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Decentralized Optimal Scheduling for Charging
and Discharging of Plug-In Electric Vehicles

in Smart Grids
Hao Xing, Student Member, IEEE, Minyue Fu, Fellow, IEEE, Zhiyun Lin, Senior Member, IEEE, and Yuting Mou

Abstract—This paper focuses on the procurement of load
shifting service by optimally scheduling the charging and dis-
charging of PEVs in a decentralized fashion. We assume that
the energy flow between PEVs and the grid is bidirectional, i.e.,
PEVs can also release energy back into the grid as distributed
generation, which is known as vehicle-to-grid (V2G). The op-
timal scheduling problem is then formulated as a mixed discrete
programming (MDP) problem, which is NP-hard and extremely
difficult to solve directly. To get over this difficulty, we propose
a solvable approximation of the MDP problem by exploiting the
shape feature of the base demand curve during the night, and
develop a decentralized algorithm based on iterative water-filling.
Our algorithm is decentralized in the sense that the PEVs compute
locally and communicate with an aggregator. The advantages of
our algorithm include reduction in computational burden and
privacy preserving. Simulation results are given to show the
performance of our algorithm.
Index Terms—Decentralized control, load shifting, optimal

scheduling, plug-in electric vehicle, smart grid, vehicle-to-grid.

I. INTRODUCTION

T HE excessive emission of greenhouse gases and the
decreasing petroleum energy have raised a big concern

for years. It is generally accepted that plug-in electric vehicles
(PEVs) are one of the solutions [1]. Besides the environmental
benefits, electricity is cheaper than petroleum fuels, which rids
a nation of the dependence on imported oil. PEVs will also
increase the energy efficiency [2]. However, the introduction of
PEVs will have a significant impact on the distribution system.
The uncoordinated charging of PEVs may lead to a new peak
load or worsen the current peak load, and may consequently
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cause serious damage to the distribution system and other elec-
trical appliances [3]. On the other hand, if properly scheduled,
PEVs can be utilized for the provision of ancillary services,
which is also known as demand side management (DSM). The
development of smart chargers, advanced metering infrastruc-
tures (AMIs), and communication systems enable us to develop
appropriate algorithms for the DSM using PEVs [4].
Massive efforts have been made to explore PEVs' potential

for DSM. According to the direction of energy flow between
PEVs and grids, existing works can be classified into two cat-
egories: those utilizing the charging process only, also known
as grid-to-vehicle (G2V), and those considering both G2V and
V2G. References [5]–[10] consider G2V only and propose
different algorithms to the charging scheduling of PEVs. In
[5], the authors formulate the charging problem as a class of
finite-horizon dynamic games, and propose a decentralized
method. Reference [6] presents a comprehensive analysis of
the load shifting problem via PEVs, and proposes an optimal
decentralized charging (ODC) algorithm. References [7]–[9]
present a portfolio of decentralized algorithms, which are
all based on a decentralized water-filling-based algorithm, to
flatten the load curve of low-voltage transformers and achieve
the optimal charging scheduling. Network-controlled PEVs
are used for the regulation of supply grid in California with
renewable energy of different penetration rates in [10]. Smart
inverters for V2G enable the PEVs to release power back to the
grid, which enable researchers to utilize both G2V and V2G
[11]. Reference [12] aims at the minimization of aggregated
charging cost of PEVs and proposes decentralized algorithms
for globally and locally optimal scheduling, respectively, which
can effectively deal with the random arrivals of PEVs. In
[13], using dynamic programming, the authors find an optimal
charging and discharging scheduling algorithm under uncer-
tainty in a smart grid with renewable energy sources. In [14],
a stochastic security-constrained unit commitment (Stochastic
SCUC) model is used to minimize the expected grid operation
cost while considering the random behavior of the PEVs.
Reference [15] studies the load regulation of a single household
using PEVs such that the aggregated demand of the entire net-
work is regulated. An optimal centralized scheduling method to
jointly control the electricity consumption of home appliances
and PEVs is proposed in [16] to increase the reliability and
stability of microgrids.
Since smart grids are large-scale systems, where centralized

algorithms may fail due to lack of scalability and requirement
for global information, decentralized control algorithms are
deemed as a desirable alternative [17]. With advanced network

