: Run maximum consensus so that each node achieves

3: Run minimum consensus so that each node achieves

4: Each node sets , ;

D. Convergence and Stopping Criteria
Now we give analysis on convergence of Algorithm 3 and

offer stopping criteria for a practical implementation of the al-
gorithms. Two stopping criteria are needed, one for the con-
sensus-like iterations at each bisection step, and the other for
the bisection iterations.
Firstly, we give the stopping criterion for the consensus-like

iterations. The consensus like iteration (3) converges asymptot-
ically, but it is impossible to run it for infinite time. In most
scenarios, when implementing iteration (3), a stopping criterion
might be setting a fixed number of iterations such that

(35)

i.e., for some preset , which is small enough to assume the
iteration converges to . Therefore, there accordingly exists
, such that when , the iterations are assumed to have

converged. The stopping criterion in a distributed manner to
judge whether consensus is reached is also studied in [31].
However, such stopping criterion is not suitable for the con-

sensus-like iterations when used on (32) in Algorithm 3. Ac-
cording to (35), when convergence is assumed to be reached for

, it is not necessarily that the nodes make the same deci-
sion on how to bisect their incremental cost intervals, whichmay
happen when the iterations stop at some time , with
for some nodes, while for the other nodes. Conse-
quently, different decisions on bisection are made. In fact, at
each bisection step, we only need to run iteration (32) until every
node reaches agreement on the direction in which they shall bi-
sect their incremental cost intervals.
For clarity, we modify our Algorithm 4 as follows. Reinitial-

izing , and then running iterations (32), it is
easy to verify that (34) is equivalent to

for ,
for .

(36)
Define , where is the sign function.
We say that iteration (32) reaches sign consensus, if

. It's easily verified that for iterations (32), sign con-
sensus can always be reached in finite time, i.e., there exists

, such that for all , , unless
.

Now we give a distributed method to judge whether sign con-
sensus is reached or not, which is based on the maximum/min-
imum consensus algorithm [30]. We assume each node has an
estimate of (or knows) the diameter of , denoted by . At
bisection, each node establishes three auxiliary variables, ,
, and . For , we define

if ,
if (37)

where is the floor function. At , initialize
, . Then for , we update and
by

if ,
otherwise, (38)

if ,
otherwise. (39)

The stopping criterion for iteration (32) is that for every node
, if there exists some positive integer such that

(40)

then sign consensus is already reached. Then every node can
stop the consensus-like iteration (32) and make the same deci-
sion at . Besides, im-
plies that and , while

implies that
and .
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The theoretical basis of the procedure (37)–(40) is that max-
imum/minimum consensus is bound to be reached within
steps, as is the diameter of the strongly connected graph
(see [31] for more details). From (37), with we
can see that the nodes in fact only update 's at , and
otherwise the 's remain unchanged. Moreover, from (38) and
(39), the nodes update and at time

, using only maximum/minimum con-
sensus algorithm. Therefore, at , the nodes are able
to know whether they have reached sign consensus at

.
Remark 5: Another benefit of using the stopping criterion

(40) is the probable reduction of iteration steps needed for con-
vergence. A special situation is that the signs are the same ini-
tially, e.g., for all , . But due to the absence of a leader
or master node, the nodes still have to run steps of iteration
(32). In comparison, even if the nodes can make the same deci-
sion when the consensus-like iteration (32) stops according to
(35), it takes steps of iteration. Note that will be a large
number when is sufficiently small, so it is often the case that

.
Next, we present the stopping criterion for the bisection steps.

It is clear from (30) that each iteration of halves the interval
, thus the convergence of is very rapid.

Since solving EDP is actually finding the optimal incremental
cost , a stopping criterion can be established by either setting
a fixed number of iterations , or using

(41)

for some sufficiently small . Since is not available, an
alternative can be

(42)

which can be easily achieved in a distributed fashion, provided
sign consensus is always reached in each bisection step.

