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Abstract—This paper studies the problem of determining the
sensor locations in a large sensor network using only relative dis-
tance (range) measurements. Based on a generalized barycentric
coordinate representation, our work generalizes the DILOC algo-
rithm to the localization problem under arbitrary deployments of
sensor nodes and anchor nodes. First, a criterion and algorithm
are developed to determine a generalized barycentric coordinate
of a node with respect to its neighboring nodes, which do not
require the node to be inside the convex hull of its neighbors.
Next, for the localization problem based on the generalized
barycentric coordinate representation, a necessary and sufficient
condition for the localizability of a sensor network with a generic
configuration is obtained. Finally, a new linear iterative algorithm
is proposed to ensure distributed implementation as well as global
convergence to the true coordinates.

Index Terms—sensor network, localization, distributed algo-
rithm.

I. INTRODUCTION

LOCATION based services are major applications of sen-

sor networks and they require to solve the localization

problem. The localization problem consists of two steps:

acquiring measurements and transforming them to coordinate

information. In this paper, we consider the situation of using

relative distance measurements only and focus on the second

step, i.e., how to estimate the locations of sensor nodes in a

distributed manner.

Existing work on localization can be divided into two

classes [1]: sequential methods and concurrent methods. A

sequential method begins with a set of anchor nodes and

computes the locations of other nodes one by one or group

by group. A prominent example is the so-called trilateration

method [2]. Its advantage is that it is easy to implement, but it

requires each (location-unknown) node to have three connec-

tions with (location-known) anchor nodes, which is a sufficient

but not necessary condition for localizability. That is, the

trilateration method can only work on trilateration networks

[3]. A concurrent method starts with an initial estimate for the

coordinate of every sensor node. Each node then updates its

coordinate in a distributed or cooperative manner using relative

distance measurements with its neighbors and the estimates
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of the neighbors’ coordinates. The iterative process terminates

when the estimates converge, hopefully to the true coordinates.

There are many localization algorithms proposed from the

perspective of optimization, based on techniques of convex

optimization [4], multi-dimensional scaling (MDS) [5], semi-

definite programming (SDP) [6] [7], gradient methods [8]–[11]

etc. With imprecise range measurements, [12] uses the Cayley-

Menger determinant to describe the distance constraints among

pairs of sensor nodes, and then computes the positions by

solving a constrained optimization problem. However, due

the non-convex nature of the resulting optimization problem,

these algorithms are commonly sensitive to initial guess of

the true coordinates and are not able to guarantee global

convergence. Moreover, most of them can not be implemented

in a distributed manner.

Recently, several distributed and concurrent methods are

developed to address the localization problem. In [13], Khan et

al. provide a distributed iterative localization (DILOC) method

based on the barycentric coordinate representation for sensor

locations. The distinct feature of this method is that the sensor

locations can be expressed as a pseudo linear system, with

all the nonlinearities hidden in the measured distances. Two

important characteristics of DILOC are 1) all sensor nodes

are assumed to lie inside the convex hull of the anchor nodes

and 2) each node, other than the anchor nodes, can find

three neighbors such that it lies in the convex hull of these

neighbors. With these characteristics, the system matrix of

the linear system can be expressed as a substochastic matrix

whose nonzero entries are all positive with every row sum

less than one. Thus, global convergence is ensured and the

sensor locations can be obtained by the iterative algorithm.

Since every sensor node selects only three neighbors in [13],

the convex hull of its neighbors is a triangle in the plane. The

DILOC algorithm is generalized in [14] by allowing to have

more than three neighbors for each sensor and it is shown

similarly that the algorithm also works if every sensor node

is contained in the convex hull of its neighbors. On the other

hand, [15] and [16] consider relative position measurements,

including both distances and bearing angles, and develop a

localization algorithm that first estimates the centroid position

of all nodes and then obtains the position of each node

relative to the estimated centroid. Moreover, in [17], Singer

shows that the eigenvectors of a specific weight matrix, which

represents the communication graph, exactly match the sensor

locations. To construct such a weight matrix, all locally rigid

subnetworks are detected by using the techniques of MDS or

SDP, and then stitched together according to a local embedding

rule.
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In this paper, we consider only range measurements between

pairs of sensor nodes and convert the range measurements

to a barycentric coordinate for every sensor node. Different

from [13], we do not require each sensor to lie inside the

convex hull of its neighbors. This is motivated by a more

practical scenario that for a large sensor network, the anchor

nodes may not sit on the boundaries of the network. Our main

idea is to employ a general form of barycentric coordinate

representation which allows the coordinate of each node to be

expressed as a pseudo linear function of the coordinates of its

neighbors no matter whether or not it lies inside the convex

hull formed by these neighbors. A criterion is developed, by

which the pseudo linear function is determined with only the

knowledge of relative distances. The implication of this result

is that all the sensor locations can be expressed as a pseudo

linear system, just like in DILOC. However, unlike DILOC,

this new linear system may have unstable eigenvalues, which

creates a major difficulty for distributed and iterative calcula-

tion. To overcome this difficulty, we provide a new distributed

and iterative algorithm. It is shown that the algorithm ensures

global convergence with a proper scaling parameter, which

can be pre-computed in a distributed manner. In addition to

the iterative localization algorithm, we also derive a necessary

and sufficient localizability condition for localization schemes

based on the barycentric coordinate representation. That is, an

entire sensor network is localizable if and only if every sensor

node has at least three disjoint paths to the anchor nodes in

the graph associated with the barycentric coordinate represen-

tation. Compared with our earlier conference paper [18], both

the distributed localization algorithm and the necessary and

sufficient localizability condition are new in this paper. Finally,

a simulation result is provided to validate the effectiveness of

our proposed algorithm. Also, a comparison with the well-

known MDS based localization algorithm is given in the

simulation, which shows the advantage of guaranteeing global

convergence using our algorithm.

The rest of the paper is organized as follows. We introduce

the preliminaries of barycentric coordinate systems and graphs

as well as the problem formulation in Section II. In Section III,

we study the generalized barycentric coordinate representa-

tion and present a criterion on how to determine the sign

pattern of the barycentric coordinate using relative distance

measurements. In Section IV, we provide a necessary and

sufficient condition for localizability using barycentric coor-

dinate representations. A distributed and iterative localization

algorithm is given in Section V. We present a simulation result

in Section VI and conclude our work in Section VII.

