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Distributed Self Localization for Relative Position
Sensing Networks in 2D Space

Zhiyun Lin, Senior Member, IEEE, Minyue Fu, Fellow, IEEE, and Yingfei Diao, Member, IEEE

Abstract—This paper studies the 2D localization problem of a
sensor network given anchor node positions in a common global co-
ordinate frame and relative position measurements in local coordi-
nate frames between node pairs. It is assumed that the local coordi-
nate frames of different sensors have different orientations and the
orientation difference with respect to the global coordinate frame
are not known. In terms of graph connectivity, a necessary and
sufficient condition is obtained for self-localizability that leads to
a fully distributed localization algorithm. Moreover, a distributed
verification algorithm is developed to check the graph connectivity
condition, which can terminate successfully when the sensor net-
work is self-localizable. Finally, a fully distributed, linear, and iter-
ative algorithm based on the complex-valued Laplacian associated
with the sensor network is proposed, which converges globally and
gives the correct localization result.

Index Terms—Sensor networks, self localization, localizability,
distributed algorithm.

I. INTRODUCTION

M ANY existing localization schemes for sensor networks
utilize pairwise distance measurements between sensor

nodes to compute the position of each sensor node in a global co-
ordinate frame [1]–[6]. With the development of micro-electro-
mechanical systems (MEMS), it is possible and relatively inex-
pensive to add measurements such as bearing angles [7]–[11],
which together with the distancemeasurements lead to the avail-
ability of relative positions. However, a key technical difficulty
for sensor network localization is that the bearing angles are typ-
ically made in sensor nodes' local coordinate frames without the
knowledge of their true orientations.
Depending on whether a central processor exists or not, local-

ization schemes can be divided into centralized schemes [12]
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and distributed schemes [13]. The former asks every sensor
node to transmit its information to a central processor, which
then computes the positions of all the nodes in the entire sensor
network, while the latter allows every sensor node to exchange
information only with its neighbors and conduct the computa-
tion of its own position locally. The distributed approach is more
preferable since it is energy efficient and can avoid communi-
cation bottlenecks at and near the centralized processor.
This paper aims at solving the localization problem for sensor

networks in a distributed manner using relative position mea-
surements in local coordinate frames. There are a number of
related works based on such relative measurements. In [14],
[15], the localization task is modeled as solving a linear esti-
mation problem, in which pairwise relative position measure-
ments are used to estimate the position in a distributed manner.
In [16], a randomized algorithm is developed to recursively es-
timate the position based on the differences of local measure-
ments between pairwise neighbors. The works of [17], [8], [18]
also consider the relative measurements to address the localiza-
tion problem in a distributed manner.
Our work differs from the literature in the sense that a global

coordinate frame is not required, whereas the necessity of a
global coordinate frame is implicitly assumed in the aforemen-
tioned works. Note that the use of a global coordinate frame
is not in line with the spirit of distributed processing because
a piece of global information is needed, especially the common
sense of direction, which for example requires each sensor node
to have potentially sophisticated orientation sensing capability.
The same concern is considered in [19], in which the authors
develop a scheme to align the orientations of all local coordi-
nate frames while doing localization. But towards the objective
of aligning the orientations, mutual relative position measure-
ments are assumed in [19]. In this paper, themeasurementmodel
is expressed in terms of a directed graph with the directed edges
corresponding to the relative position measurements. Such a di-
rected graph model represents the more general case as relative
position measuring may be often unidirectional. For example, a
camera commonly has a cone-like field of view, so depending
on the orientations of the cameras, two sensor nodes may not be
able to sense each other mutually. In this paper, we adopt the
novel idea of using complex barycentric coordinates developed
in formation control [20], [21] such that the local coordinate
frames at different sensor nodes are allowed to have different
orientations and mutual relative position measurements are not
required. In our early work [22], the localization problem in
such a setup is addressed under the assumption that every sensor
node has exactly two neighbors. This paper presents a more gen-
eral result by removing this restrictive assumption.
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The localization problem is characterized as a graph embed-
dability problem [23], i.e., whether there exists a unique embed-
ding for the graph, given a set of distance measurements. For
a general network, this graph-embeddability problem has been
proved to be NP-hard. Thus, people turn to first study which
kinds of graphs have the unique and generic embedding [24].
This leads to the fundamental issue in sensor network local-
ization, called localizability [25], which checks whether all the
sensor nodes in a sensor network are localizable based on the
available relativemeasurements. For range-based localization, a
sensor network is usually characterized by a distance graph [26]
and then the graph rigidity theory is applied to tackle the localiz-
ability problem. For example, [27] shows that a sensor network
in the 2D plane can be uniquely localized in the global coordi-
nate frame if and only if it contains at least three location-known
anchor nodes and its distance graph is globally rigid.
However, there is no such known result for the localizability