IV. SIMULATION

In this section, we show the performance of the distributed
bisection algorithm using several numerical experiments based
on the IEEE 14-bus and 118-bus systems [29]. Five cases are
simulated. Case 1 demonstrates our algorithm using a quadratic
cost function whereas Case 2 does so using a non-quadratic cost
function. In Case 3 the convergence speed of our algorithm is
analyzed. We compare our algorithm with the algorithm pro-
posed in [17] in Case 4 with regard to the convergence speed,
the total computation load, and the aggregate communication
volume. The above four cases use the IEEE 14-bus system. Fi-
nally in Case 5 we apply our algorithm to the IEEE 118-bus
system.
For the numerical simulations on the IEEE 14-bus system,

generators buses are , and load buses are
. Note that the power trans-

mission grid is not necessarily the same with the information
communication network, so we do not assign a node to bus
7. The two strongly connected directed graphs with self-loops

Fig. 1. Illustration of graph , where self-loops are not shown.

Fig. 2. Illustration of graph , where self-loops are not shown.

Fig. 3. Results for EDP with quadratic cost functions only.

and are established, as shown in Figs. 1 and 2. One can
easily verify that and are sparse graphs.

A. Case 1: EDP With Quadratic Cost Functions Only
In this case, we solve the EDP with quadratic cost functions

only, as it is most commonly assumed for EDP. The generator
parameters are listed in Table I, which are adopted from [17].
We set MW for all , so they are not shown in the table.
We take for the stopping criterion.
The local power demands are: MW, MW,

MW, MW, MW, MW,
MW, MW, MW, MW,
MW, MW, and MW. The total

demand MW, which is not known to
the individual nodes.
We set MU/MW and MU/MW,

which is sufficient to guarantee . The result
is shown in Fig. 3. The upper subplot of Fig. 3 shows the evo-
lution of , the middle subplot shows the evolution of each

, and the lower subplot shows the evolution of .
We artificially set the iteration step to be 20, while the stop-
ping criterion is already satisfied at . Taking the results
at to be the optimal solution, we have
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TABLE I
GENERATOR PARAMETERS (MU = MONETARY UNIT)

MW, MW, MW, MW,
MW, and MW. The optimal

incremental cost MU/MW, and the optimal solu-
tion stays within the capacity constraints, where of gener-
ator 1, 2, and 4 take their upper bounds of capacity constraints,
respectively. Note that our distributed bisection algorithm is
based on the Lagrange dual method, so the equality constraint
will not be truly satisfied until infinite bisections. Therefore
using our algorithm, there is a tolerable gap between demand
and supply, i.e., MW.

B. Case 2: EDP With Non-Quadratic Cost Functions
We now demonstrate a case where some of the generators

have non-quadratic cost functions and some generators have a
fixed amount of power. In particular, we replace generator 4 (at
bus 6) with a fixed generation of MW and take

Using the same , , and total power demand
as those in Case 1, the result is shown in Fig. 4. After 13 steps
of bisection, the algorithm converges to MW,

MW, MW, MW,
MW, and MW. The optimal incremental
cost MU/MW.

C. Case 3: Convergence Speed Analysis
Now we study how the starting values and

would affect the convergence speed. For simplicity, we still set
MU/MW and only vary , i.e., we run Case 1

again with different values of from 10 MU/MW to 150
MU/MW. The result is shown in Fig. 5.
Apparently, a larger leads to more bisection steps. To

make convergence fast, Algorithm 4 can be adapted to choose
good and . Furthermore, since is monotonically
increasing with respect to , historical data can be useful pro-
vided the current EDP and the previous EDP share the same
configuration of generators and parameters, i.e., the only differ-
ence must be the total power demand. If so, take the historical

as of the current problem if the current total demand
is larger than previous demand, and vice versa.

D. Case 4: Comparison With the Algorithm in [17]
In this case we compare our algorithm with previous work,

and show the benefits of using two communication networks

Fig. 4. Results of EDP with non-quadratic cost functions.

Fig. 5. Relationship between and bisection steps needed.

and the stopping criterion based on the sign consensus. Al-
though other references listed in the introduction are also
highly related to this paper, we mainly make comparisons
with the algorithm proposed in [17] because [17] has the most
similarities with ours with regard to the problem setup. Specif-
ically, both the algorithms in our paper and in [17] are fully
distributed without relying on a leader node, and all the buses
in the grid are involved in both algorithms' implementation.
The comparison is primarily about the convergence speed, the
computation load, and the communication volume.
We first review the results in Case 1 using our algorithm.With

, the iteration steps needed for iterations (18), (20),
and (23) are 29, 50, and 24, respectively. During the bisections,
the consensus-like iteration steps needed for each bisection step
are shown in Fig. 6. With the stopping criterion based on the
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Fig. 6. Consensus-like iterations needed for each bisection step.