0885-8950 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



XING et al.: DECENTRALIZED OPTIMAL SCHEDULING FOR CHARGING AND DISCHARGING 4119

technologies, decentralized algorithms for control and opti-
mization have been proposed by many researchers. Generally
speaking, besides the feasibility and scalability in large-scale
systems, the advantages of decentralized algorithms compared
with centralized ones include reinforced robustness, reduction
in communication and computation burden, and more balanced
power consumption among agents [18].
Motivated by the overwhelming popularity of PEVs in the

near future, this paper aims at the procurement of load shifting
service during the night by utilizing both G2V and V2G of
PEVs. Although existing works, e.g., [12], also propose decen-
tralized scheduling strategies considering both G2V and V2G,
to the best of the authors' knowledge, this is the first paper of
which the objective is flattening the total demand curve as pos-
sible as it can be, in the configuration of bidirectional energy
flow and decentralized algorithm. Our main contributions are
summarized as follows:
• We formulate the optimal load shifting problem as an
MDP problem, whose objective is to make the total de-
mand curve as flat as possible while satisfying users'
requirement of battery levels. Due to the NP-hardness of
the primal MDP problem, we propose a reasonable and
solvable problem approximation which fully exploits the
shape feature of the typical base demand curve during
the night. The basic idea of the problem approximation is
to divide the whole time range into two periods with an
optimal time threshold, before and after which the PEVs
only charge and discharge, respectively.

• For the solvable approximated problem, we propose the de-
centralized optimal scheduling algorithm based on the iter-
ative water-filling algorithm, which is decentralized in the
sense that the PEVs conduct local computation and com-
municate with an aggregator. We also present detailed con-
vergence analysis of the proposed algorithm.

The rest part of this paper is organized as follows. In
Section II, a single PEV dynamic model, the problem for-
mulation, and the decentralized water-filling based algorithm
are presented. In Section III, we give an approximation of the
primal optimization problem, and then propose a decentralized
optimal scheduling algorithm. Simulation results are given
in Section IV to show the performance of our algorithm. We
conclude the paper in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the dynamic model of a
single PEV and the problem formulation, and then present the
decentralized water-filling-based algorithm proposed in our
previous work [7].

A. Dynamic Model of Single PEV
We assume that every PEV uses Lithium-ion batteries and has

the capability of both G2V and V2G.
Let denote the time index with sampling interval
. The SOC at time , denoted by (%), is the charging

level of a battery, which is given by

(1)

where (kWh) is the maximum capacity of the battery, and
(kWh) is the current amount of energy at time .

Let (kW) denote the power flow between the PEV and
the grid. Assume that the PEV's charging or discharging rate is
constant as in the interval between and .
means that the PEV is charging at time , while

represents the discharging. if there is no power flow
between the PEV and the grid.
We have the following inequality constraint:

(2)

where is the maximum charging power, and is the max-
imum discharging power. For G2V, it is assumed that PEVs are
outfitted with smart chargers, which can charge PEVs with any
rate between 0 and . For V2G, PEVs are outfitted with smart
inverters, which can discharge PEVs with any rate between 0
and .
Let us define as the energy conversion

efficiencies of charging and discharging, respectively. Then the
update of SOC follows

(3)

where is the aforementioned sampling interval and is
given by

To prolong the lifespan of the batteries, it is recommended
that the SOC is kept in the rage from 20% to 85% [19]. Suppose
that the PEV will be unplugged at time , and we have the
following constraints.

(4)

where is the initial SOC at time 0. In this paper we set
% and %.