of sensor networks based on relative position measurements, for
which the ground graph is directed, i.e., the relative position
between two sensor nodes may be known by only one sensor
node. This paper develops a fundamental result to answer this
question. Specifically, in this paper, we consider rigorously the
so-called self-localizability problem, which refers to the capa-
bility of determining each sensor's position by the sensor node
itself rather than others. This notion naturally leads to a dis-
tributed solution for the localization algorithm. A necessary and
sufficient condition is obtained to characterize the self-localiz-
ability of a sensor network with relative position measurements.
It is shown that a sensor network in the plane with relative posi-
tion measurements in the local coordinate frames of individual
sensor nodes is self-localizable if and only if the sensor net-
work contains at least two location-known anchor nodes and
its sensing digraph holds a 2-reachability property, i.e., every
sensor node has two disjoint paths from the anchor nodes.
After addressing the fundamental self-localizability problem,

this paper then develops a distributed verification algorithm to
check whether a given sensor network is self-localizable. The
algorithm can terminate successfully in a finite number of steps.
Moreover, this paper also develops a distributed localization al-
gorithm to calculate the position of each sensor node based on
its own local measurements and some information exchanged
from its neighbors. The proposed localization algorithm is in an
iterative and linear form with guaranteed global convergence.
This is more attractive compared with those distance-based lo-
calization algorithms that typically require solving a nonlinear
optimization problem and may be trapped into local optima.
The organization of this paper is as below. In Section II, we

introduce the preliminary knowledge of graphs and state the
problems of self-localizability and localization based on rela-
tive position measurements. In Section III, we give a neces-
sary and sufficient graph connectivity condition for self-local-
izability and then present a distributed verification algorithm
to check self-localizability of a sensor network. In Section IV,
we propose a fully distributed localization algorithm to com-
pute the positions of sensor nodes. A simulation is provided in
Section V to show the effectiveness of our method.We conclude
our work in Section VI.

Notation: denotes the set of complex numbers.
denotes the imaginary unit. denotes the identity matrix of ap-
propriate dimension. For a complex number and repre-
sent the modulus and the conjugate respectively. For a set
denotes the cardinality of the set. For a complex vector or ma-
trix represents the conjugate transpose. de-
notes the maximal eigenvalue of a Hermitian matrix while

represents the rank of .

II. PRELIMINARY AND PROBLEM FORMULATION

A. Basic Notions From Graph Theory

First, we are going to introduce some basic notions from
graph theory and algebraic graph theory. A directed graph

consists of a non-empty node set and an arc set
. If is an edge in a directed graph , then node

is called an in-neighbor of node while node is called an
out-neighbor of node . We define as the in-neighbor set of
node , i.e., . A walk in a directed
graph is an alternating sequence
of nodes and arcs such that for every

. For notation simplicity, we denote a walk
as . We say that is a walk from
to , and is the starting node of the walk . For a directed
graph , if there is a walk from one node to another node ,
then is said to be reachable from . If the nodes of a walk
are distinct, is a path. Moreover, a node is said to be
2-reachable from a non-singleton set of nodes if there exists
a path from a node in to after removing any one node except
node or equivalently if there are two disjoint paths from to
[28].
Next, we introduce two notions, called complex Laplacian

matrix and Dirichlet matrix, which are associated with directed
graphs. For a directed graph, associated each edge
with a complex value called the weight of the edge, its com-
plex Laplacian matrix is defined with its -th component
being

(1)

Similarly to the one defined in [29], the Dirichlet matrix is
the matrix obtained from the Laplacian matrix by deleting
all rows and columns that correspond to a subset of specific
nodes. Th Dirichlet matrix is also well known in the literature
on distributed estimation and control with another name called
basis Laplacian (see [30]).