Notation. R denotes the set of real numbers. 1n represents

the n-dimensional vector of ones and In denotes the identity

matrix of order n. A bold font letter represents a vector and

a capital letter represents a matrix. ∆ijk denotes a triangle

formed by nodes i, j and k. ι is defined to be
√
−1, the

imaginary unit.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Barycentric Coordinate Representation

The barycentric coordinate, which was introduced by Au-

gust Ferdinand Möbius in 1827 [19], is a geometric notion

characterizing the relative position of a point with respect to

other points. For a point, say l with its Euclidean coordinate

pl, and other three points, say i, j and k with their Euclidean

coordinates pi, pj and pk in the plane, the barycentric coordi-

nate of point l with respect to i, j and k is {ali, alj , alk} that

satisfies

pl = alipi + aljpj + alkpk. (1)

Especially, when ali+alj+alk = 1, the barycentric coordinate

is called the areal coordinate because it can be expressed

as a ratio of signed areas between specified triangles. For

the example shown in Fig. 1(a), the barycentric coordinate

{ali, alj , alk} is given by










ali =
S∆ljk

S∆ijk

alj =
S∆lki

S∆ijk

alk =
S∆lij

S∆ijk

, (2)

where S∆ljk, S∆lki, S∆lij and S∆ijk are the signed areas

of the corresponding triangles ∆ljk, ∆lki, ∆lij and ∆ijk.

These areas can be calculated with pairwise internode distance

measurements through Cayley-Menger determinant [20] [21].

That is,

S2
∆ljk = − 1

16

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1
1 0 d2lj d2lk
1 d2jl 0 d2jk
1 d2kl d2kj 0

∣

∣

∣

∣

∣

∣

∣

∣

, (3)

where dlj , dlk and djk are the distance measurements among

node l, j and k, respectively. The sign of S∆ljk is positive if

node l is on the left-hand side when one moves from node j
to k, and negative otherwise.

In the plane, barycentric coordinates (al1, ..., aln) that are

defined with respect to more than three points are called

generalized barycentric coordinates. That is,

pl = al1p1 + al2p2 + · · ·+ alnpn,

where pl, p1, p2, and pn are the Euclidean coordinates of these

points.

B. Preliminaries on graphs and frameworks

An undirected graph (graph for short) G = (V,E) consists

of a non-empty finite set V of elements called nodes and a

finite set E of unordered pairs of nodes called edges. In graph

theory, a sequence of edges, which connect a sequence of

distinct nodes, is called a path. For a subset U ⊂ V and a

node v 6∈ U , we say v has k disjoint paths from U if there are

k paths from nodes in U to v, which do not have a common

node except v.

Next, we introduce several basic concepts in graph theory,

which can be further explored in [22], [2], [23] and [24].

A configuration in the plane is a finite collection of n
labeled points, p = [p1, · · · , pn]T , where pi ∈ R

1×2, ∀i ∈
{1, · · · , n}. For convenience, we often represent each pi by

a complex value. A configuration is said to be generic if

the coordinates p1, . . . , pn of the configuration do not satisfy

any nontrivial algebraic equation with integer coefficients. A

framework (G, ρ) in R
1×2 is a graph G = (V,E) together with
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(a) Node l lying inside the convex hull.

i

j k
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(b) Case 1 of l lying outside the convex hull.

i

j k

l

dli

dlj
dlk

(c) Case 2 of l lying outside the convex hull.

Fig. 1. Configurations of node l w.r.t. the convex hull of nodes i, j, k.

a configuration map ρ : V → R
1×2. Two frameworks (G, ρ)

and (G, ζ) are said to be congruent if ‖ρ(i)−ρ(j)‖ = ‖ζ(i)−
ζ(j)‖ holds for all pairs (i, j) ∈ E. Two frameworks (G, ρ) and

(G, ζ) are said to be equivalent if ‖ρ(i)−ρ(j)‖ = ‖ζ(i)−ζ(j)‖
holds for all pairs i, j ∈ V . A framework (G, ρ) is said to be

globally rigid if every framework which is congruent to (G,

ρ) is equivalent to (G, ρ). By abuse of the notion, we say G
is globally rigid if the framework (G, ρ) is globally rigid for

any generic configuration ρ(V ).

C. Problem Formulation

The objective of the paper is to develop an efficient scheme

for computing the coordinates of all sensor nodes in a network

given a sufficient number of distance measurements between

nodes and at least three known coordinates of nodes called

anchors.

The commonly used trilateration scheme [2] sequentially

computes the coordinate of a node based on at least three

distance measurements to the nodes with known coordinates,

that is, to solve a set of equations like






dli = ‖pl − pi‖
dlj = ‖pl − pj‖
dlk = ‖pl − pk‖

, (4)

where pu, u ∈ {i, j, k, l}, is the Euclidean coordinate of node

u, and duv , u, v ∈ {i, j, k, l}, is the distance measurement

between node u and v.

Instead of solving these nonlinear equations in a sequential

way, Khan et al. developed a concurrent iterative algorithm

[13], named DILOC, to compute the coordinates of all nodes

in a network based on the barycentric coordinate presentation.

For a network of n nodes, without loss of generality, we

assume there are three anchor nodes, whose coordinates are

denoted by p1, p2, p3 ∈ R
1×2. Denote the coordinates of

other nodes by p4, . . . , pn ∈ R
1×2. If we have a barycentric

representation for every node (except the anchors) with respect

to some other nodes, then we have the following pseudo linear

representation for the whole network:

[

pa
ps

]

=

[

I3 0
B C

] [

pa
ps

]

, (5)

where pa =
[

p1 p2 p3
]T

, ps =
[

p4 · · · pn
]T

,

and the nonzero entries in each row of
[

B C
]

are the

barycentric coordinates of the node corresponding to the row.