The user of the PEV is able to set the desired SOC, denoted
by , which is the targeted SOC at time . Note that .
Then we have the following equality constraint,

(5)

B. Problem Formulation
In this paper we use PEVs with the capacity of both G2V and

V2G to regulate the overall demand curve at night. For sim-
plicity, we assume that the PEVs are plugged in at 20:00 and
unplugged at 8:00 the next day. A typical overall demand (ex-
cluding PEVs) curve between 20:00 and 8:00 [20] is shown in
Fig. 1.
The base load demand is denoted by
. Suppose that there are PEVs, labelled from 1 to . The

parameters and variables are subscripted by , where
denotes the th PEV. Denote the set made up of all the PEVs by
. The optimal load shifting problem is formulated as follows.
•

(6)
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Fig. 1. Base load curve of 100 households in the service area of Southern Cal-
ifornia Edison from 20:00 on August 18, 2001 to 8:00 on August 19, 2011 [20].

• Constraints
— Equality constraints on 's

(7)

— Inequality constraints on 's

(8)

— Inequality constraints on 's

(9)

— Discrete constraints on 's

(10)

Remark 1: We note that in the optimization problem
(6)–(10), the optimization variables include not only 's but
also 's. Since 's can only take discrete values while

's take continuous values, the problem (6)–(10) is an MDP
problem. And there are in total optimization variables.
However, when only charging is considered, e.g., the work in
[7], is a constant equal to , rather than a variable.
We want to achieve the optimal load shifting in a decentral-

ized fashion with the assistance of an aggregator. The aggre-
gator is assumed to know the forecast of the base load demand
one day ahead. The communication topology between PEVs and
the aggregator is a star network, where the aggregator is the cen-
tral node, while the PEVs are the leaf nodes. The PEVs con-
duct bidirectional communication with the aggregator. The ag-
gregator is not required to be computationally powerful, as the
computational load will be evenly shared by each of the PEVs in
our algorithm. Moreover, as we will show, the aggregator need
not know the PEVs parameters, and therefore the users' privacy
is kept.

C. Decentralized Water-Filling-Based Algorithm
Before proceeding to our decentralized scheduling algorithm,

we now review the decentralized water-filling-based algorithm
studied in our previous work [7].
Different from (2), the inequality constraints for PEVs used

in [7] are given by

The users are also able to set their individual targeted SOCs,
thus the equality constraints are the same as (5),

The cost function is the same as (6), and then the integral
problem formulation is given as follows.

(11)

Define a projection mapping

(12)

Since in a smart grid scenario decentralized algorithms are pre-
ferred, we now recall the decentralized water-filling-based al-
gorithm (Algorithm 1) which is proposed in [7].

Algorithm 1 Decentralized water-filling-based algorithm

Require: and ;

Ensure: ;
1: The aggregator gets the forecast of base load demand

;
2: for do
3: The aggregator computes

;
4: The aggregator sends 's to the th PEV;
5: For the th PEV:
6: Initialize and

;
7: while do
8: Compute ;
9: Compute and ;
10: Update and following

11: end while
12: The th PEV sends 's to the aggregator;
13: end for
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The final water level, denoted by , actually satisfies that
, where is the optimal Lagrange multiplier. The

variable is defined as the tolerance of the gap between the
upper and lower bounds of the water level, which is a very small
positive number. Defining as the number of bisection needed,
we have

(13)
or

(14)

From (14) we can see that a larger tends to cause a larger
error to the final result but on the other hand it reduces the com-
putational time. On the contrary, a smaller tends to increase
the computational time while it also enhances the accuracy of
the algorithm. Therefore the determination of depends on the
specific need of different situations. When the algorithm's accu-
racy is more valued than its efficiency, a larger is chosen, and
vice versa. See more details in [7].
Remark 2: In [7] we deal with the load management problem

using only the charging of PEVs. The PEVs are outfitted with
smart chargers and only able to achieve G2V. Therefore, in [7]
only valley-filling (without peak shaving) is achieved. Algo-
rithm 1 is termed as water-filling because the final result looks
much like the natural phenomenon of water-filling, where
is the original water surface, while is the eventual water level
after the water-filling.

