
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Distributed Algorithms for Average Consensus of
Input Data With Fast Convergence

Kan Xie , Qianqian Cai , Zhaorong Zhang, and Minyue Fu , Fellow, IEEE

Abstract—This paper proposes fast convergent distributed
algorithms for weighted average consensus of input data. For
acyclic graphs, we give an algorithm that converges to the exact
weighted average consensus in a finite number of iterations, equal
to the graph diameter. For loopy (cyclic) graphs, we offer two
remedies. In the first one, we give another distributed algorithm
to enable our average consensus algorithm applicable to a loopy
graph by converting it into a spanning tree. In the second one,
we consider a slightly modified average consensus problem whose
optimal solution approximates the consensus solution with arbi-
trary precision, and give a modified average consensus algorithm
with guaranteed exponential convergence to the optimal solution.
The proposed average consensus algorithms enjoy low complex-
ities, robustness to transmission adversaries, and asynchronous
implementation. Our algorithms are conceptually different from
the popular graph Laplacian approach, and converge much faster
than the latter approach.

Index Terms—Average consensus, distributed algorithms, dis-
tributed estimation, networked control.

I. INTRODUCTION

D ISTRIBUTED consensus has been one of the dominant
research problems in networked systems. Applications

of distributed consensus range from statistical learning to
sensor networks, distributed optimization, and computer sci-
ence [1]–[17]. This topic has attracted great attention in
distributed estimation, control of multiagent systems, and so
on. For example, Xu et al. [5] devised a distributed algo-
rithm to estimate the relative interagent states for a multiagent

Manuscript received January 29, 2019; revised March 19, 2019; accepted
April 27, 2019. This work was supported by the National Natural Science
Foundation of China under Grant 61633014, Grant U1701264, and Grant
61803101. This paper was recommended by Associate Editor C.-C. Lim.
(Corresponding author: Qianqian Cai.)

K. Xie and Q. Cai are with the School of Automation, Guangdong
University of Technology, Guangzhou 510006, China, and also with the
Guangdong Key Laboratory of Intelligent Decision and Cooperative Control,
Guangdong University of Technology, Guangzhou 510006, China (e-mail:
kanxiegdut@gmail.com; qianqian.cai@outlook.com).

Z. Zhang is with the School of Electrical Engineering and Computer
Science, University of Newcastle, Callaghan, NSW 2308, Australia (e-mail:
zhaorong.zhang@uon.edu.au).

M. Fu is with the School of Electrical Engineering and Computer Science,
University of Newcastle, Callaghan, NSW 2308, Australia, also with the
School of Automation, Guangdong University of Technology, Guangzhou
510006, China, and also with the Guangdong Key Laboratory of Intelligent
Decision and Cooperative Control, Guangdong University of Technology,
Guangzhou 510006, China (e-mail: minyue.fu@newcastle.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2914385

system; and Chen and Shi [6] designed a distributed pro-
cedure for the consensus of a multiagent system in the
frequency domain. Distributed consensus also plays a crucial
role in wider applications, including distributed sensing and
fusion [18], distributed optimization [19]–[22], and machine
learning [23], [24].

Among many kinds of distributed consensus problems,
the so-called average consensus has been studied mostly
extensively [1]–[13]. Most of the average consensus algo-
rithms are iterative algorithms based on the graph Laplacian
approach (see [1]) which performs distributed averaging at
each iteration, which amounts to a linear dynamic system
with the transition matrix which is a stochastic matrix with
the averaging weights. This approach enjoys several benefits,
including its simplicity and weak requirement on the network
topology. However, average consensus is reached only asymp-
totically, and its exponential convergence rate is significantly
influenced by the network topology. A nonlinear average con-
sensus algorithm is given in [14] and [15] using a nonlinear
weighted update protocol, the convergence is faster but still
asymptotic.

Many attempts have been made on finite-time algorithms for
distributed average consensus. In [7]–[10] and [16], it is shown
that finite-time average consensus can be achieved by apply-
ing a sequence of time-varying stochastic matrices, a scheme
also known as definitive consensus. However, how to design
these stochastic matrices and how long the sequence must be
may not be simple questions to answer in general. Finite-time
average consensus can also be achieved using continuous-
time protocols [11]–[13], but they require continuous (infinite)
information exchange.

In this paper, we propose fast convergent distributed algo-
rithms for weighted average consensus. For acyclic graphs
(i.e., tree graphs), we provide an algorithm that converges
to the exact weighted average consensus in a finite number
of iterations, much faster than previously known finite-time
algorithms. The number of iterations required for conver-
gence is the diameter of the graph, i.e., the largest number
of hops between two nodes. For most large-scale networks
in practice, the graph diameter d is relatively small com-
pared to the network size n. For example, the well-known
small-world networks [25] have d ∝ log(n). Moreover, the
so-called scale-free networks [26], [27] have d ∝ log log(n).
Note that small-world networks and scale-free networks are
commonly used to model social networks, computer networks,
communication networks, transportation networks, and biolog-
ical networks [25]–[27]. Thus, our algorithm is very efficient

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9932-8131
https://orcid.org/0000-0003-1661-7075
https://orcid.org/0000-0002-4659-601X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

for acyclic graphs. Indeed, we show that our algorithm is the
fastest in the sense that no other algorithm can achieve aver-
age consensus with fewer iterations than ours. Our algorithm
is inspired by the well-known belief propagation algorithm
which finds wide applications in many fields (see [28]–[30]).

For our average consensus algorithm to be applied to loopy
graphs, two remedies are offered. First, we give another dis-
tributed algorithm to convert a loopy graph to a spanning
tree by removing loop-forming edges. This algorithm is also
very fast, completing only in d + 1 iterations. Combining this
algorithm with the proposed average consensus algorithm, we
achieve a fully distributed average consensus algorithm for
loopy graphs with finite-time convergence. Second, we con-
sider a slightly modified average consensus problem whose
optimal solution approximates the consensus solution with
arbitrary precision by choosing a scaling parameter. We derive
a modified average consensus algorithm and show that it has
guaranteed exponential convergence to the optimal solution,
when applied to a loopy graph directly.

We also show that the proposed distributed consensus algo-
rithms enjoy certain robustness against transmission loss and
delay and can be implemented asynchronously. The algorithms
have very low complexities, namely, each node’s computa-
tion, transmission, and storage complexity per iteration is only
proportional to the number of neighboring nodes.

The remaining of this paper is organized as follows.
Section II formulates the weighted average consensus problem.
Section III gives the first proposed algorithm for average con-
sensus over acyclic graphs. Section IV gives a distributed
algorithm for loop removal. Section V presents a number
of interesting properties of Algorithm 1. Section VI gives
the modified average consensus algorithm for loopy graphs.
Section VII gives examples. Section VIII concludes this paper.

II. PROBLEM DESCRIPTION

Consider an undirected graph G = {V, E} with a set of nodes
V = {1, 2, . . . , n} and a set of edges E = {(i, j) : i, j ∈ V}. We
say that a graph is undirected if information can propagate in
two directions between all neighboring nodes. A graph is said
to be acyclic if it is connected and it has no loops, that is, it
is a tree graph. Denote by Ni the set of neighboring nodes of
node i, and by |Ni| the cardinality of Ni.

Assume |Ni| � n: Let each node i ∈ V be associated with
the input data consisting of a vector yi of same dimension and
a weight wi > 0. Denote by x̄ the weighted average of these
yi, i.e.,

x̄ =
∑

i∈V wiyi
∑

i∈V wi
. (1)

The problem of distributed average consensus is to provide an
iterative algorithm that runs on every node i ∈ V to produce
an estimate of x̄ such that after a number of iterations, the
estimate by each node will converge to x̄. When wi = 1 for
all nodes, weighted average consensus becomes the standard
(unweighted) average consensus.