B. Problem Formulation

Let be a common global coordinate frame. We con-
sider a sensor network consisting of two subsets of of sensor
nodes. One subset of sensor nodes are called anchor nodes
(labelled ), whose positions in , denoted by

, are known. The other subset of sensor
nodes are called free nodes (labelled ), whose
positions in , denoted by , are not
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Fig. 1. An illustration of relative position measurements.

known and need to be determined. For notation convenience,
the position in the plane is represented by a complex number
throughout the paper. We let denote the ag-
gregate position vector of all the sensor nodes and call it the
configuration of the sensor network. In this paper, we have an
assumption for the configuration.
Assumption 1: The configuration is generic.
The configuration is said to be generic if the coordinates

do not satisfy any nontrivial algebraic equation
with integer coefficients [31]. Intuitively speaking, a generic
configuration has no degeneracy, i.e., no three points staying
on the same line, no three lines go through the same point, etc.
The justification for this assumption is that the generic configu-
rations form a set of full measure.
Suppose that each free node holds a local coordinate frame
, for which the origin is set at the position of node and the

orientation is fixed but the offset angle with respect to the
global coordinate frame is not known. Each free node is
assumed to measure the relative distances and bearing angles of
its neighboring nodes in its local coordinate frame . That is, if
sensor node is a neighbor of sensor node , then the distance
from node to node and the bearing angle of node with
respect to are measured by node . An illustrative example
with three nodes 1, 2 and 3 is given in Fig. 1. In the figure, the
arrowed line pointing from node 1 and 2 to node 3 are the edges,
meaning that node 3 canmeasure the relative position of 1 and 2,
namely, and , in its local coordinate frame

. Mathematically, the relative position measurement in the
local coordinate frame can be expressed as

(2)

We construct a directed graph with
to describe the neighboring topology. That

is, an edge indicates that node can measure the
relative position . Thus, the sensor network will be denoted
as a tuple in what follows.
The relative position (RP) localization problem of a sensor

network is stated as follows.

Fig. 2. Illustration of self-localizability and joint localizablity. (a)
self-localizable, (b) jointly localizable.

Definition 1: (RP localization problem) Given a sensor net-
work and the local coordinate frame based relative
position measurements for , find the position of
the free nodes such that for any , there exists

satisfying

Measurements generated from a given sensor network
guarantee that at least one solution exists.

Definition 2: A sensor network is called jointly
localizable if the RP localization problem, given the anchor po-
sitions and the local coordinate frame based relative position
measurements for , admits a unique solution .
Definition 2 may imply the need of collecting all anchor po-

sitions information and all relative position measurements to-
gether in order to solve the RP localization problem. However,
in order to reduce the information exchange and make each
free node capable of computing its own position related to dis-
tributed computation, we introduce another notion called self-
localizability. Some notation will be used in the following def-
inition. Let be any subset of free nodes. Then the set of all
the rest sensor nodes (including the anchor nodes) is denoted
as . Moreover, we denote and the corre-
sponding position vectors for sensor nodes in and respec-
tively.
Definition 3: A sensor network is called self-lo-

calizable if for any subset of free nodes , the sensor network
is jointly localizable, given the positions in

the global coordinate frame and the local coordinate based
relative position measurements for and .
Definition 3 means that any subset of free nodes are able

to compute their positions in the global coordinate frame
by themselves if the positions of their in-neighbors in are
known. The reason for coining this notion self-localizability is
that it will lead to a fully distributed localization algorithm, as
we will show later.
This paper concentrates on the self-localizability problem and

aims to develop a distributed algorithm to compute the positions
of all free nodes in the global coordinate frame if the sensor
network is self-localizable.
An example to explain the differences between the two no-

tions of localizability is shown in Fig. 2. In both Fig. 2(a) and
(b), nodes 1 and 2 are the anchor nodes while the others are free
nodes.
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The example in Fig. 2(a) is self-localizable as it can be
checked that any subset of free nodes is jointly localizable given
the relative position measurements and the positions of other
nodes in the global coordinate frame . More specifically, we
can see that node 3 is able to determine the position of itself
in when it uses the relative position measurements about
nodes 1 and 2 in and the positions of nodes 1 and 2 in .
Moreover, node 4 is also able to determine the position of itself
in when it uses the relative position measurements about
nodes 2 and 3 in and the positions of node 2 and 3 in .
However, the example in Fig. 2(b) is not self-localizable