III. MAIN RESULTS
In this section, we give an approximation of the primal opti-

mization problem (6)–(10), propose a decentralized scheduling
algorithm, and show the convergence analysis.

A. Problem Approximation
In this subsection we present an approximation of the primal

problem (6)–(10). But before that, we first analyze the difficulty
in directly solving the primal optimization problem (6)–(10):
• The optimization variables 's in the primal optimiza-
tion problem (6)–(10) are strongly coupled, mainly due to
the inequality constraints (9). The coexistence of charging
and discharging forces us to take into consideration the
constraints on SOCs. However, when only charging is
considered, constraints (9) become redundant, making
problem (11) easier to solve.

• The optimization variables 's in the primal optimiza-
tion problem (6)–(10) takes discrete values. To appreciate
the complexity that the discrete variables 's bring
about, we comment that problem (6)–(10) can also be
equivalently viewed as mixed integer nonlinear pro-
gramming (MINLP) problem, which is NP-hard [21].
Furthermore, 's are dependent on 's, therefore
they are also strongly coupled.

From the above discussion, we conclude that it is extremely
hard to solve problem (6)–(10) directly, not to mention in a de-
centralized manner, which forces us to seek a reasonable and
solvable approximation of problem (6)–(10).
Since we focus on flatten the total demand curve during the

night, let us take a look back at Fig. 1. We can find the following
shape feature of the base load curve:

• the peak load occurs at 20:00,
• the base demand decreases monotonically till around 4:00,
• and the base demand slightly increases from 4:00 to 8:00.
Other base load data from authoritative institutions, e.g., the

hourly real-time system demand in New England ISO [22], real-
time total load inMidwest ISO [23], have shown the same shape
feature as that of Fig. 1. Therefore, it is reasonable to infer that,
generally speaking, the overall base demand curve excluding
PEVs during the night satisfies the following assumption:
Assumption 1: is monotonically increasing in ,

and reaches its maximum value at time . Then in
is monotonically decreasing, and reaches its minimum value at
time . In is monotonically increasing.
Note that in Fig. 1 that and is when the minimum

demand is reached.
The ability of G2V enables the valley-filling, while V2G en-

ables the peak shaving. That is to say, we can coordinate the
PEVs such that the PEVs release power into the grid when the
base load is at its peak, and charge when the base load is in the
valley. In this way the overall demand curve is flattened. Since it
is often the case that peak load occurs before the valley load, we
want to find a time threshold , such that the PEVs discharge
during [ ] and charge during [ ], and then find the op-
timal scheduling of PEVs' charging and discharging.
Divide set into two subsets and , where

, and . Based on the
previous analysis, we give the following approximation of the
primal problem (6)–(10).

(15)

where 's, and 's are the optimization vari-
ables, and is defined as the targeted SOC at the end of the
discharging stage, which is commonly shared by all the PEVs.
Besides, for PEVs in subset , they do not discharge during
[ ], and they are only involved in the charging stage after .
Note that in problem (15), is dependent on , and

they are strongly coupled. If we fix certain and , we can
further decompose problem (15) into the following two sub-
problems, where 's are deterministic.
• For the discharging stage:

(16)
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• For the charging stage:

(17)

The optimization variables of problem (16) and (17) are only
the 's. For fixed and , we can find the corresponding
optimal solutions 's to problem (16) and (17), respectively.
Problem (15) is therefore transformed into a bi-level program-
ming problem (BLPP).
Remark 3: The cost function in (15) is the same as (6). The

approximated problem differs from the primal optimization
problem (6)–(10) in the constraints only. Inequality constraints
(9) are absent in problem (15), making problem (15) easier to
solve than problem (6)–(10).

B. Decentralized Optimal Scheduling Algorithm

Next we propose our decentralized optimal scheduling
algorithm for the optimal load shifting problem using PEVs'
charging and discharging, which is based on the decentralized
water-filling-based algorithm. The core idea of our algorithm
is to find and in a decentralized fashion, and then the

's are readily to get. The procedures are as follows, where
for initialization we set .
Step 1: All the PEVs use the decentralized water-filling-based

algorithm to solve the following problem.