It is clear that certain constraints need to be imposed on
the algorithm’s complexities of communication, computation,

Algorithm 1 Distributed Algorithm for Average Consensus
Inputs: For each node i, the input data are wi and yi.
Outputs: For each node i and iteration k, the output is the
estimate x̂i(k) of x̄i.
Initialization: For each node i, do: For each j ∈ Ni, set
xi→j(0) = yi, si→j(0) = wi and transmit them to node j.
Main loop: At iteration k = 1, 2, · · · , for each node i,
compute

s̃i(k) = wi +
∑

j∈Ni

sj→i(k − 1) (2)

x̃i(k) = wiyi +
∑

j∈Ni

sj→i(k − 1)xj→i(k − 1) (3)

x̂i(k) = x̃i(k)

s̃i(k)
, (4)

then for each j ∈ Ni, compute

si→j(k) = s̃i(k) − sj→i(k − 1) (5)

xi→j(k) = x̃i(k) − sj→i(k − 1)xj→i(k − 1)

s̃i(k) − sj→i(k − 1)
(6)

and transmit them to node j.

and storage to call it distributed. In this paper, these include
the following.

1) Local Information Exchange: Each node i is allowed to
exchange information with each j ∈ Ni only once per
iteration.

2) Local Computation: Each node i’s computational load
is limited to be at most O(|Ni|) per iteration.

3) Local Storage: Each node i’s storage is limited to be at
most O(|Ni|) over all iterations.

Lemma 1: Under the constraint on local information
exchange, a connected undirected graph G needs a minimum
of d iterations to achieve average consensus for general sets
of {yi} and {wi}, where d is the diameter of G.

Proof: Take nodes i and j to be d hops away from each
other. The information at node i must be propagated to node
j for it to compute x̄. By the constraint on local information
exchange, this process takes at least d iterations.

III. DISTRIBUTED ALGORITHM FOR AVERAGE

CONSENSUS OVER ACYCLIC GRAPHS

In this section, we present the first proposed distributed
algorithm for average consensus, give its main property on
acyclic graphs, and analyze its complexities.

A. Distributed Algorithm

Let xi→j(k) denote the information passed from node i to
node j at time k, which represents a scaled estimate of the aver-
age x̄ known to node i without using information from node j.
Also denote by si→j(k) the scale passed from node i to node j
at time k, which represents the weighted number of nodes used
to compute xi→j(k). We also define two temporary internal
variables in node i, s̃i(k) and x̃i(k). Algorithm 1 is the proposed
distributed algorithm for weighted average consensus.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: DISTRIBUTED ALGORITHMS FOR AVERAGE CONSENSUS OF INPUT DATA WITH FAST CONVERGENCE 3

Theorem 1: Suppose G is undirected and acyclic with
diameter d. Then

s̃i(k) = wi +
∑

m∈Vi(k)

wm (7)

x̃i(k) = wiyi +
∑

m∈Vi(k)

wmxm (8)

for k = 1, 2, . . . , d, where Vi(k) is the set of nodes in G
at most k hops away from node i (not including node i).
Consequently, average consensus is achieved by Algorithm 1
after d iterations, i.e.,

x̂i(k) = x̄ ∀ k ≥ d, i ∈ V . (9)

Proof: For any edge (i, j) ∈ E , we analyze the convergence
of si→j(k) and xi→j(k). To do so, we build two disjoint sub-
graphs Gi (containing node i) and Gj (containing node j) of
G by removing (i, j). Notice that Gi and Gj are disjoint due
to the acyclic nature of G. Also, it is clear that G is formed
by merging Gi, Gj and edge (i, j). Denote by Wi (resp. Wj)
the set of nodes in Gi (resp. Gj). We see from (2)–(6) that
si→j(k) and xi→j(k) are constructed using the information in
Gi only because sj→i(k − 1) and xj→i(k − 1) (representing the
information flow from node j to node i) get removed in each
iteration. That is, (2)–(5) can be rewritten as

si→j(k) = wi +
∑

m∈Ni\{j}
sm→i(k − 1)

xi→j(k) = wiyi +
∑

m∈Ni\{j}
sm→i(k − 1)xm→i(k − 1)

which shows that the information (sj→i(k − 1), xj→i(k − 1))

is not used in computing (si→j(k), xj→i(k)). Similarly, sj→i(k)
and xj→i(k) are constructed using the information in Gj only.

Recall that at Initialization (k = 0), si→j(0) = wi is set.
Consider the case of k = 1. From (2) and (5), we see that
si→j(1) contains all sm→i(0) for all the neighboring nodes
m, except node j. Following the definition of Vi(k), we have
Vi(1) = Ni. It follows that:

si→j(1) = wi +
∑

m∈Ni\{j}
sm→i(0) = wi +

∑

m∈Vi(1)\Wj

wm.

Similarly, for k = 2, we have

si→j(2) = wi +
∑

m∈Ni\{j}

⎛

⎝wm +
∑

t∈Vm(1)\Wi

wt

⎞

⎠.

The set of m with m ∈ Ni\{j} contains all the nodes one
hop away from node i, except those in Gj, and the set of t with
t ∈ Vm(1)\Wi, m ∈ Ni\{j} contains all the nodes that are two
hops away from node i, except those nodes in Gj. Hence

si→j(2) = wi +
∑

m∈Vi(2)\Wj

wm.

That is, the weights of all the nodes 2 hops away from node
i, except those in Gj, will be included in si→j(2). Repeating
the above process, we get, for any k

si→j(k) = wi +
∑

m∈Vi(k)\Wj

wm.

Next, consider s̃i(k) and x̃i(k). Notice from (5) that s̃i(k) =
si→j(k) + sj→i(k − 1). Also notice that node j is 1 hop away
from node i, meaning that all the nodes in Gj which are k − 1
hops away from node j are k hops away from node i, when
considering G. That is

(Vi(k)\Wj
) ∪ (Vj(k − 1)\Wi

) ∪ {j} = Vi(k).

Then (7) follows because:

s̃i(k) =
⎛

⎝wi +
∑

m∈Vi(k)\Wj

wm

⎞

⎠ +
⎛

⎝wj +
∑

m∈Vj(k−1)\Wi

wm

⎞

⎠

= wi +
∑

m∈Vi(k)

wm.

Equation (8) is shown in the same way. Note that x̃i(d) is
the weighted sum of all the nodes in G and s̃i(d) is the sum
of their weights, resulting in x̂i(d) = x̄ for each node i.

It remains to check that all the updates will end after
iteration d. Consider any path p in G going through nodes
i and j. This path is split into three segments: 1) path pi in Gi;
2) edge (i, j); and 3) path pj in Gj. Denote the maximum path
length of pi by di, and the maximum path length of pj by dj.
Since the set Vi(k)\Wj contains all the nodes in Gi that are at
most k hops away from node i (excluding node i itself), it is
clear that Vi(k)\Wj = Vi(di)\Wj for all k ≥ di. It follows that
si→j(k) and xi→j(k) must converge after di iterations. Similarly,
sj→i(k) and xj→i(k) will converge after dj iterations. Because
the maximum path length of p is d, we get di + dj + 1 ≤ d.
In particular, d ≥ di and d − 1 ≥ dj. Hence, at iteration d, all
the terms si→j(d), xi→j(d), sj→i(d − 1), xj→i(d − 1) must have
converged. From (5) and (6), the above implies that s̃i(d) and
x̃i(d) must have converged.

Remark 1: Although Theorem 1 states that average consen-
sus is achieved at every node after d iterations, most nodes can
achieve so earlier than d iterations in reality. Indeed, follow-
ing the definition of Vi(k) and (7) and (8) in Theorem 1, we
see that convergence at each node i is achieved at iteration ki

as soon as Vi(ki) = V , and this is so when ki equals to the
number of hops needed to reach any node in V from node i.
It is clear that ki ≤ d in general and ki < d for most i.