but jointly localizable. This is because node 4 has only one
in-neighbor (namely, node 2) and is not able to determine its
own position in by using the relative position measure-
ment about its in-neighbor (node 2) in and the position
information of node 2 in since different orientations of
node 4's local coordinate frame lead to different position for
node 4. However, as discussed above, node 3 in Fig. 2(b) is
able to determine its own position in . Because node 3 has
a relative position measurement about nodes 1 and 2 and it
now knows the its own position in as well as node 1 and
2's positions in , as a byproduct, node 3 can determine the
orientation of its own local coordinate frame with respect
to the global coordinate frame . Then by means of this extra
information, node 3 is able to determine the position of node 4
in as it has the relative position measurement about node 4.
Thus, the positions of all sensor nodes in can be uniquely
determined, which means the sensor network in Fig. 2(b) is
jointly localizable.

III. SELF-LOCALIZABILITY
In this section, we develop a necessary and sufficient graph

connectivity condition for self-localizability and then present a
verification method to check self-localizability of a sensor net-
work.

A. Necessary and Sufficient Localizability Condition
First, we provide a necessary and sufficient condition for self-

localizability of a sensor network in terms of graph connectivity.
Theorem 1: Under Assumption 1, a sensor network

is self-localizable if and only if

(NS-1): the number of anchor nodes , and

(NS-2): every free node is 2-reachable from the set of
anchor nodes.

Proof: (Necessity) Firstly, we prove the necessity of
. When , the whole sensor network can freely rotate
and translate in the plane without any constraint and thus is not
localizable. When , suppose there is a set of locations
satisfying the relative position measurements within their local
coordinate frames. Now suppose their local coordinate frames
are all rotated around this anchor node by the same angle. Then
it leads to another set of locations for the sensor nodes satisfying
the relative position measurements within their local coordinate
frames. Hence, the positions of these nodes are not unique in the
global coordinate frame , i.e., these nodes are not localizable.
In conclusion, there must be at least two anchor nodes.

Fig. 3. Illustration for the necessity of (NS-2).

Secondly, we show the necessity of (NS-2). Suppose on the
contrary that there is one node, say , which is not 2-reachable
from the anchor set, denoted as . By the definition of 2-reach-
ability, it is then known that there exists another node such
that when node is removed, node is not reachable from .
Denote by the set of free nodes that are not reachable from the
anchor set after removing node and denote by the set of
nodes that are reachable from the anchor set after removing
node . Then it follows that there is no edge from any node in

to any node in after removing . An illustrative example
is given in Fig. 3(a), where node 5 is the node . We now con-
sider the subset of free nodes and denote . It
can be seen that the joint localizability of the subset , given
the positions of the nodes in in the global coordinate frame

and the relative position measurements for and
(the one shown in Fig. 3(a)), is equivalent to the joint

localizability of the subset of free nodes, given the position
of node in the global coordinate frame and the relative
position measurements for and (the one
shown in Fig. 3(b)). Note that the latter case has only one anchor
node. Then by the necessary condition (NS-1), the subset of
free nodes is not jointly localizable, given the positions of the
nodes in in the global coordinate frame and the relative
position measurements for and . Thus, by
Definition 3, the sensor network is not self-localiz-
able.
(Sufficiency) According to (NS-2) that every free node is

2-reachable from the set of anchor nodes, it can be known that
every free node has at least two in-neighbors. Then it is clear
that with the local measurements , the following
equation

(3)

has at least two unknowns and therefore it must have a solution
. In other words, node can solve for for

from (3). Thus, , is a function of the relative position
measurements , denoted as . Note that
(3) implies

(4)
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Recall that the anchor nodes do not have in-neighbors, indi-
cating that they do not need to measure the relative positions
about other nodes. So we can aggregate all the nodes including
the anchor nodes and write (4) in a matrix form, that is,

(5)

where is the aggregate position and is the Lapla-
cian of with the weights . Moreover, is of the
following form

where and .
By Lemma 1, all the principal minors of are distinct from

zero. Hence, the equation

(6)

which is equivalent to (5), has a unique solution . Next, we
consider any subset of free nodes . Denote by
the set of all the rest sensor nodes (including the anchor nodes).
In addition, we denote and the corresponding position
vectors for sensor nodes in and respectively. Then the
equations in (5) with the row indices corresponding to the nodes
in can be written as