(18)

Denote the optimal solution to problem (18) by 's. After
convergence, the aggregator will get a time point such that

(19)

There is a corresponding water level, denoted by , which
follows

Step 2: Since only PEVs in subset will be involved in
the discharging stage, let the PEVs in subset use the de-

centralized water-filling-based algorithm to solve the following
problem:

(20)

where we set . Denote the optimal solution to problem
(20) by 's. For PEVs in , set . After conver-
gence, the aggregator will get a time point such that

(21)

Though in this step we use the water-filling-based algorithm, but
the outcome looks like peaking shaving, or inverse water-filling.
The corresponding water level, denoted by , follows

Step 3: In this step, the aggregator compares the two water
levels. With Assumption 1 satisfied, and shall fall into
the interval . Due to the decreasing monotonicity, judging
whether is equivalent to judging if .
• If holds, then the optimal solution to problem
(15) is that

and

• Otherwise, the aggregator establishes a new auxiliary vari-
able , and the algorithm returns to Step 1 by
setting .
After achieving Step 1 and 2, by comparing the new
and , the aggregator updates , and using

and

Rerun this step until . Then the optimal solution
to problem (15) is that

and

The following are some interpretations about the proposed
algorithm:
• Theoretically, there are possibilities that we cannot find

or such that (21) or (19) holds, respectively. Let
us take for example. There are in total two situations
where does not exist: 1) The discharging of PEVs
shaves the entire curve off, including the valley part, i.e.,

. 2) There may
exist such that the PEVs discharge during the in-
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terval . However, both situations are ruled out in
practice. Firstly, the PEVs do not have such large residual
energy such that their discharging could shave the whole
curve off. Secondly, the practical disparity between the
peak and the valley is sufficiently large to make sure sit-
uation 2) will not happen, either.

• The ideal regulated total demand curve shall be a straight
line, which usually does not hold in practice due to lim-
ited rate of charging and discharging, and finite penetration
rate of PEVs. But with optimal scheduling of charging and
discharging, it is impossible that the regulated water level
in the discharging stage is lower than that of the charging
stage, i.e., must holds.

• In Step 3, if , we can infer that the PEVs release
too much energy back to the grid. So in this case we have
to increase such that . We obtain by
adopting the idea of bisection in a decentralized fashion.

Remark 4: The algorithm proposed in this paper is based on
thewater-filling-based algorithm in our previouswork [7], and it
is easily verified that our algorithm is also decentralized. More-
over, the decentralization of our algorithm on one hand reduces
the computational burden of the aggregator, and on the other
hand, keeps the users' privacy. The aggregator does not need to
know any of the PEVs' parameters.
Remark 5: To satisfy the Assumption 1, it may implicitly

require a large population of loads, such that the aggregated
behavior of all the households follows a certain pattern, while
the unexpectable behavior of a single household has little influ-
ence on the aggregated behavior. We therefore believe that the
Assumption 1 may not be satisfied for small load populations.
For example, the night demand curve of a micro-grid may have
multiple peaks and valleys. To deal with this situation, the de-
mand curve can be divided into multiple sub-curves, where each
sub-curve satisfies the Assumption 1. Then at the end of each
sub-curve, phased target SOCs are assigned such that the assign-
ment is optimal and the phased target SOC of the last sub-curve
equals the target SOC of the whole curve. Then the proposed
algorithm can be applied to each sub-curve to get the solution
regarding the whole curve.

C. Convergence Analysis

Next we give a result about the convergence of our decentral-
ized optimal scheduling algorithm.
Theorem 1: If there exist and such that conditions

(21) and (19) hold and , then the proposed algorithm
converges to the optimal solution to problem (15).
For the proof of Theorem 1, the following lemmas are needed.