B. Complexity Analysis

It is straightforward to verify that Algorithm 1 satisfies the
aforementioned constraints 1)–3). In fact, in iteration k, node
i uses (sj→i(k − 1), xj→i(k − 1)) received from each neigh-
boring node j only once, then transmits back the computed
(si→j(k), xi→j(k)). The computational complexity of (2)–(4) is
O(|Ni|) for each node i. Finally, each node i needs only to
store (si→j(k), xi→j(k)) for each j ∈ Ni [other than x̂i(k) and
the temporary variables s̃i(k) and x̃i(k)], thus its complexity
is also O(|Ni|). Combining the above with Theorem 1, we
see that the complexity of Algorithm 1 for an acyclic graph
is O(d|Ni|) for each node i. The complexity of Algorithm 1
depends on the graph diameter d. But as explained in Section I,
d is typically small compared to the network size for most
large-scale networks in practice.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

IV. DISTRIBUTED ALGORITHM FOR LOOP REMOVAL

One main restriction of Algorithm 1 is that it is applicable
to acyclic graphs only. When applied to loopy graphs, approxi-
mate average consensus will be produced. In order to properly
apply Algorithm 1 to loopy graphs, it is necessary to remove
certain edges in G to make it loop free. That is, our problem is
to construct a spanning tree, a tree graph which is a connected
subgraph of G containing all the nodes of G. Fortunately, this is
a well-known classical problem in graph theory. The standard
(and most popular) algorithms are depth-first search (DFS) and
breath-first search (BFS) [31], [32].

First, we explain how DFS works. We assume that the
graph G = {V, E} is connected. Start from a randomly
chosen root node, say node i. Mark this node as a visited
node, declare this as the progressing node and proceed to
the following iteration. For the progressing node i, if there
is no more unvisited edge from node i, declare the parent
node of i as the progressing node and proceed to the next
iteration; otherwise, take any unvisited edge (i, j). If j was
visited before, then the edge (i, j) (called back edge) should
be removed; otherwise, mark node j as a visited node and
the progressing node and proceed to the next iteration. The
iterative process stops when the progressing node returns to the
root node.

Many variants of DFS are available, under the name of “dis-
tributed DFS” where the term “distributed” means that each
node in the resulting spanning tree will know their parent node
and child nodes (see [33] for a summary of them). Efficient
algorithms also exist for finding a minimum weight diameter
spanning tree of a weighted graph [34], [35].

The standard DFS or BFS has two disadvantages. First, the
searching of loop-forming edges is done sequentially, thus the
complexity of O(|V| + |E |) is usually too high for large-scale
networks. Second, it is not clear how to select a root node in
a distributed way (in our sense).

We will give a new DFS algorithm to address these issues.

A. Distributed DFS Algorithm

As in a standard DFS algorithm, we start with a root node
in G̃ (how to choose it will be discussed later) and send
out a token from it. Instead of searching for loop-forming
edges in a sequential way (as in the standard DFS), we
allow searching to be done on multiple branches simulta-
neously to reduce the iteration number considerably. More
specifically, a token is transmitted to all the neighboring
nodes which then relay it to other neighboring nodes and
so on. Each node, when receiving a token, checks if it is
looped back from its earlier transmission, and if so, marks
the incoming edge as a loop-forming edge. The details are in
Algorithm 2.

We first address the issue of how to choose a root node
in a distributed fashion. It turns out that, with the assumption
that every node has a unique numerical ID (which is a quite
reasonable assumption for most networks), this problem can
be solved using a max consensus algorithm [17]. For a con-
nected graph G = {V, E} with diameter d, the max consensus
algorithm finds the maximum node value in d iterations, and

Algorithm 2 Distributed DFS Algorithm for Spanning Tree
Input: The given graph G = {V, E}.
Output: The spanning tree with modified (marked) E .
Initialization: Select a root node in G (by running the max-
consensus algorithm on node ID numbers for d iterations
and setting the node with maximum ID number as the root
node). Mark the root node as “visited” and all other nodes
as “unvisited.” Transmit a token from the root node to each
of its neighboring nodes.
Iterations k = 1, 2, . . .: For each node i, do the following:

1) If it does not receive the token, do nothing;
2) If it is “unvisited” and it receives the token from only

one neighbor, then mark the node as “visited”, and
relay the token to all other neighboring nodes without
the “removal” mark, except the incoming edge (i.e.,
the edge where the token came from);

3) If it is “unvisited” and it receives the token from
multiple neighbors, then mark the node as “visited”,
leave one (any one) incoming edge alone and mark all
other the incoming edges as “removal”, and then relay
the token to all other neighboring nodes without the
“removal” mark, except the remaining incoming edge;

4) If it is already “visited” and it receives the token, mark
the incoming edge as “removal” and do not relay the
token further.

it obeys the three aforementioned constraints for distributed
algorithms. Denoting by zi the node value for every node
i ∈ V , the max consensus algorithm is given below:

1) each node i initializes zi(0) = zi and transmits it to its
neighbors;

2) for iterations k = 1, 2, . . ., each node i updates zi(k) =
maxj∈Ni zj(k − 1) and transmits it to its neighbors.

Then, max consensus is reached in d steps, i.e., zi(d) =
maxj∈V zj, provided that G is connected. The details of the
max consensus algorithm can be found in [17].

The promised distributed DFS algorithm is given in
Algorithm 2. It is assumed that G is connected.

Theorem 2: Suppose G has diameter d and has a unique
numerical ID for each node. Then, Algorithm 2 gives a unique
root node and it converges in at most d + 1 iterations, and the
graph G after removing all the edges marked with “removal,”
is a spanning tree of G.

Proof: The uniqueness of the root node comes from the
uniqueness of the maximum node label. Denote this node by r.
Recall our earlier definition of Vr(k), which is the set of nodes
in G at most k hops away from r. Also denote by Lr(k) the
set of nodes in the kth level of the resulting spanning tree. In
particular, Lr(0) = {r}, i.e., the chosen root node is the root
node of the resulting spanning tree. We now focus on rest of
the algorithm.

Initially, none of the edges has a “removal” mark, and all
the nodes (except the root node) is “unvisited” (meaning that
it has not received a token before). We show below that Lr(k)
is indeed the set of the nodes which are visited for the first
time in the kth iteration.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: DISTRIBUTED ALGORITHMS FOR AVERAGE CONSENSUS OF INPUT DATA WITH FAST CONVERGENCE 5

Indeed, at iteration 1, the token is passed on from node r
to all the nodes in Vr(1), and these nodes naturally form the
first level of the spanning tree, i.e., they are in Lr(1).

At iteration k ≥ 2, each node which receives a token, unless
visited earlier, relays the token to all of its unmarked neighbors
excluding those where the token just came from [see steps 2)
and 3)]. This means that if a node receives a token at iteration
k for the first time, it must be in Vr(k) and not in Lr(k − 1).
These nodes naturally form Lr(k).

To see how the loop-forming edges are removed, we note
that if a node receives the token multiple times (whether in a
single iteration or in several iterations), it means that the root
node has multiple paths to this node. Therefore, all of these
incoming edges, except one (any one), should be removed
without loosing its connectivity to the root node. This is done
in steps 3) and 4). The survived incoming edge corresponds
to the earliest visit [steps 2) and 3)], meaning that only the
shortest path (not necessarily unique though) to the root node
is kept.

By the definition of graph diameter, it takes at most d iter-
ations for all the nodes to be visited. It then takes another
iteration to remove the remaining loop-forming edges (if any).
After d + 1 iterations, the token ceases to exist and each node
has one and only one incoming edge that is linked to the root
node, hence the remaining graph is a spanning tree.

Remark 2: We commented earlier the works
of [34] and [35] which give efficient distributed algo-
rithms for finding a minimum weight diameter spanning tree
for a weighted graph. Our algorithm differs from that in [34]
and [35] in the sense that ours requires only d + 1 iterations,
whereas [34] and [35] focus on the weights of a graph and
the overall efficiency of the algorithm.

B. Complexity Comparison With Standard DFS Algorithm

Recall that the standard DFS algorithm has complexity of
O(|V| + |E |) [31]. In contrast, the proposed Algorithm 2 has
very low complexity for each node because during each of the
d iterations, each node relays the token only to its neighbors
where were not visited before. In contrast, the above complex-
ity is per node and thus is not contradictory to the total com-
plexity of O(|V|+|E |) for the standard DFS algorithm. That is,
we have distributed the total complexity to individual nodes.

The use of multiple tokens in our algorithm significantly
reduces the number of iterations (down to d + 1). In contrast,
the standard DFS algorithm requires |V| iterations because
every node needs to be visited sequentially via a single token.

V. ALGORITHM PROPERTIES AND MODIFICATIONS

In this section, we present a number of properties and mod-
ifications of the proposed algorithm for average consensus.