Equivalently, we can write as

ps = Cps +Bpa. (6)

Then the DILOC algorithm [13] considers the following

iterative form to compute the coordinates ps.

p̂s(t+ 1) = Cp̂s(t) +Bpa, (7)

where p̂s(t) represents the estimate of the coordinates at step t.
In order to guarantee that the iteration (7) is convergent, it is

assumed in the DILOC algorithm [13] that every node should

lie inside a triangle of other three nodes and all the sensor

nodes to be localized should lie inside the triangle formed

by the three anchor nodes. However, for practical sensor net-

works, these two assumptions are restrictive, especially when

the communication range is limited and when the neighbors

of each node cannot be arbitrarily arranged.

In this paper, we will give up the aforementioned assump-

tions and devise a new distributed algorithm called Extended

Computation scHeme of cOordinate (ECHO). However, there

are several challenges. Firstly, ECHO considers any possible

configuration, in contrast to the case of each node lying inside

a triangle of three other nodes. But for the case where a node

lies outside of a triangle of three other nodes, the barycentric

coordinate of this node is difficult to obtain because no known

solution is available to determine the signs of the triangle

area ratios used to compute the barycentric coordinate as in

(2), by using only the local distance measurement informa-

tion. Moreover, if there are sufficient distance measurement

information such that a node can be represented using a

generalized barycentric coordinate with respect to more than

three other nodes, we should make full use of it without

just selecting three from them. Secondly, due to the general

barycentric coordinate representation, the matrix C in (7) may

have eigenvalues with the modulus greater than 1 and thus

the iteration (7) may diverge. One example configuration with

unstable matrix C is shown in Fig. 2, where nodes 1, 2, 3
are the anchor nodes, and nodes 4, 5 are position-unknown

nodes. Their Euclidean coordinates are ι,−4, 4,−2+ι2, 2+ι2,

respectively. The barycentric coordinate of node 4 with respect
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Fig. 2. A configuration of barycentric coordinate with unstable C

to nodes 1, 3 and 5 is {2,−4, 3}. Similarly, it can be obtained

that the barycentric coordinate of node 5 with respect to nodes

2, 3 and 4 is {2,−4, 3}. Thus, we have












p1
p2
p3
p4
p5













=













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
2 0 −4 0 3
0 2 −4 3 0

























p1
p2
p3
p4
p5













, (8)

for which

C =

[

0 3
3 0

]

,

has spectral radius greater than 1.

Therefore, this paper aims at 1) developing an effective

algorithm to compute a general barycentric coordinate of every

node with respect to possibly more than three other nodes

based on only local distance measurement information, and

2) developing a new distributed localization algorithm, based

on the barycentric coordinate, that ensure global convergence.

Moreover, we are going to explore the localizability condition

for the whole network by using the distributed localization

scheme based on a general barycentric coordinate representa-

tion.

III. ALGORITHMS FOR COMPUTING GENERALIZED

BARYCENTRIC COORDINATES

As we discussed in the preceding section, in applying

barycentric coordinates to solve distance-based localization

problems, a major technical difficulty is the computation of the

generalized barycentric coordinates given only local distance

measurement information, in particular when a node may not

lie inside of the triangle formed by its neighbors or when

a node may have more than three neighbors. Two examples

are shown in Fig. 1(b) and 1(c), for which a node l lies

outside the triangle ∆ijk of its three neighbors. This section

aims at providing an effective scheme to compute generalized

barycentric coordinates for all these cases, but starts with

computing the signed barycentric coordinates on triangles.

A. Signed barycentric coordinates on triangles

Consider a node l together with three neighbors i, j and

k. Suppose the pairwise distance measurements between any

two in {l, i, j, k} are available to node l. Then the absolute

values of the barycentric coordinates ali, alj and alk can be

computed as














|ali| = |S∆ljk|
|S∆ijk|

|alj | = |S∆lki|
|S∆ijk|

|alk| = |S∆lij|
|S∆ijk|

, (9)

c

j k

i

(1, 1, 1)

(−1, 1, 1) (−1,−1, 1)

(1,−1, 1)

(1,−1,−1)

(1, 1,−1)

(−1, 1,−1)

Fig. 3. Seven possible sign patterns for (σli, σlj , σlk).

where |S∆ljk| and others can be solved according to (3). Thus,

it remains to determine the signs of the barycentric coordinates

to compute the barycentric coordinates. Moreover, note that

ali + alj + alk = 1. Thus, given |ali|, |alj | and |alk|, the

problem of determining the sign pattern of the barycentric

coordinate is equivalent to solve the following equation:

σli|ali|+ σlj |alj |+ σlk|alk| = 1, (10)

where σli, σlj and σlk take values of either 1 or −1. The

information available for determining the signs should be

limited to the pairwise distance measurements between nodes

within the set {i, j, k, l}.

To avoid the case that S∆ijk = 0, we need an assumption

on the positions of the node ls neighbors as below.

Assumption 1: For each node in the network, any three of

its neighbors are not collinear.

There are only 7 possible sign patterns (σli, σlj , σlk), as

shown in Fig. 3 (because the pattern (−1,−1,−1) is not a

possible solution for (10)). It turns out that sometimes the sign

pattern can be uniquely determined from (10), but sometimes

this cannot be done. When the sign pattern cannot be uniquely

solved from (10), we consider two cases in the following.

In the first case, one of |ali|, |alj |, |alk| equals to zero. That

is, a node l lies on the line aligned with one of three edges of

the triangle formed by its three neighbors, according to (9).

Without loss of generality, say ali = 0. For this case, we can

take σli = 1 (without loss of generality). Then the other two

signs σlj and σlk can be determined according to the following

criterion.

(σli, σlj , σlk) =







(1, 1, 1) if |alj |, |alk| ≤ 1,
(1, 1,−1) if |alj | > 1, |alj| > |alk|,
(1,−1, 1) if |alk| > 1, |alk| > |alj |.

(11)

In the following lemma, we characterize the remaining

cases where the sign pattern can not be uniquely determined

from (10).

Lemma 1: Suppose|ali| 6= 0, |alj | 6= 0, and |alk| 6= 0.

The solution of (10) does not result in a unique sign pattern

(σli, σlj , σlk) if and only if one of them, saying ali, satisfies

|ali| = 1, and |alj | = |alk|.
Proof: (Sufficiency) If |ali| = 1 and |alj | = |alk|, it

can be inferred from (10) that {σli, σlj , σlk} = {1, 1,−1} or

{σli, σlj , σlk} = {1,−1, 1}. That is, (10) does not result in

a unique sign pattern. Fig. 5 shows such an example where
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1

1

−1

−1

Fig. 4. An illustration for the necessity proof.

node l lies on the line of e1 parallel to the line of nodes j and

k. The two possible positions for l are l
′

and l
′′

on e1.