(7)

where is the principal minor of with the indices corre-
sponding to the nodes in and is the corresponding block
in . Recall that the principal minors of are distinct from 0,
so is invertible. Thus (7) admits a unique solution, which
implies that the subset of free nodes is jointly localizable,
given the positions in the global coordinate frame and
the local coordinate based relative position measurements
for and . As a result, by Definition 3, the sensor
network is self-localizable.
Remark 1: To understand that Assumption 1 of generic con-

figuration of a sensor network is important in proving the nec-
essary and sufficient condition in Theorem 1, we consider an
example in Fig. 4. In this example, nodes 5 and 6 are the anchor
nodes and every free node is 2-reachable from the
set of anchor nodes. Suppose the sensor configuration is the one
given in Fig. 4(a), i.e., the position vector of the six sensor nodes
in the global coordinate frame is

where each complex number is the position of each node in
the global coordinate frame . Then it can be checked that

is less than 4 for any ,
meaning that the locations of the sensor nodes cannot be solved
from the linear constraint (5). However, such situations are of
zero measure due to finite zeros for any finite-order polyno-
mials. In other words, when the configuration changes a little
bit, for example, we shift a little bit the position of node 5 in
the neighborhood of the original location (Fig. 4(b)), then the
new Dirichlet matrix is nonsigular and thus the locations of
all sensor nodes can be solved from (5).

Fig. 4. Interpreaton of the generic configration assumption. (a) Not
self-localizable. (b) self-localizable.

B. Verification of Self-Localizability Condition

Now, we provide a distributed algorithm to check whether a
sensor network is self-localizable in terms of Theorem 1. We
will mainly verify whether every sensor node is 2-reachable
from the set of anchors by assuming that there are at least two
anchor nodes in the network. In order to conduct a distributed
verification, communications among the nodes are needed.
We assume that the communication graph is also of the same
topology as . This is reasonable as the communication range is
usually larger than the sensing range. Though communications
can be bidirectional, we consider only unidirectional communi-
cations in our distributed verification algorithm, namely, each
node only receives some messages from its in-neighbors and
sends some messages to its out-neighbors.
The idea of verifying the 2-reachability condition is simple.

That is, each node receives path(s) from its in-neighbors and
evaluates the paths:
— If there are two disjoint paths from the anchor set, it de-

clares itself as an anchor node by transmitting the new path
with its own ID to its out-neighbors.

— Otherwise, if there are multiple paths but not disjoint, it
chooses the shortest one, adds its own ID at the end of
this shortest path, and then transmits it to its out-neigh-
bors (unless that this path has been transmitted before, in
which case, there will be no repeated transmission); (Also
if there is a loop in the path, there is no need to transmit it
because the shorter path without the loop must have been
transmitted before).

The result is that each node has new transmission only if it
has just declared to be a new anchor node and re-initializes a
new path with its own ID, or it has a new single shorter path
from others. The precise description is presented in Algorithm
1 where is used to store the path information.
As an illustration of Algorithm 1, we take the sensor network

given in Fig. 4 as an example, where nodes 5 and 6 are the two
anchor nodes in the network. The transmitted information by the
sensor nodes at each step is presented in Fig. 5, where
for example represents the path that is stored and transmitted
by the sensor nodes, and the symbol ‘ ’ indicates that it is idle
without any message transmission. In a little bit more details,
at , nodes 1, 2, 3 and 4 do not have any path informa-
tion to transmit as they are not anchors, so they remain idle,
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while nodes 5 and 6 are anchors, so they transmit the path infor-
mation, namely, the paths with only one node, and

, to their out-neighbors. At , node 2 receives
the path information 6 from its in-neighbor node 6 and nothing
from the other in-neighbor node 3, so it adds its own ID to the
end of this path (namely, ) and sends it to its
out-neighbor. In the same time, node 4 at receives two
pieces of path information from node 5 and 6 and it checks that
these two paths are disjoint, so it declares itself as a new an-
chor node and sends the new shortest path information (namely,

) to its out-neighbors. The procedure continues until
every node finds two disjoint paths to itself. The algorithm runs
three steps for this example since the length of the longer path
of the two shortest disjoint paths from the anchor set to node 3
is three.