A. Robustness to Transmission Loss and Delay

Transmission loss and delay are unavoidable in networks.
The proposed Algorithm 1 is resilient to these errors. This is
because each node uses the most recent information received
from its neighbors to update its own information. Delayed
arrival of information from neighbors can only delay the

update and the convergence of the algorithm, without chang-
ing the final consensus. Similarly, if a packet loss happens,
it is sufficient that retransmission occurs and the information
arrives eventually, which is implemented by most communica-
tions protocols, e.g., transmission control protocol (TCP), via
acknowledgment (ACK). This type of packet loss becomes
transmission delay, thus will not alter the eventual consensus.

More specifically, for any edge e in G, denote its transmis-
sion time by a positive integer T(e) : T(e) = 1 (unit of time)
for no delay; T(e) > 1 if there is T(e) units of time delay. For
a path p in G, its path transmission time T(p) is defined to be
the time it takes to relay a packet along this path, by adding
up the transmission times of the edges. The following result
holds.

Corollary 1: Suppose there exists (maximum path transmis-
sion time) Tmax such that T(p) ≤ Tmax for every path p in
G. Then, under the conditions of Theorem 1, Algorithm 1
achieves average consensus within T iterations, i.e., x̂i(k) = x̄
for all k ≥ Tmax, i ∈ V .

Proof: Consider any node i. Since G is acyclic, all the nodes
in G can be organized as a tree, with node i in the root. Note
from (7) and (8) in Theorem 1 that if there is no delay and
loss, then at each iteration k, the weights and state variables
that are k hops away from node i are added to s̃i(k) and x̃i(k).
It is clear that if there is T(e) > 1 for some edge e = (i1, i2)
along some path p originated from node i (assuming that
node i1 is closer to node i than node i2), then edge e can
be replaced with a path of (i1, j1), (j1, j2), . . . , (j(T(e)−1), i2)
without delay in each edge in the path, where the extra nodes
j1, j2, . . . , j(T(e)−1) are fictitiously added with the correspond-
ing weights wj1 = . . . wj(T(e)−1)

= 0 and any state variables.
Following Theorem 1, we see that the weights in all the
nodes along the part of the path p starting from node i2
will take T(e) − 1 extra iterations to reach node i1. Because
the maximum path transmission time is T , we conclude that
after Tmax iterations, x̂i(k) = x̄ for all k ≥ Tmax, i ∈ V .
Note that the fictitious weights and variables do not affect
the result.

B. Asynchronous Implementation

Asynchronous implementation of an algorithm refers to the
idea that each node executes its own calculations without a
common (or global) clock. This feature is very important in
practice due to the fact a precise common clock for all the
nodes is very expensive to maintain.

Although Algorithm 1 is written as a synchronous algorithm
(i.e., every node uses the same time index k and updates at the
same time), this is purely for convenience. The implementation
can be completely asynchronous without degradation to the
consensus result. To allow asynchronous implementation, we
modify Algorithm 1 as follows.

Replace the common iteration number k with a local counter
ki for each node i and initialize it to zero. According to its own
local clock time zero, each node i transmits the initial packet
(si→j(ki), xi→j(ki), ki) (with ki = 0) to every node j ∈ Ni

and then increment ki. Then, each node i simply waits till
it receives all the packets (sj→i(ki − 1), xj→i(ki − 1), ki − 1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

from all the neighboring nodes j ∈ Ni, then computes
(si→m(ki), xi→m(ki)) as in (2)–(6) for every neighboring node
m ∈ Ni and transmits the new packet (si→m(ki), xi→m(ki), ki)

to node m, then increment ki. This process is repeated until
ki = d.

It is easy to see that if all the nodes have a synchronized
clock, the modified algorithm coincides with Algorithm 1.
When the nodes are not synchronized, packets do not arrive
at a node simultaneously. But each node i waits till all the
information of sj→i(ki − 1) and xj→i(ki − 1) from all the
neighboring nodes j arrives before computing si→m(ki) and
xi→m(ki). This ensures the correctness of the updating. Hence,
it is clear that the modified algorithm achieves the same result
when all ki reach d, which is guaranteed to happen when all
the local clocks have a positive minimum rate.

C. Regional Average Consensus

For a large-scale network, it is often important and suffi-
cient for each node to compute the average consensus over a
subnetwork around itself. This can be called regional average
consensus. We can define the size of a region as follows: a
region of size δ for node i, denoted by Gδ

i , is the subnetwork
with all the nodes at most δ hops away from node i.

Similar to the study in the previous section, we see from (7)
and (8) in Theorem 1 that Algorithm 1 can be used for this
purpose by stopping it after δ iterations. This will yield x̂i(δ)

which is the weighted average consensus over Gδ
i .

An application of the above property is that instead of using
the actual diameter d in Algorithm 1, one may replace it with
an estimate of it, or an average diameter, etc., which will result
in an approximation of x̄ for each node.

Moreover, if the asynchronous implementation discussed
earlier is used, the algorithm becomes robust against time
delay and asynchronous local clocks in the sense that cor-
rect regional average consensus is guaranteed by each node i
stops updating when its local counter ki reaches δ.

VI. DISTRIBUTED AVERAGE CONSENSUS

FOR LOOPY GRAPHS

In this section, we modify the distributed average consensus
algorithm, Algorithm 1, to make it suitable for direct appli-
cation to loopy graphs. This is done by relaxing the strict
requirement that all the nodes must reach exact consensus.
More precisely, for a given undirected and connected graph
G = {V, E} as before (but cyclic), we consider the following
optimization problem:

min
x

∑

i∈V
wi‖xi − yi‖2 + γ

∑

(i,j)∈E
‖xi − xj‖2 (10)

where wi and yi are as given before, x = col{x1, x2, . . . , xn} is
the decision vector and γ > 0 is a large weighting (or penalty)
parameter to be tuned. It is intuitive to see that as γ → ∞,
all xi will become the same due to the connectedness of G,
and the solution to (10) will become the solution to

x̄ = arg min
x0

∑

i∈V
wi‖x0 − yi‖2

Algorithm 3 Modified Algorithm for Average Consensus
Inputs: For each node i, the input data are wi, yi and γ .
Outputs: For each node i and iteration k, the output is the
estimate x̂i(k) of x�

i .
Initialization: For each node i, do: For each j ∈ Ni, set
xi→j(0) = yi, si→j(0) = fγ (wi) and transmit them to node j.
Main loop: At iteration k = 1, 2, · · · , for each node i,
compute

s̃i(k) = wi +
∑

j∈Ni

sj→i(k − 1) (12)

x̃i(k) = wiyi +
∑

j∈Ni

sj→i(k − 1)xj→i(k − 1) (13)

x̂i(k) = x̃i(k)

s̃i(k)
, (14)

then for each j ∈ Ni, compute

si→j(k) = fγ (s̃i(k) − sj→i(k − 1)) (15)

xi→j(k) = x̃i(k) − sj→i(k − 1)xj→i(k − 1)

s̃i(k) − sj→i(k − 1)
(16)

and transmit them to node j.

which can be easily verified to be identical to (1). The relax-
ation mentioned above is to solve (10) instead of (1) for a
sufficiently large γ .

Before presenting a distributed algorithm for solving (10),
we give its centralized optimal solution below. Denote y =
col{y1, y2, . . . , yn}, W = diag{w1, w2, . . . , wn}, and define the
n × n Laplacian matrix L = [�ij] as

�ij =
⎧
⎨

⎩

|Ni|, i = j
−1, (i, j) ∈ E
0, otherwise.

Lemma 2: The optimal solution to (10) is given by

x� = (γ L + W)−1Wy. (11)

Proof: It is easy to verify that the objective function in (10)
can be rewritten as (x−y)TW(x−y)+xT(γ L)x. Differentiating
it with respect to x and setting it to zero gives

W(x − y) + γ Lx = 0.

Solving it gives the solution (11). This solution is optimal
because L is symmetric and positive semi-definite, ensuring
that γ L + W is symmetric and positive definite, which in turn
ensuring that the objective function is strictly convex.