Lemma 1 is about the optimal water-filling using one single
PEV.
Lemma 1 [7]: The optimal solution to problem

(22)

is given by

where is the ideal aggregate demand, which is constant for
all is the optimal solution to problem (22), is the
optimal Lagrange multiplier, and is given by (12).
Lemma 2: The optimal solution to problem (22) is not subject

to the ideal demand .
Proof: We have

(23)

According to the equality constraint on 's, it follows that

(24)

which is a constant. Therefore, combining (23) and (24), we
have

where

Therefore only controls the constant term of the cost function,
and Lemma 2 is proved.
Now we give the proof of Theorem 1.
Proof of Theorem 1: We first define

It follows that the cost (6) is equal to .
After the proposed algorithm converges, there will be 2 kinds

of outcomes:
A: We first prove that is optimal by contradiction. Let us

say, there is such that makes the total cost lower
than does. Denote by the optimal solution with . Ac-
cording to Lemma 2, we replace the initial cost function by

without making any changes to the optimal solution.
The whole charing and discharging process can be divided into
three parts accordingly:
• For , we deal with problem (16) using Algo-
rithm 1 with replaced by . Denote the corresponding
eventual water level by . According to the nature of
inverse water-filling, leads to . Since
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we shrink the discharging time and the problem is still fea-
sible, from Lemma 1, there must exists some such that

. Therefore we have

It leads to that for ,

where the equality holds only at when .
Furthermore, we know that there exists some time such
that

Therefore we have

(25)

• For , we have and
. Since , it follows that

(26)

• For , since , according to Lemma 1 we have
. It follows that

(27)

From (25)–(27), we have

which contradicts the assumption. Similarly we can conclude
that there is no such that the total cost is further low-
ered. So is optimal.
B:We next prove in this scenario is optimal by contra-

diction as well. Let us say, there exists such that the
total cost is further lowered. Denote by the optimal so-
lution with . We still use the cost function in this
case.
The adoption of leads to a new set of demarcation points,

denoted by and , respectively. There are also two
new water levels accordingly, denoted by and . In
this case, the PEVs release less power into the grid. Due to the
nature of water-filling, one can easily verify that

In words, the new water levels and both move far-
ther away from .Applying the same techniques used in Case
A, we have the following statements

(28)

From (28), we have

which contradicts the assumption. Similarly we can conclude
that there is no such that the total cost is further
lowered. So is optimal.

IV. NUMERICAL SIMULATIONS

In this section we give some simulation results to show how
our algorithm works. We first use only 5 homogenous PEVs to
regulate the total demand of 100 households, and then we apply
the proposed algorithm to 10 heterogenous PEVs. At last we
make comparisons between the proposed algorithm and the ex-
isting approach to further show the effectiveness of our algo-
rithm.

A. Case 1: Dealing With 5 Homogenous PEVs

In this case, we use only 5 homogenous PEVs for the op-
timal load shifting of 100 households. The base load demand of
the 100 households is shown in Fig. 1. We assume that all the
PEVs join in the grid at 20:00, and leave at 8:00 the next day.
The PEVs' parameters are as follows: kW,
kW, kWh, % % %

%, and %. We set the sampling pe-
riod min. The PEVs initial SOCs are heterogenous,
given by % %

% %, and %.
We set %. The results of step 1 and 2 are

shown in Fig. 2. We can see that after performing the first 2
steps, the water level of the discharging process is higher than
that of the discharging process, i.e., . Then according
to step 3, there is no need to reselect , and we can have the
optimal scheduling of charging and discharging, as it is shown
in Fig. 3.
We also compare the peaking load shifting using both

charging and discharging of PEVs with optimal valley filling
(Algorithm 1) using only the charging process. One can easily
verify that besides the “inverse water filling” from 20:00 to
21:30, the water level of our algorithm in the charging stage is
higher than that of Algorithm 1. Therefore, we can infer that the
curve is more flattened using both the charging and discharging
of PEVs.