Algorithm 1 Verification of self-localizability condition.

1: Initialization:
2: if node is an anchor then
3:
4: else
5:
6: end if
7: Update at :
8: if node does not receive any message from its

in-neighbors then
9:
10: else
11: Compare with the received message from

its in-neighbors
12: if two disjoint paths are found then
13:
14: else
15: the shortest path (by comparing

and all the paths received from its in-neighbors in this
round)

16: end if
17: end if
18: Message transmission at :
19: if or then
20: remain idle
21: else
22: transmit to its out-neigbhors
23: end if

Next, we show in the following theorem that Algorithm 1 is
competent for checking self-localizability of a sensor network.
Theorem 2: A sensor network with anchor

nodes is self-localizable if and only if Algorithm 1 terminates
with every at some time .

Proof: (Necessity) If a sensor network with
anchor nodes is self-localizable, then it follows from

Theorem 1 that every free node is 2-reachable from the set of
anchors or equivalently there exist two disjoint paths from the
set of anchors to every free node . Then it is straightforward
that every will become equal to in a finite steps since

Fig. 5. Illustration of Algorithm 1.

the lengths of the two disjoint paths from the set of anchor to
every free node are finite.
(Sufficiency) If Algorithm 1 terminates with every

at some time , then two disjoint paths are found by node , say
and . We consider three

cases.
Case 1: the starting nodes and of the two disjoint

paths and are both anchors. For this case, it is concluded
straightforward that node has two disjoint paths from the set
of anchors.
Case 2: the starting node of one of the two disjoint paths,

say , is an anchor, but the other is not. Then according to
Algorithm 1, two disjoint paths, say and

, are found by node as it is a starting
node of a path transmitted to others. Without loss of generality,
assume that the starting nodes and of the two disjoint paths
found by node are anchors as otherwise we can repeat the
same argument by considering three difference cases. Then by
cutting off any one node on the path , there is still a path from
the set of anchors to node by going through either or
followed by since the node being cut off cannot be in
and simultaneously and cannot be in as well. Moreover,
by cutting off any one node not in the path , then clearly, the
path still exists leading from an anchor to node . So node
is 2-reachable from the set of anchors in this case.
Case 3: the starting nodes and of the two disjoint paths
and are neither anchors. In this case, it is clear that both
and have two disjoint paths from others. For the same

reason as in Case 2, we can assume that the starting nodes of
these paths are anchors. Thus, by cutting off any one node in

, there must exist another path from an anchor to node by
following one of the two disjoint paths from anchors to node

followed by the path . The same counterpart conclusion
can be obtained by cutting off any one node in . Moreover,
by cutting of any node neither in or , then there is a path
from an anchor to either or and therefore there is a path
from an anchor to node . So node is 2-reachable from the set
of anchors in this case.
In conclusion, if Algorithm 1 terminates with every

at some time , then every free node is 2-reachable from the
set of anchors. Thus by Theorem 1, the conclusion follows.

IV. DISTRIBUTED LOCALIZATION ALGORITHM

In this section, we aim to develop a distributed algorithm for
the computation of the position of each free node by itself in the
global coordinate frame when a sensor network is self-local-
izable. The distributed algorithm consists of two steps. Firstly,
each free node uses its relative position measurements about its
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Fig. 6. An illustration of relative position measurements in node 3's local co-
ordinate frame .

in-neighbors to compute weights 's that will be used in it-
erations. Secondly, each free node updates its own estimate of
the position of itself based on exchanged information from its
neighbors. These two steps are addressed in the following two
subsections respectively.

A. Weight Computation
As assumed in this paper, each free node can get the rela-

tive position measurement (2) in its own local coordinate frame.
Moreover, by Theorem 1, we know that if a sensor network is
self-localizable, then each free node is 2-reachable from the an-
chor set, which indicates that each free node has at least two
in-neighbors. Thus, with respect to all its neighbors, each free
node can calculate the weights 's from the following equa-
tion

(8)

where are the measured data by node .
Certainly, (8) has infinite number of solutions for 's. When

, the solution is of one-dimension scaled by complex
numbers. Sowe can simply choose the complexweights that
normalize the relative position vectors of its two in-neighbors
and project them onto the positive and negative real axis of its
local coordinate frame . That is, if is an in-neighbor of node
, then

(9)

and if is the other in-neighbor of node , then

(10)

Taking Fig. 6 for example, we can choose the complex weights
for arcs and as . Then
(8) holds at node .
When , the solution space of (8) is more than 1. Node
can randomly select one solution that does not contain zero

entries. To be more specific, suppose that node has in-neigh-
bors, labelled with . Then nonzero weights

should be selected to satisfy

...

in which are the measured data.