The modified Algorithm 1 is presented in Algorithm 3. For
notational convenience, we denote fγ (w) = γ w/(γ + w).

Theorem 3: Suppose that the graph G is undirected,
connected, and acyclic with diameter d. Then, running
Algorithm 3 yields that

x̂(k) = x� ∀k ≥ d (17)

where x̂(k) = col{x̂1(k), x̂2(k), . . . , x̂n(k)} and x� is in (11).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: DISTRIBUTED ALGORITHMS FOR AVERAGE CONSENSUS OF INPUT DATA WITH FAST CONVERGENCE 7

Fig. 1. Illustration graph for Example 1.

Example 1: To help visualize the proof, we first discuss the
simple graph in Fig. 1 with d = 2. For this graph, we have

[γ L + W | Wy]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2γ + w1 − γ − γ 0 0 w1y1

−γ 3γ + w2 0 − γ − γ w2y2

−γ 0 γ + w3 0 0 w3y3

0 −γ 0 γ + w4 0 w4y4

0 −γ 0 0 γ + w5 w5y5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(18)

Solving x1 in (γ L + W)x = Wy can be done by applying
Gauss elimination step by step on [γ L+W | Wy] above. Define
g(w) = γ /(γ + w).

Step 0.1 (k = 1): Adding a scaled version of row 3 to row
1 with scaling value of g(w3) will eliminate the (1, 3)-entry
of (18). Similarly, adding a scaled version of row 4 to row
2 with scaling value of g(w4) will eliminate the (2, 4)-entry
of (18), and adding a scaled version of row 5 to row 2 with
scaling value of g(w5) will eliminate the (2, 5)-entry of (18).
This results in
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ + w1 − γ 0 0 0 w1y1
+fγ (w3) + fγ (w3)y3

−γ γ + w2 0 0 w2y2
+ fγ (w4) + fγ (w4)y4
+ fγ (w5) + fγ (w5)y5

−γ 0 γ + w3 0 0 w3y3

0 − γ 0 γ + w4 0 w4y4

0 − γ 0 0 γ + w5 w5y5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(19)

We see that the Gauss eliminations above effectively do
the following: add s3→1(0) and s3→1(0)x3→1(0) to the (1, 1)-
entry and (1, 6)-entry in (19), respectively; and add s4→2(0)+
s5→2(0) and s4→2(0)x4→2(0)+ s5→2(0)x5→2(0) to the (2, 2)-
entry and (2, 6)-entry, respectively. Note in (19) that nodes
1 and 2 are now uncoupled from nodes 3, 4, and 5. Also,
because node 3 is a leaf node, we see from (12)–(16) that
(s3→1(k), x3→1(k)) = (s3→1(0), x3→1(0)) for all k ≥ 1.

Step 0.2 (k = 2): Adding a scaled version of row 2 to row
1 with scaling value of g(w2 + fγ (w4)+ fγ (w5)) will eliminate
the (1, 2)-entry of (19), giving the following equation for x1:
(
w1 + fγ (w3) + fγ

(
w2 + fγ (w4) + fγ (w5)

)
x1

= w1y1 + fγ (w3)y3

+ g
(
w2 + fγ (w4) + fγ (w5)

)(
w2y2 + fγ (w4)y4 + fγ (w5)y5

)
.

We see from (12)–(16) that this is the same as sending
s2→1(1) = fγ (w2 + fγ (w4) + fγ (w5)) and x2→1(1) = (w2y2 +

fγ (w4)y4 + fγ (w5)y5)/(w2 + fγ (w4)+ fγ (w5)) to node 1 to give

s̃1(2) = w1 + s3→1(1) + s2→1(1)

= w1 + fγ (w3) + fγ
(
w2 + fγ (w4) + fγ (w5)

)

x̃1(2) = w1y1 + s3→1(1)x3→1(1) + s2→1(1)x2→1(1)

= w1y1 + fγ (w3)y3 + g
(
w2 + fγ (w4) + fγ (w5)

)

× (
w2y2 + fγ (w4)y4 + fγ (w5)y5

)
.

This confirms that x̂1(2) in (14) coincides with x�
1.

Similar to step 0.2, we see that (s2→1(k), x2→1(k)) =
(s2→1(1), x2→1(1)). Therefore, x̂1(k) = x̂1(2) for all k > 2.

Now, we proceed to prove Theorem 3.
Proof: We focus on solving (11) for a general acyclic graph

G with diameter d, i.e., solving (γ L+W)x = Wy. We take any
node and consider the tree representation of G with this node
as the root. Because the ordering of the nodes does not affect
the solution of (10), we assume, without loss of generality, that
the root node is labeled as node 1. Thus, it suffices to show
that x̂1(k) = x�

1 for all k ≥ d, where x�
1 is the first element

of x�.
Denote by t the depth of the tree graph, i.e., the longest path

from a leaf node to the root node (node 1), it is clear that t ≤ d.
Without loss of generality, assume that the nodes are listed in
the following order: all the leaf nodes are at the bottom of the
list; once all the leaf nodes are removed, the leaf nodes of the
remaining graph are at the bottom of the remaining list; and
so on. As before, we study the steps of Gauss elimination for
computing x�

1.
Step 1 (k = 1): Let node i be any leaf node and node j be its

(unique) neighboring node. Adding a scaled version of row i
to row j with the scaling parameter of g(wi) will eliminate the
(j, i)-entry of the matrix [γ L+W|Wy]. As verified before, this
operation is equivalent to adding si→j(0) to the (j, j)-entry and
adding si→j(0)xi→j(0) to the (j, (n+1))-entry of [γ L+W|Wy].
Similar to step 0.1 above, we have si→j(k) = si→j(0) and
si→j(k)xi→j(k) = si→j(0)xi→j(0) for all k > 0, due to the fact
that i is a leaf node.

Step 2 (k = 2): Consider the reduced graph with all the leafs
removed and the remaining matrix of [γ L+W|Wy]. Denote by
n1 the remaining number of nodes. Let node i be any new leaf
(which is the neighbor of an old leaf) and let j be the (unique)
neighbor of i. From step 1, we see that the (i,i)-entry contains
a γ term and wi + ∑

v∈Ni\j sv→i(k − 1), which is the same as
s̃i(k) − sj→i(k − 1). Similarly, the (i,(n1 + 1))-entry contains
wiyi + ∑

v∈Ni\j sv→i(k − 1)xv→i(k − 1), which is the same as
x̃i(k)−xj→i(k−1) = (s̃i(k)−sj→i(k−1))xi→j(k). We can treat
s̃i(k) − sj→i(k − 1) as the new wi and treat (s̃i(k) − sj→i(k −
1))xi→j(k) as the new wiyi and apply the Gauss elimination
in step 1 again.

Step k (k ≥ t): The above process can be repeated until
only the root node remains. Similar to the graph in Fig. 1, it
is tedious but straightforward to verify that the resulting x�

1 is
indeed given by x̂1(t) in (17). It is similar to steps 0.1 and
0.2 that x̂1(k) = x̂1(t) for all k > t. Since t ≤ d, the above
means that x̂1(k) = x̂1(d) for all k > d. Since the root node is
arbitrarily chosen, we conclude that x̂(k) = x̂(d) = x� for all
k > d.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 2. Left: Loopy graph. Right: Unwrapped tree around node 1 with four
layers (t = 4).

Next, we show that Algorithm 3 indeed applies to loopy
graphs directly and still enjoys the convergence of x̂i(k) → x�

i
as k → ∞, for all i ∈ V . First, we point out an obvious fact
of (15) that si→j(k) < γ because fγ (w) = γ w/(γ + w) < γ ,
i.e., si→j(k) is uniformly bounded.

To study the convergence of Algorithm 3 for loopy graphs,
we construct an unwrapped tree (also known as computation
tree) with depth t > 0 for a loopy graph G [29]. Take an
arbitrary node, say node 1, to be the root and then iterate the
following procedure t times:

1) find all leaves of the tree (start with the root);
2) for each leaf, find all the nodes in the loopy graph that

neighbor this leaf node, except its parent node in the
tree, and add all these node as the children to this leaf
node.