B. Case 2: Dealing With 10 Heterogenous PEVs

In this case, we deal with PEVs with a higher penetration rate.
Different from Case 1, 10 heterogenous PEVs are used in this
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Fig. 2. The results of step 1 and step 2, dealing with 5 PEVs.

Fig. 3. Optimal load shifting using charging and discharging.

case. The homogenous parameters are given as follows, and the
unlisted parameters are the same as those in Case 1.

%

%

%

We first set %. The results of step 1 and 2
are shown in Fig. 4. We can see that after performing the first
2 steps, the water level of the discharging process is lower than
that of the discharging process, i.e., . That means
the PEVs do not need to release that much power back into the
grid, so we need to find the optimal using step 3 adopting
the idea of bisection. The final result is shown in Fig. 5, where

Fig. 4. The results of step 1 and step 2, dealing with 10 PEVs.

Fig. 5. Optimal load shifting using charging and discharging.

the optimal turns out to be 22.03%. We can see that our de-
centralized optimal scheduling algorithm does not only apply to
homogenous population of PEVs, but also heterogeneous ones.
In this case, the regulated total demand curve turns into a straight
line, and one can see that the optimal load shifting using both
charging and discharging is much better than merely the valley
filling using the charging process only.

C. Case 3: Comparisons Between Proposed Algorithm and
BONMIN
In this case we make comparisons between the proposed

algorithm and the existing mixed integer programming ap-
proach. Since the original problem (6)–(10) can be viewed as
a MINLP problem, we use the basic open-source nonlinear
mixed integer programming (BONMIN) which is a powerful
solver for general MINLP problems, to solve the original
problem [24]. Specifically, an hybrid outer-approximation
based branch-and-cut algorithm (also referred to as B-Hyb) is
chosen in the implementation of BONMIN. See [25] for more
details about the B-Hyb algorithm.
The proposed algorithm and the BONMIN solver are tested

with various amount of homogenous PEVs from 1 to 10. We
assume that all the PEVs join in the grid at 20:00, and leave at
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TABLE I
COMPUTATIONAL TIME OF THE PROPOSED ALGORITHM AND BONMIN

APPLIED TO VARIOUS NUMBERS OF PEVS

8:00 the next day, like in the first two cases. The parameters of
the PEVs are adapted from Case 1.
To rule out uncertainty factors, both of the two algorithms

are tested in the MATLAB environment on the author's laptop
with Intel Core i7-3610QMprocessor and 8GBDDR3memory.
Both of the two algorithms successfully converge to the optimal
solutions, but their computational speeds are quite different. The
computational time of the proposed algorithm and BONMIN
applied to various amounts of PEVs is presented in Table I.
One can easily verify that the computational speed of our

algorithm is much faster than that of BONMIN. The com-
putational time taken by our algorithm is on a microsecond
basis, and it just slightly increases as the number of PEVs
rises. Nevertheless, the computational time taken by BONMIN
increases significantly with the number of PEVs. It even takes
93492.93 seconds, which approximate 26 hours, to solve
the optimal charging and discharging scheduling of only 10
PEVs, which it takes only 12.4 microseconds by our algorithm.
Since in practice we are usually faced with hundreds or even
thousands of PEVs, we can conclude that BONMIM is almost
unapplicable to this optimal scheduling problem.

V. CONCLUDING REMARKS

In this paper, we have investigated the problem of using
PEVs' charging and discharging for optimal load shifting. We
first formulate the problem as an MDP problem, which is
extremely hard to solve directly. Exploiting the shape feature
of the base load curve during the night, we present a solvable
approximation of the primal problem, for which a decentralized
optimal scheduling algorithm is proposed. Using our algorithm,
all the PEVs are charged to the targeted SOCs and the total
demand curve is flattened. Our algorithm is decentralized in
the sense that the PEVs compute locally and communicate with
an aggregator. Future work would be dealing with demand
curves of general shapes which do not necessarily satisfy the
Assumption 1. Dynamic networks of PEVs, where PEVs can
join and leave from time to time, and the existence of flexible
loads and renewable energy sources will also be considered in
the future.
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