As shown in the sufficiency proof of Theorem 1, aggregating
(8) leads to a linear equation (6), which is re-written in the fol-
lowing

(11)

Remark 2: If a sensor network is self-localizable, then from
Theorem 1 and Lemma 1, it is almost sure that the matrix is
nonsingular by randomly selecting one solution 's from the
solution space of (8).

B. Self-Localization Algorithm in Presence of Noisy
Measurements
In this subsection, we will develop a distributed algorithm for

localization.
Considering the noises in the relative position measurements

and the round-off errors in computing the weights 's ac-
cording to (8), the linear constraint (11) becomes

(12)

where and are the corresponding matrices calculated ac-
cording to (8) while and are the error matrices due
to the measurement noises and round-off errors. Denote

. Then, (12) is re-written as

(13)

For simplicity of analysis, we assume that ,
which belongs to a complex Gaussian distribution with zero
mean and covariance . Since the measurements and computa-
tion are independent processes carried out by individual nodes,
is diagonal and each node is supposed to know the -th diag-

onal entry of .
By the theory of weighted least squares (WLS) estimation, it

is known that the optimal weighted least squares estimate for
the linear measurement (13) is

(14)

where and .
Next, we present a distributed algorithm for localization. That

is, the algorithm should converge to the optimal solution (14)
starting from any initial conditions.
Denote

By introducing an auxiliary variable , we propose the
following iteration algorithm

(15)

The iteration algorithm (15) can be implemented on each node
in a distributed manner (Algorithm 2), for which bidirectional
communications are required between neighbors. In practical
applications, the communication range is usually larger than the
sensing range, so it is reasonable to assume that if node can
sense node , then it is able to communicate with node bidi-
rectionally.
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Algorithm 2 The implementation of (15) at node .

1: Node receives the estimate from its
in-neighbors.

2: Node receives the weighted auxiliary state
from its out-neighbors.

3: Node updates its auxiliary state and its estimate as
follows.

4: Node sends its estimate to its out-neighbors.
5: Node sends the weighted auxiliary state

to its in-neighbors.

Finally, we provide the convergence result for the iteration al-
gorithm (15).
Theorem 3: Suppose that is non-singular. If

then the distributed algorithm (15) converges to the optimal so-
lution (14) as tends to .

Proof: First of all, it can be checked that the optimal solu-
tion (14) is the unique equilibrium point of (15).
Writing (15) in the matrix form, we have

Let be an eigenvalue of and let be the
associated eigenvector. Then we have

After several steps of mathematical manipulations, it is obtained
that

So the eigenvalue must satisfy

where is an eigenvalue of . That is,

Note that is real and positive since is a Hermitian matrix.
In order to make every lie strictly inside the unit disk, it re-
quires . Thus, under this condition, the distributed
algorithm (15) converges to the optimal solution (14) as tends
to .
Remark 3: To ensure the convergence of the distributed al-

gorithm (15), has to be upper bounded as shown in Theorem
3. In this remark, we provide a distributed approach to find a
feasible in a finite number of steps. Recall that

so we can take as an upper bound for . Since each
node knows the entries in the -th row of (namely, the
weights 's with being its in-neighbor and ), it can then
knows . Thus, can be
computed in finite time by the maximum consensus algorithm
[32]. Furthermore, the nonzero entries in the -th column of
are available to node via communications from its out-neigh-
bors. So each node knows . Similarly,

can be computed in finite time by the max-
imum consensus algorithm. Then can be chosen to be any
value in , which ensures the convergence of the
distributed algorithm (15).