The variables and weights for each node in the unwrapped tree
are copied from the corresponding nodes in the loopy graph.
Taking a different node as root node will generate a different
unwrapped tree. Fig. 2 shows the unwrapped tree rooted at
node 1. Note that the nodes 1′, 1,′′ 1′,′′ 1‘, 1“, 1“‘ all carry the
same values y1 and w1.

List the nodes in the unwrapped tree in breadth first order,
by starting from the root node, followed by the first layer, then
the second layer, etc. Denote the unwrapped quantities using ˘
and the unwrapped tree as Ğt. Then, the unwrapped quantities
and the original ones are related through a matrix O [29]

y̆ = Oy; w̆ = Ow. (20)

Each row of O contains only 1 and the rest are all 0.
Consider the optimization problem (10) for Ğt (with

unwrapped quantities). By Lemma 2, its solution is given by

x̆� = (γ L̆ + W̆)−1W̆y̆ (21)

where L̆ is the Laplacian matrix for Ğt.
We introduce two key lemmas. Lemma 3 shows how the

solution (21) for Ğt is related to the execution of Algorithm 3
on G. Lemma 4, derived by following [29], reveals the
relationships between the quantities in G and those in Ğt.

Lemma 3: The optimal quantity x̆�
1 [the first element

of (21)] for Ğt coincides with x̂1(t) [the result of (14) for

node 1 after running Algorithm 3 on G for t iterations], i.e.,

x̂1(t) = x̆�
1. (22)

Proof: We analyze the execution of Algorithm 3 on G for
node 1 only. Similar to the proof of Theorem 3, after one
iteration, the computed x̂1(1) is effectively the optimal solu-
tion to (10) with node 1 and its neighboring nodes. Similarly,
for a general t > 1, the computed x̂1(t) by Algorithm 3 on G
is effectively the optimal solution to (10) with node 1 and all
the nodes within t hops away from it, and if any node is vis-
ited multiple times, an unwrapped version of (yi, wi) is used.
Hence, the computed x̂1(t) on G coincides with the optimal
solution (21) for Ğt.

Lemma 4: The following equations hold for the depth-t
unwrapped graph Ğt of G:

OW = W̆O (23)

OL = L̆O + E (24)

x̆�
1 = x�

1 + eT
1 (γ L̆ + W̆)−1Ex�. (25)

In the above, e1 is the column vector with 1 in the first element
and zero everywhere else, and E is an error matrix with zero
in all rows except for the last Lt rows, where Lt is the number
of its depth-t leaf nodes in Ğt.

Proof: Using W = diag{wi} and W̆ = diag{w̆i}, it is easy
to check that OW = w̆ = W̆O, hence (23) holds. The matrix
equation (24) is directly verified for all the rows except that
the last rows of L̆O correspond to the leaf nodes, which miss
their connected nodes in the original graph, as pointed out
in [29], which results in the error matrix E with zero in all
rows except for the last Lt rows. It remains to check (25). We
have from (11)

(γ L + W)x� = Wy (26)

(γ L̆ + W̆)x̆� = W̆y̆. (27)

Multiplying O to the left of (26) and applying (23) and (24)
yields

O(γ L + W)x� = OWy

=> (γ L̆ + W̆)Ox� + γ Ex� = W̆Oy

=> (γ L̆ + W̆)Ox� = W̆y̆ − γ Ex�

=> Ox� = (γ L̆ + W̆)−1(W̆y̆ − γ Ex�)

= x̆� − (γ L̆ + W̆)−1γ Ex�

=> eT
1 Ox� = eT

1 x̆� − eT
1 (γ L̆ + W̆)−1γ Ex�.

Note that the last equation above is the same as (25) because
eT

1 Ox� = x�
1 and eT

1 x̆� = x̆�
1.

Define the error

z�
1 = x̆�

1 − x�
1 (28)

and denote r = γ W̆−1Ex�. Note that W̆ is diagonal, hence
only the last L elements of r are nonzero, corresponding to
the depth-t leaf nodes. Then, (25) can be rewritten as

z�
1 = eT

1 (γ L̆ + W̆)−1W̆r. (29)

Next, we give the crucial result that z�
1 → 0 exponentially

fast as the depth t → ∞.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: DISTRIBUTED ALGORITHMS FOR AVERAGE CONSENSUS OF INPUT DATA WITH FAST CONVERGENCE 9

Lemma 5: The following convergence property holds:

‖z�
1‖ ≤ ηt−1rmax (30)

where 0 < η < 1 is given by

η = max
i∈V

(|Ni| − 1)γ

wi + (|Ni| − 1)γ
. (31)

Proof: From (29), we understand that as far as node 1 is
concerned, z�

1 corresponds to the optimal solution to (10) for
Ğt with variables y̆ = r. In particular, the variables are zero for
all the nodes in Ğt except for the depth-t leaf nodes. Moreover,
from r = γ W̆−1Ex�, we see that these variables are bounded
with ‖ri‖ ≤ rmax for all i ∈ V̆ with some constant rmax (not
growing as the depth t increases). In fact, x� only depends on
G, W̆−1 contains diagonal w−1

i only, and the nonzero elements
of E are also bounded due to (24). Notice that E = OL − L̆O,
the elements in L and L̆ depend only on G, and O contains
only 0 and 1.

Because Ğt is a tree graph, from Theorem 3, running
Algorithm 3 on Ğt with the variables y̆ = r for t iterations will
give ˆ̆x1(t) = z�

1. To avoid overusing of notation, we will drop ˘
in the rest of the proof. That is, we apply Algorithm 3 on a tree
graph Gt with depth t with variables yi being zero everywhere
except for the depth-t leaf nodes for which ‖yi‖ ≤ rmax. Note
from (15) and fγ (w) = γ w/(γ +w) ≤ γ , we know si→j(k) ≤ γ

for all i, j, k.
We start from any depth-t leaf node i. Denote its connecting

depth-(t − 1) node as node j. Then, ‖xi→j(0)‖ ≤ rmax.
Next, consider any depth-(t−1) node i and its depth-(t−2)

connecting node j. There are two cases. Case 1: i is not con-
nected to any depth-t node. In this case, xi→j(1) = 0 because
the components of r are nonzero only for the depth-t nodes.
Case 2: i is connected to some depth-t nodes. From (16),
we get

‖xi→j(1)‖ = ‖wiyi + ∑
v∈Ni\j sv→i(0)xv→i(0)‖

wi + ∑
v∈Ni\j sv→i(0)

≤
∑

v∈Ni\j sv→i(0)

wi + ∑
v∈Ni\j sv→i(0)

rmax ≤ ηrmax (32)

where η is in (31). In both cases, we have ‖xi→j(1)‖ ≤ ηrmax.
Continue the above to depth-(t − 2) nodes and so on until

reaching depth-1 nodes. We obtain, for any node i connected
to the root node, ‖xi→1(t − 1)‖ ≤ ηt−1rmax.

Using (12)–(14) on the root node yields

‖x̂1(t)‖ = ‖w1y1 + ∑
j∈N1

sj→1(t − 1)xj→1(t − 1)‖
w1 + ∑

j∈N1
sj→1(t − 1)

≤ ηt−1rmax.

Finally, we invoke Theorem 3 on the unwrapped tree Ğt to con-
firm that the above x̂1(t) is indeed the same as the z�

1 in (29).
The proof is complete.

We are finally ready to present our main result on the
convergence of Algorithm 3.

Theorem 4: Suppose the graph G is undirected and con-
nected. Then, running Algorithm 3 for k ≥ 1 iterations yields
that

‖x̂i(k) − x�
i ‖ ≤ ηk−1rmax ∀ i ∈ V, k = 0, 1, 2, . . . (33)

where 0 < η < 1 is given by (31) and rmax is a constant
independent of k.

Proof: Taking any node i ∈ V as the root node and from the
unwrapped tree Ğk around node i. Using Lemma 5 by treating
node i as node 1, we get that ‖z�

i ‖ = ‖x̆�
i − x�

i ‖ ≤ ηk−1rmax.
Invoking Theorem 3 on the tree Ğk, we get x̆�

i = x̂i(k) for the
original graph G, thus (33) holds.