(Necessity) Suppose there are two sign patterns both satis-

fying (10). That is, it holds that

[

|ali| |alj | |alk|
]





v1

v2

v3



 =
[

1 1
]

, (12)

where v1,v2,v3 ∈ {[1 1], [−1 1], [−1 − 1], [1 − 1]}. This

means a positive combination of v1,v2,v3 equals to [1 1] (see

Fig. 4). Consequently, there must be [1 1] for one of v1,v2,

and v3. Without loss of generality, we assume v1 = [1 1].
Next, we consider different choice of v2. If v2 equals to [1, 1]
or [−1,−1], we will have v3 equal to [−1 − 1] or [1 1]. In

this way, two solutions {σli, σlj , σlk} are actually identical. If

v2 equals to [−1 1] or [1 − 1], v3 must equal to [1 − 1] or

[−1 1]. Then according to (10), we know that |ali| = 1 and

|alj | = |alk|.
Next, we present a result on how to determine the sign

pattern using the distance based information when it can not

be uniquely solved from (10).

Lemma 2: Given |ali| = 1 and |alj | = |alk| 6= 0, suppose

∠ijk is an acute angle1.

1) σli = −1 if and only if

djl = dik, dkl = dij , and d2il = 2d2ij + 2d2ik − d2jk.

2) If σli = −1, then {σli, σlj , σlk} = {−1, 1, 1}.

3) If σli = 1 and d2jl < d2ij + d2il, then (σli, σlj , σlk) =
{1, 1,−1}.

4) If σli = 1 and d2jl > d2ij + d2il, then (σli, σlj , σlk) =
{1,−1, 1}.

Proof: 1) (Necessity) If σli = −1, then we have ali =
−1. Moreover, since |alj | = |alk|, it follows from (10) that

alj = alk = 1. Thus, S∆ljk = −S∆ijk, S∆lij = S∆ijk and

S∆lki = S∆ijk . Comparing the sign pattern with the ones

described in Fig. 3, we know that the only option of l is at the

location of l
′′′

in Fig. 5, which forms a parallelogram together

with nodes i, j and k. Hence, we can obtain directly that djl =
dik , dkl = dij . Furthermore, according to the parallelogram

law, we have

d2il = 2d2ij + 2d2ik − d2jk. (13)

1If ∠ijk is not acute, then ∠ikj must be acute and the conditions in the
lemma can be modified accordingly.

i

j k

e1

dij

dik

l
′′′

l
′

l
′′

Fig. 5. An example of ∆ijk and node l for Lemmas 1 and 2.

(Sufficiency) If djl = dik and dkl = dij , we can draw two

circles centered at j and k with radius dik and dij , respectively.

These two circles will have two intersection points. One of

the two intersection points is l
′′′

and we denote the other by

l∗. From the necessity proof, it is known that when node l
is at the location of l

′′′

, it satisfies (13). On the other hand,

we will show that when node l is at the location of l∗, it

does not satisfy (13). (To see this, it remains to show that

dil′′′ 6= dil∗ . Suppose by contradiction that dil′′′ = dil∗ . Then,

recalling the fact djl′′′ = djl∗ and dkl′′′ = dkl∗ , we have

that nodes i, j and k are on the perpendicular bisector of the

line segment l
′′′

l∗ and so they are colinear, a contradiction

to Assumption 1. Therefore, it can be concluded that due to

the condition d2il = 2d2ij + 2d2ik − d2jk , node l must lie at the

location of l
′′′

. Thus, according to the sign patterns described

in Fig. 3, we can obtain that σli = −1.

2) If σli = −1, then {σli, σlj , σlk) = (−1, 1, 1), which is

shown in the necessity proof of 1).

3) If σli = 1, then we have ali = 1. For this case, S∆ljk =
S∆ijk according to (2). Therefore, node l must be on the line

that is parallel to the edge jk and crosses node i. On this line,

there are two nodes, saying node l
′

and l
′′

as shown in Fig. 5,

whose distances to node i are equal to dil.
For the triangle ∆ijl

′

, according to the cosine law, it holds

that

d2
jl

′ = d2ij + d2
il

′ − 2dijdil′ cos∠jil
′

.

Since l
′

l
′′

is parallel with jk, we have ∠jil
′

= ∠ijk. Then

we know d2
jl

′ < d2ij + d2
il

′ because ∠ijk is an acute angle.

Similarly, for the triangle ∆ijl
′′

, we could obtain that d2
jl

′′ >

d2ij + d2
il

′′ .

Therefore, if d2jl < d2ij + d2il, then node l must be at the

locatio of l′. Thus, according to the sign patterns described in

Fig. 3, we obtain that (σli, σlj , σlk) = (1, 1,−1).
4) Following the argument in 3), we know that if d2jl >

d2ij + d2il, then node l must lie at the location of l
′′

. Then
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again from the sign patterns described in Fig. 3, we obtain

that (σli, σlj , σlk) = (1,−1, 1).
Finally, we summarize the above results to provide an

algorithm of determining the sign pattern based on the dis-

tance measurement information. The pseudo code is given in

Algorithm 1.

Algorithm 1 Determining the sign pattern of node l’s barycen-

tric coordinate.

Input: |ali|, |alj |, |alk|, dli, dlj , dlk , dij , dik , djk .

Output: (σli, σlj , σlk).

1: Solve eq. (10).

2: if the solution is unique, then

3: Return σli, σlj , σlk.

4: else if one of |ali|, |alj |, |alk| equals to 0, then

5: Determine (σli, σlj , σlk) according to (11).

6: else if djl = dik , dkl = dij and d2il = 2d2ij + 2d2ik − d2jk,

then

7: (σli, σlj , σlk) = (−1, 1, 1).
8: else if d2jl < d2ij + d2il, then

9: (σli, σlj , σlk) = (1, 1,−1).
10: else if d2jl > d2ij + d2il, then

11: (σli, σlj , σlk) = (1,−1, 1).
12: end if

B. Generalized barycentric coordinates

For a sensor network of n nodes, we use an undirected graph

G = (V,E) to model it with each node i ∈ V corresponding to

a sensor node and each edge (i, j) ∈ E indicating that sensor

node i and j are in the communication range and the distance

between i and j is available to both nodes.