V. SIMULATIONS

In this section we provide two simulations to illustrate our
results. We consider a sensor network with 60 nodes, in which
two nodes are anchor nodes. Simulations are carried out for
both the noiseless case and noisy case. For the noisy case, the
measurement noise in (13) is assumed to satisfy satisfies

.
In the first simulation, we consider a directed sensing graph,

for which only 28 nodes are localizable as checked by Algo-
rithm 1. The configuration of the 60 nodes in the plane is shown
in Fig. 7(d), where red circles represent the anchor nodes, blue
stars represent the free nodes that are localizable, and green
squares correspond to the free nodes that are unlocalizable.
According to Theorem 3, the parameter in Algorithm 2 is

selected in the interval . By running Algorithm 2,
the estimated positions of the 28 localizable nodes for the noisy
case are shown in Fig. 7(a), (b), and (c), which plot three snap-
shots of at , and respectively.
Moreover, the ratio of the estimation error at time to the initial
estimation error, described by , is plotted in Fig. 8 for
both the noiseless and noisy case. From both the snapshots in
Fig. 7 and the estimation error ratio in Fig. 8, the estimations
converge to the true positions in the global coordinate frame.
But from Fig. 8, we can see that with the noisy measurements,
the convergence is slower than the one without noisy measure-
ments.
In the second simulation, we consider a directed sensing

graph with less edges, for which we check by Algorithm 1 that
only 21 free nodes are localizable. The true positions of these 21
localizable nodes are plotted as blue stars in Fig. 9(d). Running
Algorithm 2 with the same parameter , the estimated positions
of the 21 localizable nodes for the noisy case are shown in
Fig. 9(a), (b), and (c), which plot three snapshots of at

, and respectively. Moreover, the
ratio of the estimation error at time to the initial estimation
error is plotted in Fig. 10 for both the noiseless and noisy case.
It can be seen that the estimation converge to the true positions,
too. But with less number of nodes by comparing with the first
simulation, the convergence becomes faster.

VI. CONCLUSION
This paper concentrates on the self-localization problem

based on relative position measurements for sensor networks,
aiming to let each sensor node determine its unique position
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Fig. 7. Simulation I: Three snapshots and true positions. In these figures, the lines with arrows indicate the directed edges of the sensing graph. (a) The snapshot
of position estimation at . (b) The snapshot of position estimation at . (c) The snapshot of position estimation at . (d) True positions.

Fig. 8. Simulation I: The estimation error ratio with respect to .

using its relative position measurements about its neighbors
and the received estimates of the positions of its neighbors.
Assume that the relative position measurements are obtained
by sensor nodes in their own local coordinate frames that do
not share a common orientation. A necessary and sufficient
condition is presented for self-localizability of a sensor net-
work in terms of 2-reachability of the directed sensing graph.
Moreover, a distributed algorithm is developed to verify the
self-localizability of a sensor network. A rigorous analysis is

provided showing that the verification algorithm can terminate
with every node being able to find two disjoint paths from
the anchor nodes if and only if the whole sensor network is
self-localizable. Finally, a fully distributed self-localization
algorithm is developed to iteratively compute the position of
each node itself in the presence of measurement noises and
round-off errors. The iterative localization algorithm is linear
and thus ensures global convergence.
Many interesting problems arising from this research deserve

further investigation. Examples include optimal selection of an-
chors and Laplacian weights that lead to the fastest localization
iterations, distributed localization for mobile sensor networks,
finding joint-localizability conditions for sensor networks with
relative position measurements on local coordinate frames with
different orientations; devising distributed methods for self-lo-
calization or joint-localization by considering time-varying
communication networks that may or may not be of the same
topology as the sensing graph; and generalizing the work to the
localization problem in the 3D space.

APPENDIX A
Lemma 1: [33] Consider a directed graph , a

subset of nodes with , and a generic configura-
tion . Denote by a complex Laplacian of satisfying

. Denote by the sub-matrix of with the rows and
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Fig. 9. Simulation II: Three snapshots and true positions. (a) The snapshot of position estimation at . (b) The snapshot of position estimation at .
(c) The snapshot of position estimation at . (d) A network with 60 nodes and smaller communication radius.

Fig. 10. Simulation II: The estimation error ratio with respect to .

columns of corresponding to the nodes in crossed out. The
following statements are equivalent.
1) Every node in is 2-reachable from .
2) For almost all satisfying .
3) For almost all satisfying , the principal minors

of are distinct from zero.
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