Remark 3: Theorem 4 shows that x̂(k) in (14) in
Algorithm 3 converges to the optimal solution x� at the decay
rate of at least η. In the first glance, because η → 1 as γ → ∞
and that γ needs to be sufficiently large to ensure that (10)
approximates (1) well, one may expect the decay rate (conver-
gence rate) to be very slow (i.e., η is close to 1). But we note
that the decay rate of η is actually quite loose, due to the use
of several over bounds in the proof of Lemma 5 for getting a
simple decay rate expression. In particular, the bounding steps
of (32) for η are very loose due to the fact that many xv→i(0)

are actually zero for many nodes v because they are not con-
nected to the depth-t nodes. The actual decay rate is typically
much faster, as we will show in Section VII-C.

VII. ILLUSTRATIVE EXAMPLES

In this section, we give three examples, one for illustrating
the distributed DFS algorithm, one for demonstrating the dis-
tributed average consensus algorithm (Algorithm 1), and one
for demonstrating the modified distributed average consensus
algorithm (Algorithm 3).

A. Distributed DFS Algorithm

Consider the graph G in Fig. 3(a) with 13 distinct labeled
nodes. We run Algorithm 2. Applying the max-consensus algo-
rithm on G (taking the negated labels) yields node 1 as the root
node. The token is transmitted from node 1 to nodes 2–4. In
iteration 1, node 2 sends the token to nodes 3, 5, and 6 and
node 3 sends the token to nodes 2 and 7. In iteration 3, nodes
2 and 3 both mark edge (2, 3) as “removal”; node 5 sends the
token to node 8; node 6 sends the token to nodes 7 and 9;
and node 7 sends the token to nodes 6 and 9. In iteration 3,
nodes 6 and 7 mark edge (6, 7) as “removal”; node 8 sends the
token to nodes 9–11; node 9 marks edge (7, 9) as “removal”
and sends the token to nodes 8, 12, and 13. In iteration 4,
nodes 8 and 9 mark edge (8, 9) as “removal”; node 10 sends
the token to node 11; node 11 sends the token to nodes 10
and 12; and node 12 sends the token to node 11. In iteration
5, edges (10, 11) and (11, 12) are marked as “removal.” The
obtained spanning tree is shown in Fig. 3(b), and the diameter
d = 6.

In contrast, the standard DFS algorithm can result in a
very unbalanced spanning tree, depending on the traversing
sequence. Fig. 3(c) shows a possible outcome, with d = 10.

B. Distributed Average Consensus Using Algorithms 1 and 2

Consider the example as in Fig. 3(b) with yi = i and wi = 1.
We have

∑13
i=1 yi = 91 and x̄ = 91/13. Simulation shows that

after d = 6 iterations, all the x̃i(k) converge to 91 as expected.
On average, each node requires about 3 ∼ 4 flops (additions

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a) (b) (c)

Fig. 3. Demonstration of distributed DFS algorithm. (a) Original graph.
(b) Distributed DFS. (c) Traditional DFS.

Fig. 4. 13-node loopy graph.

and multiplications) per iteration. Many xi→j(k) converge very
early.

We now suppose that: 1) one unit of delay occurs for the
transmission of (x1→2(3), s1→2(3)) and 2) one packet loss
occurs for (x3→7(4), s3→7(4)).

It turns out that (x1→2(k) [thus (s1→2(k)] converges after
k ≥ 2, so the delay has no effect at all. But (x3→7(k), s3→7(k))
converges after k ≥ 5. Hence, the packet loss at k = 4 will
mean that this information is not available at k = 4. However,
at k = 5, (x3→7(k), s3→7(k)) will be available.

C. Distributed Average Consensus for Loopy Graphs

To demonstrate the performance of Algorithm 3 on loopy
graphs, we apply it to the 13-node graph in Fig. 4, with wi = 1,
yi = i, i = 1, 2, . . . , 13, and γ = 1000. The weighted average
consensus (1) is verified to be x̄ = 7. The result of Algorithm 3
is shown in Fig. 5. The convergence rate is checked to be much
faster than η in (31) which is very close to 1.

For comparison purposes, we first consider the Laplacian
matrix-based average consensus algorithm in [1]

x̂(k + 1) = x̂(k) − αLx̂(k), x̂(0) = y (34)

with the optimal choice of α = 1/λmax(L) (inverse of the
maximum eigenvalue of L) for fastest convergence [1]. The

Fig. 5. Convergence of the proposed Algorithm 3.

Fig. 6. Convergence of the Laplacian-based algorithm [1].

convergence of x̂(k) to x̄ = 7 is shown in Fig. 6. We can
see clearly from Figs. 5 and 6 that Algorithm 3 convergences
much faster than the Laplacian matrix-based algorithm.

We also consider the distributed algorithm in [36] for
solving linear equations. This algorithm is generalized from
a Laplacian matrix-based consensus approach by applying
orthogonal projection. To apply the algorithm in [36], we
rewrite (11) as a linear equation

(γ L + W)x� = Wy. (35)

Defining xi(k) as the estimate of x� by node i at iteration k, the
distributed algorithm in [36] deploys the following distributed
iteration:

xi(k + 1) = xi(k) − 1

|Ni|Pi

⎛

⎝|Ni|xi(k) −
∑

j∈Ni

xj(k)

⎞

⎠ (36)

with the initial condition of xi(0) to be any solution for the ith
row of (35). In particular, we take xi(0) = wiyi/(γ �ii + wi)ei

with ei being the vector with ith component equal to 1 and all
other components equal to 0. The result is plotted in Fig. 7 for
γ = 10. We see that the distributed algorithm in [36] is not
well suited for solving the approximated average consensus
problem because it converges too slowly.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: DISTRIBUTED ALGORITHMS FOR AVERAGE CONSENSUS OF INPUT DATA WITH FAST CONVERGENCE 11

Fig. 7. Convergence of the distributed algorithm for linear equations [36].

VIII. CONCLUSION

A novel distributed average consensus algorithm has been
proposed in this paper. For acyclic graphs, our algorithm
(Algorithm 1) is shown to converge in only d iterations,
where d is the graph diameter. Several nice properties of
the algorithm have been presented, including low complexi-
ties, robustness to transmission adversaries, and asynchronous
implementability. The modified distributed average consen-
sus algorithm (Algorithm 3) can be applied directly to
loopy graphs with exponential convergence to a solution that
closely approximates the average consensus. Also proposed
in this paper is a distributed algorithm for spanning tree
(Algorithm 2). This result is of interest on its own, but it
allows the proposed average consensus algorithm to be applied
to loopy graphs. While both methods (Algorithms 1 and 2
together or Algorithm 3 alone) can be used for loopy graphs,
the first method is preferred for the case when the network
topology does not change because Algorithm 2 only needs
to be executed once and Algorithm 1 has finite convergence
property, but the second method tends to adapt well when the
network topology changes over time. Note that the approxi-
mation error given by the parameter γ in Algorithm 3 can be
made negligible for most applications. Our proposed average
consensus algorithm is conceptually different from the graph
Laplacian approach. It is our hope that this may have the
potential of leading to new distributed estimation and learning
solutions.

REFERENCES

[1] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[2] T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with lim-
ited communication data rate,” IEEE Trans. Autom. Control, vol. 56,
no. 2, pp. 279–292, Feb. 2011.

[3] A. Kashyap, T. Baüsar, and R. Srikant, “Quantized consensus,”
Automatica, vol. 43, pp. 1192–1203, May 2007.

[4] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in Proc. Amer. Control Conf.,
New York, NY, USA, 2007, pp. 711–716.

[5] Y. Xu, Z.-G. Wu, Y.-J. Pan, C. K. Ahn, and H. Yan, “Consensus of
linear multiagent systems with input-based triggering condition,” IEEE
Trans. Syst., Man, Cybern., Syst., to be published.

[6] Y. Chen and Y. Shi, “Distributed consensus of linear multiagent systems:
Laplacian spectra-based method,” IEEE Trans. Syst., Man, Cybern.,
Syst., to be published.

[7] J. M. Hendrickx, G. Shi, and K. H. Johnson, “Finite-time consensus
using stochastic matrices with positive diagonals,” IEEE Trans. Autom.
Control, vol. 60, no. 4, pp. 1070–1073, Apr. 2015.