Recall a necessary localizable condition from [25] that every

node in G should have at least three disjoint paths to the set

of anchor nodes. This implies locally each node has at least

three neighbors in G. For any node l ∈ V , denote by Nl the

set of all its neighbors in G. We provide an algorithm below to

compute a generalized barycentric coordinate of a node with

respect to its neighbors for a given graph G.

From the formula to compute the generalized barycentric

coordinate in Algorithm 2, it can be simply verified that

pl =
∑

i∈Nl

alipi, (14)

∑

i∈Nl

ali = 1. (15)

However, it should be pointed out that some ali, i ∈ Nl, may

be zero. An example is given in Fig. 6, where nodes 1, . . . , 4
are all neighbors of l, but al4 = 0 in this case since there is

no combination of three neighbors containing node 4, which

are mutually neighbors.

Suppose without loss of generality that the three anchor

nodes in G are labeled as 1, 2, and 3. Then we can write the

generalized barycentric coordinates of all nodes in a matrix

form as

A =

[

△3×3 ∗
B C

]

, (16)

Algorithm 2 Computing node l’s generalized barycentric

coordinate.

Input: Nl, the distances dli for i ∈ Nl, and the distances dij
for i, j ∈ Nl and (i, j) ∈ E.

Output: ali, i ∈ Nl.

1: Set m = 0;

2: while there is still a combination of three neighbors in Nl

that have not been selected before do

3: Choose a combination of three neighbors from Nl,

say i, j, and k.

4: if node i, j, and k are mutually neighbors then

5: (1) Update m := m+ 1;

6: (2) Compute the barycentric coordinate a
(m)
li ,

a
(m)
lj , a

(m)
lk of l with respect to i, j, and k

according to the result in the preceding section;

7: (3) Set a
(m)
ls = 0 for s ∈ Nl − {i, j, k}.

8: end if

9: end while

10: return ali =
1
m

∑m
r=1 a

(m)
li for any i ∈ Nl.

l

1
2

3
4

Fig. 6. An example that the derived generalized barycentric coordinate may
have zero components with respect to its neighbors in G.

where the off-diagonal entries at (i, j) are the generalized

barycentric coordinate if j ∈ Ni and must be zero otherwise.

Now we define a new graph GA associated to the matrix

A such that there is an edge (i, j) if and only if the (i, j)th
entry of A is nonzero. Note from the example in Fig. 6 that the

new graph GA describing the interconnection of nodes in terms

of the generalized barycentric coordinates might be different

from the graph G but certainly it is a subgraph of G with the

same node set.

Remark 1: For graph GA, if a node has a neighbor, then

it must have at least three neighbors because the barycentric

coordinates are derived triangle by triangle as described in

Algorithm 2. In other words, if j is a neighbor of l in GA, then

in graph G, j is also a neighbor of l and moreover there must

exist another two neighbors of l, which are both neighbors of

j, to form a triangle together with j (see for example, nodes

1, 2, and 3 in Fig. 6. Also, from the above observation, we can

infer that if j is a neighbor of l in GA, then l is also a neighbor

of j since in G, j must have three neighbors (namely, node

l, and node l’s another two neighbors that form a triangle

together with j). Therefore, GA is also an undirected graph

though the matrix A is not symmetric.

Remark 2: The generalized barycentric coordinates com-

puted by Algorithm 2 are more general than in [13] and [14].
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In [13], each node needs to be inside a simplex of three

neighbors and, in [14], each node needs to be inside the

polygon of its neighbors. But Algorithm 2 does not require

the convex hull assumption.

IV. LOCALIZABILITY USING BARYCENTRIC COORDINATE

REPRESENTATION

For the generalized barycentric coordinates given in (16),

we have the following pseudo linear representation for the

Euclidean coordinates of the sensor network:

ps = Cps +Bpa, (17)

where pa and ps are the stacked coordinate vector of anchor

nodes and sensor nodes respectively. From (17), it is certain

that the non-singularity of the matrix I −C implies the local-

izability of a sensor network using the barycentric coordinate

representation. Thus, the localizability for the approach based

on the barycentric coordinate representation relates to the

topological connectivity of GA rather than G. In the following,

we aim to provide the topological connectivity condition of GA

to ensure the solvability of the localization problem using this

approach.

Before developing our main result for localizability, we

give a preliminary result on graph Laplacian. Consider a

simple graph G = (V,E) and let A denote a matrix of

specific zero/nonzero pattern associated with G. That is, the

(i, j)th entry is nonzero if and only if (i, j) is an edge in G.

Define a diagonal matrix D with its diagonal entry to be the

corresponding row sum of A. Then we denote by L(G) the

set of all matrices D − A. It is certain that for any matrix

L ∈ L(G), L1 = 0. Let R be a subset of V and let LR

be the sub-matrix of L ∈ L(G) with the rows and columns

corresponding to nodes in R crossed out. The following lemma

provides the relationship between nonzero principal minors of

L ∈ L(G) and the topological connectedness of G.

Lemma 3: Consider generic ξ, ζ,∈ R
n. The following two

are equivalent.

1) There are three disjoint paths from R = {r1, r2, r3} to

every other node in G.

2) For almost all L ∈ {L ∈ L(G) : Lξ = 0, Lζ = 0}, all

principal minors of LR are distinct from zero.

The proof of this lemma is given in Appendix.

Now we are ready to present a necessary and sufficient

localizability condition for localization schemes based on the

barycentric coordinate representation.

Theorem 1: A sensor network with a generic configuration

[pTa pTs ] is localizable using the barycentric coordinate repre-

sentation by solving (17), i.e., the matrix I−C is nonsingular,

if and only if every node to be localized has at least three

disjoint paths from the set of anchor nodes in GA.

Proof: Write

L = I −A,

where A is the matrix defined in (16) in terms of the general-

ized barycentric coordinates. From (15) we know that L1 = 0
with 1 being a vector of all one’s. Moreover, let x and y be the

real and imaginary part of the vector [pTa pTs ]
T , respectively.