sign consensus in Section III-D, not much consensus-like itera-
tions are needed for the bisections. Particularly, for the 2nd and
3rd bisection steps, only 4 consensus-like iterations are needed.
Note that the diameter of graph in Case 1 is 4. According to
Remark 5, it follows that in fact the sign consensus is already
reached without the need of running the consensus-like itera-
tion. The computation time is counted in terms of iteration steps
rather than seconds, as the time which an iteration takes to com-
pute depends on the CPU speed of the nodes. For our algorithm,
the computation time of this simulation example is 351 steps.
We then resolve the problem in Case 1 using the algorithm

proposed in [17]. Learning gains of the algorithm are adopted
from the numerical experiments in [17]. Since undirected graphs
are assumed in [17], we use the undirected graph by replacing
the unidirectional arrows in Fig. 1 with bidirectional ones to im-
plement the algorithm in [17]. The results are shown in Fig. 7.
One can see that the convergence of the algorithm in [17] is
very slow. Though the 's held and updated by the buses reach
consensus fast, at that time the 's do not reach . It still takes
almost steps to converge to the optimal Lagrange mul-
tiplier. Therefore the algorithm in [17] converges much slower
than our algorithm.
Besides, in the algorithm in [17] there are totally 13 buses

assigned with agents in this case. All those buses are involved
in the algorithm's implementation until the convergence. Since
the iterations practically account for most of the computational
load, we directly use the iterations needed in total to describe
the computational load. Similarly, the total number of numerical
values exchanged between nodes is regarded as the aggregate
communication volume. So the total computation load using
the algorithm in [17] is . Each node communicates
bidirectionally with other 4 nodes, so the total communication
volume is , which is rather huge.
As for our algorithm, although there are also 13 buses assigned
nodes, we only involve them all when running iterations (18)
and (20), and the remaining steps are implemented in the smaller
graph . So the total computation load using our algorithm is

. In our algorithm, each
node in and communicates unidirectionally with other
4 and 2 nodes, respectively. So the total communication volume

Fig. 7. Results for EDP with quadratic cost functions only (Case 1) using the
algorithm in [17].

TABLE II
SUMMARY OF THE COMPARISONS BETWEEN OUR ALGORITHM

AND THE ALGORITHM PROPOSED IN [17]

of our algorithm is .
The comparisons are summarized in Table II.
From the data above, one can see that our algorithm con-

verges much faster than the algorithm in [17]. Also, the compu-
tation load and communication volume using our algorithm are
far less. The fast convergence and low operational cost of our
algorithm are a cooperative feature of bisection, the utilization
of the two communication networks, and the stopping criterion
based on the sign consensus. We also remark that to guarantee
the convergence of the algorithm in [17], one needs to prop-
erly design the gains, referred to as and in [17]. Those
gains also affect the speed of convergence. However, the deter-
mination of and depends on global information and cannot
be implemented in a distributed manner. As aforementioned in
Remark 3, no such gains in our algorithm need to be pre-deter-
mined using global information.

E. Case 5: Implementation on IEEE 118-Bus System
In this case we apply our algorithm to the IEEE 118-bus

test system [29] to further investigate our algorithm's perfor-
mance. The generator parameters are adopted from [32]. The
total power demand is 950 MW. We set MU/MW
and MU/MW, which is sufficient to guarantee

. The result is shown in Fig. 8. We artificially set
the iteration number to 20, but in the simulation the stopping
criterion is already satisfied at . The optimal Lagrange
multiplier MU/MW.
From this case we can find that our algorithm is also appli-

cable to large power grids such as the IEEE 118-bus test system.
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Fig. 8. Results for EDP with IEEE 118-bus system.

Moreover, the convergence is still fast due to the nature of bi-
section, and is insensitive to the network size.

V. CONCLUSION

In this paper, we have proposed a distributed bisection
method based on a consensus-like iteration to solve EDP, where
the cost functions can be general convex functions (i.e., they
are not restricted to quadratic functions). The algorithm is
fully distributed, with no need for a master node or leader, in
which a strongly connected digraph with self-loops is sufficient
for communication. Also, each node only requires its local
parameters, without knowledge of the global information.
Convergence of our algorithm is proved, and by simulations we
illustrate the performance of the algorithm. Future work would
be to extend the proposed distributed bisection algorithm to
other applications, e.g., extended EDP with line loss and line
capacity constraints considered.
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