[8] C.-K. Ko and X. Gao, “On matrix factorization and finite-time average-
consensus,” in Proc. IEEE Conf. Decis. Control, Shanghai, China, 2009,
pp. 5798–5803.

[9] A. Y. Kibangou, “Finite-time average consensus based protocol for dis-
tributed estimation over AWGN channels,” in Proc. IEEE Conf. Decis.
Control, Orlando, FL, USA, 2011, pp. 5595–5600.

[10] J. M. Hendrickx, R. M. Jungers, A. Olshevsky, and G. Vankeerberghen,
“Graph diameter, eigenvalues, and minimum-time consensus,”
Automatica, vol. 50, no. 2, pp. 635–640, 2014.

[11] J. Cortés, “Finite-time convergent gradient flows with applications to
network consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.

[12] Q. Hui, W. M. Haddad, and S. P. Bhat, “Finite-time semistability
and consensus for nonlinear dynamical networks,” IEEE Trans. Autom.
Control, vol. 53, no. 8, pp. 1887–1900, Sep. 2008.

[13] L. Wang and F. Xiao, “Finite-time consensus problems for networks
of dynamic agents,” IEEE Trans. Autom. Control, vol. 55, no. 4,
pp. 950–955, Apr. 2010.

[14] L. Georgopoulos and M. Hasler, “Nonlinear average consensus,” in
Proc. Int. Symp. Nonlin. Theory Appl., 2009, pp. 10–14.

[15] L. Georgopoulos and M. Hasler, “Early consensus in complex networks
under variable graph topology,” in Proc. Eur. Conf. Circuit Theory
Design, Antalya, Turkey, 2009, pp. 575–578.

[16] L. Georgopoulos, “Definitive consensus for distributed data infer-
ence,” M.S. thesis, School Comput. Commun. Sci., École polytechnique
fédérale de Lausanne, Lausanne, Switzerland, 2011.

[17] B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a max-plus
algebraic setting: The case of fixed communication topologies,” in Proc.
XXII Int. Symp. Inf. Commun. Autom. Technol., 2009, pp. 1–7.

[18] J. Zhou, Y. Zhu, Z. You, and E. Song, “An efficient algorithm for optimal
linear estimation fusion in distributed multisensor systems,” IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans, vol. 36, no. 5, pp. 1000–1009,
Sep. 2006.

[19] H. Li, Q. Lü, X. Liao, and T. Huang, “Accelerated convergence algorithm
for distributed constrained optimization under time-varying general
directed graphs,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.

[20] D. Wang, J. Zhou, Z. Wang, and W. Wang, “Random gradient-free
optimization for multiagent systems with communication noises under
a time-varying weight balanced digraph,” IEEE Trans. Syst., Man,
Cybern., Syst., to be published.

[21] E. Camponogara and L. B. de Oliveira, “Distributed optimization for
model predictive control of linear-dynamic networks,” IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans, vol. 39, no. 6, pp. 1331–1338,
Nov. 2009.

[22] S. Yang, Q. Liu, and J. Wang, “Distributed optimization based on a
multiagent system in the presence of communication delays,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 5, pp. 717–728, May 2017.

[23] C. L. P. Chen and Z. Liu, “Broad learning system: An effective and
efficient incremental learning system without the need for deep architec-
ture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24,
Jan. 2018.

[24] Z. Liu and C. L. P. Chen, “Broad learning system: Structural extensions
on single-layer and multi-layer neural networks,” in Proc. Int. Conf.
Security Pattern Anal. Cyber., Dec. 2017, pp. 15–17.

[25] M. Buchanan, Nexus: Small Worlds and the Groundbreaking Theory of
Networks. New York, NY, USA: Norton, 2003.

[26] J. P. Onnela et al., “Structure and tie strengths in mobile communication
networks,” Proc. Nat. Acad. Sci. USA, vol. 104, no. 18, pp. 7332–7336,
2007.

[27] K. Choromanski, M. Matuszak, and J. MieKisz, “Scale-free graph with
preferential attachment and evolving internal vertex structure,” J. Stat.
Phys., vol. 151, no. 6, pp. 1175–1183, 2013.

[28] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA,
USA: Morgan Kaufman, 1988.

[29] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,” Neural Comput.,
vol. 13, no. 10, pp. 2173–2200, 2001.

[30] E. P. Vargo, E. J. Bass, and R. Cogill, “Belief propagation for large-
variable-domain optimization on factor graphs: An application to decen-
tralized weather-radar coordination,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 43, no. 2, pp. 460–466, Mar. 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[31] M. T. Goodrich and R. Tamassia, Algorithm Design: Foundations,
Analysis, and Internet Examples. New York, NY, USA: Wiley, 2001.

[32] S. S. Skiena, The Algorithm Design Manual, 2nd ed. London, U.K.:
Springer, 2008.

[33] S. A. M. Makki and G. Havas, “Distributed algorithms for depth-first
search,” Inf. Process. Lett., vol. 60, no. 1, pp. 7–12, 1996.

[34] M. Bui, F. Butelle, and C. Lavault, “A distributed algorithm for the
minimum diameter spanning tree problem,” J. Parallel Distrib. Comput.,
vol. 64, pp. 571–577, Jan. 2004.

[35] B. Awerbuch, “Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems,” in
Proc. 19th Annu. ACM Symp. Theory Comput., 1987, pp. 230–240.

[36] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving a
linear algebraic equation,” IEEE Trans. Autom. Control, vol. 60, no. 11,
pp. 2863–2878, Nov. 2015.

Kan Xie was born in Hubei, China. He received
the M.S. degree in software engineering from the
South China University of Technology, Guangzhou,
China, in 2009. He is currently pursuing the Ph.D.
degree in intelligent signal and information process-
ing with the Guangdong University of Technology,
Guangzhou.

His current research interests include machine
learning, non-negative signal processing, blind signal
processing, and biomedical signal.

Qianqian Cai received the B.S. degree in environ-
mental engineering from the University of Shanghai
for Science and Technology, Shanghai, China, in
2011, and the Ph.D. degree in engineering from the
University of Newcastle, Callaghan, NSW, Australia,
in 2016.

She is currently a Post-Doctoral Researcher with
the School of Automation, Guangdong University
of Technology, Guangdong, China. Her current
research interests include water pollution control
engineering, environmental monitoring, automation,

and adaptive neural fuzzy inference systems.

Zhaorong Zhang received the bachelor of electri-
cal engineering degree from the Nanjing University
of Science and Technology, Nanjing, China, in
2016. She is currently pursuing the Ph.D. degree in
networked control systems with the University of
Newcastle, Callaghan, NSW, Australia.

Her current research interest includes distributed
state estimation.

Minyue Fu (F’04) received the bachelor’s degree in
electrical engineering from the University of Science
and Technology of China, Hefei, China, in 1982
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Wisconsin–Madison,
Madison, WI, USA, in 1983 and 1987, respectively.

From 1983 to 1987, he held a teaching assis-
tantship and a research assistantship with the
University of Wisconsin–Madison. From 1987 to
1989, he served as an Assistant Professor with the
Department of Electrical and Computer Engineering,

Wayne State University, Detroit, MI, USA. He joined the Department of
Electrical and Computer Engineering, University of Newcastle, Callaghan,
NSW, Australia, in 1989, where he is currently a Chair Professor of Electrical
Engineering with the School of Electrical Engineering and Computing. He
has been a Visiting Associate Professor with the University of Iowa, Iowa
City, IA, USA; a Visiting Professor with Nanyang Technological University,
Singapore; a Changiang Professor with Shandong University, Jinan, China;
a Distinguished Scholar with Zhejiang University, Hangzhou, China; and a
Bai-Ren Scholar with the Guangdong University of Technology, Guangzhou,
China. His current research interests include networked control systems,
multiagent systems, and distributed estimation and control.

Dr. Fu has been an Associate Editor for the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, IEEE TRANSACTIONS ON SIGNAL PROCESSING,
Automatica, and Journal of Optimization and Engineering. He is a fellow of
Engineers Australia and the Chinese Association of Automation.