Then from (14) we know that Lx = 0 and Ly = 0. So if

every node to be localized has at least three disjoint paths

from the set of anchor nodes in GA, then by Lemma 3 it is

known that det(I − C) 6= 0. Therefore, the sensor network is

localizable using the barycentric coordinate representation by

solving (17).

On the other hand, if the sensor network is localizable using

the barycentric coordinate representation by solving (17), then

det(I − C) 6= 0. Thus, again by Lemma 3 it follows that GA

has three disjoint paths from the set of anchor nodes to any

other node.

V. AN EXTENDED COMPUTATION SCHEME OF

COORDINATES

As discussed in Subsection II-C, the matrix C in (17) for

the generalized barycentric coordinates may not be stable. So

the DILOC algorithm may not converge. In the following, we

present an alternative approach to compute the coordinates

with ensured global convergence. An extended distributed

computation scheme of coordinates, called ECHO, is devel-

oped.

Let M = I − C. Then eq. (17) can be re-organized as

Mps = Bpa.

Multiplying the matrix ǫMT (with a scalar ǫ > 0 to be

specified later) to both sides of the above equation, we then

obtain that

ǫMTMps = ǫMTBpa. (18)

Thus, ps can be solved from (18) by the Richardson itera-

tion [26]

p̂s(t+ 1) = (I − ǫMTM)p̂s(t) + ǫMTBpa. (19)

Notice that MTM is positive definite. So for sufficiently small

ǫ, the roots of ǫMTM come to the open unit disk centered at

(1, 0). More specifically, the eigenvalues of MTM are all real

and thus the eigenvalues of ǫMTM are on the interval (0, 2)
for 0 < ǫ < 2/λmax(M

TM), where λmax(M
TM) represents

the maximum eigenvalue of MTM . Therefore, the system

matrix in the iteration algorithm (19) is stable and (19) is

convergent for arbitrary initial conditions. Moreover, in order

to have the fastest convergence rate, ǫ should be selected as

ǫ =
2

λmax(MTM) + λmin(MTM)
, (20)

where λmin(M
TM) is minimum eigenvalue of MTM [27,

Section 4.2]. This value can be solved in a distributed way by

distributed power iteration algorithms (see for example [28])

or other distributed techniques of estimating the eigenvalues,

such as the methods in [29], [30] and [31].

Next we consider the distributed implementation of the

iteration algorithm (19). Note that (19) can be written as a

two-step iteration form by introducing an intermediate variable

η:
{

η(2t+ 1) = Mp̂s(2t)−Bp̂s(2t)
p̂s(2t+ 2) = p̂s(2t)− ǫMT η(2t+ 1),

t = 0, 1, 2, · · · .
(21)

As discussed in Remark 1, though M is not symmetric, GA

however is an undirected graph, which means each row of
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MT has nonzero entries in the same locations as M . Thus, the

nonzero entries of row i of MT can also be available to node i
from its neighbors j ∈ N ∗

i where N ∗
i represents the neighbor

set of node i in the graph GA rather than G. Therefore, (21)

can be formulated as a distributed algorithm (Algorithm 3)

implemented on each node, for which communications are

required only between neighbors.

Algorithm 3 ECHO

1: Each node i transmits its own estimate p̂i to its neighbors

in N ∗
i .

2: Each node i receives p̂j from its neighbors in N ∗
i and

then computes ηi = p̂i −
∑

j∈N∗

i
aij p̂j .

3: Each node i transmits ηi to its neighbors in N ∗
i .

4: Each node i receives ηj from its neighbors in N ∗
i and

then updates p̂i := p̂i − ǫ
∑

j∈N∗

i
ajiηj .

5: Go back to 1.

VI. SIMULATIONS

A. Localization by ECHO

We provide simulation results to show the effectiveness of

ECHO. A network consisting of 8 nodes is considered, which

is deployed in an 80×80 unit area, as shown in Fig. 7(a). The

anchor nodes are labeled by 1, 2, and 3. The remaining nodes

are the ones to be localized. The edges in Fig. 7(a) indicate

that the distance information between the two nodes on both

sides of an edge is available. This is denoted as G. It can be

checked from the example that the assumptions in [13] are

not satisfied and thus the DILOC algorithm is not applicable.

More specifically,

1) The triangle of the three anchor nodes does not contain

all sensor nodes inside;

2) Some sensor node may not lie inside the convex hull of

their neighbors.

Using Algorithm 2, we obtain generalized barycentric co-

ordinates as follows:

ps =
[

B C
]

[

pa
ps

]

,

where

B =













0 −0.9599 0
0.5292 −0.7956 1.2663

0 −1.7515 0.9345
0 −0.0211 0

0.9886 −0.4040 0













,

and

C =













0 0 0 1.3811 0.5788
0 0 0 0 0
0 0 0 1.8170 0

0.4868 0 0.5344 0 0
0.4154 0 0 0 0













.

The graph used to describe the interconnections between nodes

in terms of the generalized barycentric coordinates is GA,

which is shown in Fig. 7(b). Compared to G, the graph GA

has less edges. However, it can be checked that GA has three
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(b) GA.

Fig. 7. A sensor network of 8 nodes. X and Y are horizontal and vertical
coordinates.

disjoint paths from the set of anchor nodes {1, 2, 3} to every

other node. So every node in the network is localizable by

Theorem 1.

In this example, it can be computed that taking ǫ = 0.2527
achieves the fastest convergence rate of (19). The trajectories

of the coordinate computation using ECHO with ǫ = 0.2527
are given in Fig. 8(a). The estimation error ratio

||ps(t)−ps||
||ps(0)−ps||

is plotted in Fig. 8(b). From the simulation result, ECHO

exponentially converges and leads to true coordinates of the

sensor nodes to be localized.

B. Performance evaluation compared with MDS

To show the effectiveness of the ECHO algorithm, we

compare with the well-known MDS method [5]. A sensor

network of 80 nodes deployed in an area of 100× 100 square

meters is considered in the simulation. The configuration is

plotted in Fig. 9(a), in which the three anchor nodes with

known locations are represented by red cycles while the others

are sensor nodes with unknown locations. The lines between

pairs of nodes in the figure indicate that the distances are

available for these pairs.
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Fig. 8. Localization by ECHO.

A simulation result with the estimates of sensor positions

obtained by ECHO is shown in Fig. 9(b). The red stars

represent the estimates while the blue circles are the true posi-

tions. The simulation result shows that the estimates perfectly

matches the true positions of the sensor nodes. Two simulation

results with the estimates of sensor positions obtained by

MDS are plotted in Fig. 9(c) and 9(d). The line segments

linked between red stars and blue circles in Fig. 9(c) and 9(d)

indicate the localization errors. Similar to other gradient based

optimization methods (e.g., [10] [11]), the MDS algorithm is

sensitive to the choice of initial values. Fig. 9(c) and 9(d)

show two different localization results obtained by the MDS

algorithm with different initial values. As shown in Fig. 9(d),

even without noises, the MDS algorithm may still not converge

to the exact positions of the sensor nodes with a bad choice

of initial values, which is also observed in [5]. In contrast, our

proposed distributed iterative algorithm (ECHO) can globally

exponentially converge to the true locations.

Note that the running of MDS depends on a distance matrix

containing the distance measurements between every pair of

nodes in the network while our algorithm only uses local

information of neighbors. For a fair comparison, these un-

localizable nodes are removed in the simulations before we

use either ECHO or MDS for localization. For example, the

node at the left bottom of Fig. 9(a) is removed since it does

not have three paths to the anchor nodes. Details on how to

detect and remove un-localizable nodes can be found in [2]

[32].

VII. CONCLUSION

In this paper, we developed a criterion and algorithm to

determine the sign pattern of a barycentric coordinate for a

sensor node with arbitrary deployment of neighbors. Based

on the generalized barycentric coordinate representation, we

then developed a new localization algorithm for randomly

deployed sensor networks, without restrictive assumptions on

anchor nodes or neighboring nodes. The proposed localiza-

tion algorithm is implemented in an iterative and distributed

manner. A particular advantage of such implementation is

that is robust against topological changes of the network, i.e.,

the iterative solutions adapt naturally when the sensor nodes

and their distance measurements are added or dropped over

time. In addition to the localization scheme, a localizability

condition was also obtained, which shows that the existence of

at least three disjoint paths from any node to the set of anchor

nodes in the graph associated with the generalized barycentric

coordinate representation is necessary and sufficient.
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APPENDIX

Proof of Lemma 3: 1) =⇒ 2) If 1) holds, then by removing

extra edges for each node i ∈ V − R except the three edges

on three disjoint paths from R to i, it results in a subgraph

of G, denoted by T = (V, Ē). If necessary, we re-label the

nodes such that r1 = n− 2, r2 = n− 1, and r3 = n. Then it

is clear that each row of L ∈ {L ∈ L(T ) : Lξ = 0, Lζ = 0}
from 1 to n− 3 has exactly four non-zero entries and thus is

only one degree of freedom. I.e., it must satisfy





1 1 1 1
ξi ξj1

i
ξj2

i
ξj3

i

ζi ζj1
i

ζj2
i

ζj3
i













Lii

Lij1i

Lij2
i

Lij3
i









= 0, (22)

for i = 1, . . . , n− 3, where Lii and Lijk
i

(k = 1, 2, 3) are the

four nonzero entries of the ith row of L, and ξk and ζk for

k = i, j1i , j
2
i , j

3
i are the corresponding components of ξ and ζ

respectively. Moreover, j1i , j2i , and j3i are the three neighbors

of i.
First, we show that for any L ∈ {L ∈ L(T ) : Lξ = 0, Lζ =

0} with ξ and ζ being generic, all principal minors of LR are

distinct from zero. Let M be an s-th order principal sub-matrix

of LR corresponding to the subset of nodes U ⊂ V − R. If

there exists a subset of nodes in U such that every of them
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(a) A configuration of sensor network of 80 nodes, where the three anchor
nodes are represented by red circles while the others are sensor nodes
with unknown locations. The lines between pairs of nodes indicate that
the distances are available for these pairs.
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(b) A localization result by ECHO, which shows the estimates of the
sensor positions (represented by red stars) perfectly match the true
positions (blue circles).
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Fig. 9. Performance comparison between ECHO and MDS.

has no neighbors in U , then the matrix M must be of the

following form by re-labeling these nodes as 1, . . . , k.

M =

[

M1 0
0 M2

]

,

where M1 ∈ R
k×k is a diagonal matrix and M2 is a square

matrix. Notice that the diagonal entries of M1 are all nonzero.

So for this particular case, to show det(M) 6= 0, we only need

to show M2 has non-zero determinant, whose corresponding

nodes all have neighbors in U . Therefore, without loss of

generality, in the following argument we assume that every

node in U has neighbors in U .

Now suppose by contradiction that det(M) = 0. Thus we

have a nonzero vector ηs ∈ R
s such that Mηs = 0. Denote

by η the n-dimensional vector whose entries corresponding to

the nodes not in U are zero and whose entries corresponding

to the nodes in U are the corresponding components of ηs.

Then it can be known that for i ∈ U ,

[

ηi ηj1
i

ηj2
i

ηj3
i

]









Lii

Lij1
i

Lij2
i

Lij3
i









= 0, (23)

where j1i , j2i , and j3i are the three neighbors of node i. Recall

that [Lii Lij1
i
Lij2

i
Lij3

i
] has only one degree of freedom, so

it follows from (22) and (23) that for i ∈ U there must exist

αi, βi and γi (not all zeros) such that









ηi
ηj1

i

ηj2
i

ηj3
i









= αi









1
1
1
1









+ βi









ξi
ξj1

i

ξj2
i

ξj3
i









+ γi









ζi
ζj1

i

ζj2
i

ζj3
i









. (24)
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Recall that if jki (k = 1, 2, 3) is not in U , then ηjk
i
= 0. So

there is one type of constraint from (24) as the following form

αi + βiξjk
i
+ γiζjk

i
= 0. (25)

Moreover, if jki (k = 1, 2, 3) is in U , then (24) results in

another type constraint

αi + βiξjk
i
+ γiζjk

i
= αjk

i
+ βjk

i
ξjk

i
+ γjk

i
ζjk

i
, (26)

since both sides are equal to ηjk
i

.

By the condition that every node i 6∈ R has three disjoint

paths from R in T , we then know for any node i ∈ U
there exist three disjoint paths from the set V − U to i. We

decompose T into three subgraphs, denoted by T 1, T 2 and

T 3 of the same node set V , such that every node other than

the nodes in R has only one neighbor and every node in U is

reachable from a node outside of U . For any i ∈ U , denote

by j1i , j2i , and j3i the neighbor of node i in T 1, T 2, and T 3,

respectively. We let N1 ∈ R
s×s be the sub-matrix of a binary

Laplacian for T 1 with the rows and columns corresponding to

nodes in V − U crossed out. That is, the diagonal entries of

N1 are 1’s, the (i, j1i )-th entry is −1 only if j1i ∈ U , and all

other off-diagonal entries are zeros. Furthermore, we define

N2 and N3 in R
s×s in the same way according to T 2 and

T 3 respectively. Moreover, we define N ξ
1 and N ζ

1 in R
s×s

of the same zero/nonzero pattern as N1, whose i-th diagonal

entries are ξj1
i

and ζj1
i

respectively, and whose (i, j1i )-th off-

diagonal entries are −ξj1
i

and −ζj1
i

only if j1i ∈ U . Similarly,

N ξ
2 and N ζ

2 in R
s×s are defined of the same zero/nonzero

pattern as N2, whose i-th diagonal entries are ξj2
i

and ζj2
i
,

and whose (i, j2i )-th off-diagonal entries are −ξj2
i

and −ζj2
i

only if j2i ∈ U . Finally, N ξ
3 and N ζ

3 in R
s×s are defined of the

same zero/nonzero pattern as N3 by the same manner (i.e., the

nonzero weights relate to ξj3
i

and ζj3
i

respectively). Then we

can write the linear constraints in (25) and (26) in a concise

form as




N1 N ξ
1 N ζ

1

N2 N ξ
2 N ζ

2

N3 N ξ
3 N ζ

3









α
β
γ



 = 0, (27)

where α = [α1, · · · , αs]
T , β = [β1, · · · , βs]

T , and γ =
[γ1, · · · , γs]

T .

Since every node in U is reachable from some nodes outside

of U in terms of T 1, it is obtained from algebraic graph theory

that N1 has a non-zero determinant, and so are N ξ
1 and N ζ

1

for generic ξ and ζ due to the same zero/nonzero pattern as

N1. For the same reason, we can obtain that det(N2) 6= 0,

det(N3) 6= 0, det(N ξ
2 ) 6= 0 and det(N ξ

3 ) 6= 0 for a generic ξ,

and det(N ζ
2 ) 6= 0 and det(N ζ

3 ) 6= 0 for a generic ζ. Denote

N =





N1

N2

N3



 , N ξ =





N ξ
1

N ξ
2

N ξ
3



 and N ζ =





N ζ
1

N ζ
2

N ζ
3



 .

We use li, l
ξ
i , and lζi to represent the i-th column of N , N ξ,

and N ζ , respectively. So N is column linearly independent.

Moreover, note that lξi has the same zero/nonzero pattern as

li. So we can know that once lξi for a choice of generic ξ is

linearly independent with li, then [N lξi ] is column linearly in-

dependent. Recall by our assumption that every node i ∈ U has

neighbors in U , which means the column of N ξ corresponding

to node i contains a free variable ξi. Also, notice that each

column i has at least two non-zero entries, so by varying ξi
we can make [N lξi ] column linearly independent. Repeating

the same argument, we can eventually reach the conclusion

that [N N ξ] is column linearly independent for a generic ξ.

For the same reason, we can show that [N N ξ N ζ ] is column

linearly independent for generic ξ and ζ. Therefore, eq. (27)

has a unique solution, i.e., α = β = γ = 0, which contradicts

to the assumption that αi, βi and γi are not identically zero.

So we conclude that all principal minors of LR are distinct

from zero for L ∈ {L ∈ L(T ) : Lξ = 0, Lζ = 0}.

Second, since we already showed that for any L ∈ {L ∈
L(T ) : Lξ = 0, Lζ = 0} with ξ and ζ being generic,

all principal minors of LR are distinct from zero, it follows

straightforward that for almost all L ∈ {L ∈ L(G) : Lξ =
0, Lζ = 0} with ξ and ζ being generic, all principal minors of

LR are distinct from zero as well since some nonzero entries

are added into L associated to graph G.

2) =⇒ 1) We prove it in a contrapositive form. Suppose that

there exists a node i 6∈ R such that there are no three disjoint

paths in G from R to i. That is, after removing two nodes,

without loss of generality, say k1 and k2, a subset W of nodes

becomes not reachable from R. Denote the set of remaining

nodes as W̄ , which are still reachable from R after removing

k1 and k2. It is certain that R ∈ W̄ and after removing nodes

k1 and k2, the nodes in W are not reachable from any node in

W̄ . Suppose the total number of nodes in W is m. If necessary,

re-label the nodes in W as 1, · · · ,m, change the labels of node

k1 and k2 to m+ 1 and m+ 2, and re-label the nodes in W̄
as m+ 3, · · · , n. Then the matrix L after re-labeling satisfies

L(i, j) = 0 for i ∈ W and j ∈ W̄ . That is, L is of the

following form
[

Lw l1 l2 0
∗ ∗ ∗ ∗

]

,

where Lw ∈ R
m×m and l1, l2 ∈ R

m. Re-order the components

of ξ and ζ in the same way as relabeling the nodes, and denote

the resulting vectors by [ξTa , ξTb ]
T where ξa ∈ R

m+2 and

ξb ∈ R
(n−m−2), and [ζTa , ζTb ]

T where ζa ∈ R
m+2 and ζb ∈

R
(n−m−2). According to the definition of L, we have

[Lw l1 l2]1m+2 = 0, [Lw l1 l2]ξa = 0 and [Lw l1 l2]ζa = 0.

As 1m+2, ξa, and ζa are linearly independent for generic ξ
and ζ, we then know that [Lw l1 l2] must be row linearly

dependent, which means det(LR) = 0 for any L ∈ {L ∈
L(G) : Lξ = 0, Lζ = 0}. �
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