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Asymptotic Optimality of the Maximum-Likelihood
Kalman Filter for Bayesian Tracking
With Multiple Nonlinear Sensors
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Abstract—Bayesian tracking is a general technique for state esti-
mation of nonlinear dynamic systems, but it suffers from the draw-
back of computational complexity. This paper is concerned with
a class of Wiener systems with multiple nonlinear sensors. Such
a system consists of a linear dynamic system followed by a set of
static nonlinear measurements. We study a maximum-likelihood
Kalman filtering (MLKF) techniquewhich involvesmaximum-like-
lihood estimation of the nonlinear measurements followed by clas-
sical Kalman filtering. This technique permits a distributed imple-
mentation of the Bayesian tracker and guarantees the boundedness
of the estimation error. The focus of this paper is to study the ex-
tent to which the MLKF technique approximates the theoretically
optimal Bayesian tracker.We provide conditions to guarantee that
this approximation becomes asymptotically exact as the number of
sensors becomes large. Two case studies are analyzed in detail.
Index Terms—Bayesian tracking, distributed estimation, max-

imum likelihood, sensor networks, Wiener systems.

I. INTRODUCTION

S ENSOR networks find applications in environmental,
health-care and weather monitoring, industrial process

monitoring and control, surveillance, smart grids and so on [1].
The development of algorithms for Bayesian tracking in sensor
networks has recently attracted a great deal of attention [2]–[5].
In a standard Bayesian tracking procedure, the measurements
from all sensors are combined to track the evolution of a set
of stochastic parameters (i.e., the state vector) for which a
dynamic model is available. In many applications, the model
describing the dynamic evolution of the state vector can be
represented or approximated by a linear state equation, but the
measurement equation of each sensor is often nonlinear. Such
a system is known as a Wiener system [6], [7]. Examples of
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Wiener systems include: measurements with coarse quanti-
zation (including on-off detectors as a special case) [8]–[10];
target tracking using distance sensing [11], [12], sensor network
localization using distance and/or angle measurements [13],
[14], the traditional state estimation for power systems using
nonlinear measurements, known as supervisory data acquisition
(SCADA) measurements [15], [16], and many others.
Many Bayesian tracking algorithms are available for general

nonlinear models [17]–[21]. These methods alternate between
two steps called prediction, which involves the state equation,
and update, which involves the measurement equation. A draw-
back of these methods is that they are either computationally ex-
pensive, or, in the case of the extended Kalman filter [22], inac-
curate to the extent that they can lead to instability.Motivated by
this, the authors of [11], [12] proposed a sub-optimal Bayesian
tracking technique which is particularly suitable for Wiener dy-
namical models. In this technique, which is based on intuition
and empirical observation, the prediction step is the same as the
one used in the Kalman filter, but the update step is replaced with
a maximum-likelihood (ML) estimator of the state, or a partial
state, using the nonlinear measurements. In this paper we refer
to this Bayesian tracking algorithm as the maximum-likelihood
Kalman filter (MLKF). A particular advantage of the MLKF is
its guaranteed stability, i.e., the state estimation error is guaran-
teed to be bounded. A computational drawback of this method is
that it requires solving a ML estimation problem at each update
step. However, the complexity of this task is largely simplified
by initializing the associated numerical optimization algorithm
with the outcome of the previous prediction step. In this way,
the MLKF offers a numerically efficient Bayesian tracking im-
plementation. In addition, in contrast to other Bayesian tracking
methods, the MLKF is suitable not only for centralized imple-
mentation but also for distributed implementation where the up-
date step is done using a distributed ML algorithm [5].
In this paper we provide conditions under which the MLKF

becomes asymptotically optimal in the sense of approaching
the theoretical Bayesian tracking solution, as the number
of sensors becomes large. This theoretical result provides a
rigorous justification of the intuition-motivated MLKF. Its im-
plication is to turn the MLKF into an advantageous alternative
to other Bayesian tracking algorithms, for applications using
a large number of sensors (each of which providing possibly
limited information about the state vector to be estimated). To
illustrate the application of our result, we show the asymptotic
optimality of the MLKF for two case studies. The first one
is the tracking of a moving target by a sensor network using
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the distance measurements from each sensor to the target.
The second case study is state estimation for a linear dynamic
system using measurements with coarse quantization. In both
cases, numerical experiments show that the difference between
the MLKF and an approximation to the theoretically optimal
Bayesian tracker (obtained using particle filtering), becomes
negligible even for a relatively small number of sensors.
The rest of the paper is organized as follows: In Section II we

describe the standard Bayesian tracker and the MLKF, fol-
lowed by the problem formulation. In Section III, we introduce
our main result on asymptotic optimality of the MLKF. In
Sections IV–V, we apply the result above to the aforementioned
two case studies. We give concluding remarks in Section VI.
The proof of our main result is contained in Appendix. A
shortened version of this work appears in the conference paper
[23].
Notation: The symbols and denote the sets of natural

and real numbers, respectively. Also, denotes the set of
functions whose -th power is absolutely integrable, de-
notes the space of continuous functions with domain in , and

denotes the space of functions with -th order contin-
uous derivatives. For a vector , denotes its 2-norm, and for
a matrix , denotes its operator (induced) norm. Conver-
gence with probability one is denoted by w.p.1. Themultivariate
normal probability distribution function of mean and covari-
ance matrix is denoted by , and its associated cumulative
distribution function by , i.e.,

For a function , denotes its -th order deriva-
tive. Finally, for , denotes its gradient and

its Hessian.

II. PROBLEM DESCRIPTION

Consider the following Wiener system with multiple mea-
surement sensors:

(1)
(2)
(3)

where is the state with initial value ,
is the linear output, is the measurement

of the -th sensor and is the process noise with dis-
tribution . The vector denotes the components of

which are involved in the non-linear measurements. Hence,
without loss of generality, it is assumed that has full row rank.
It is also assumed that and . To account for
measurement noises, the measuring functions are assumed
to be stochastic functions (i.e., for each , is a random
vector). The properties of the measuring functions will be dis-
cussed later. In the sequel, we will denote

1) Bayesian Tracker: The well-known Bayesian tracker is a
general technique for optimal state estimation; see, e.g., [19]. It
is a recursive procedure for computing (or tracking) the condi-
tional probability density function , i.e., the prob-
ability density function of conditioned on the prior distri-
bution of and measurements . The procedure is as
follows:

Bayesian Tracking Procedure: Set
. Then, for each do the following:

1) Update:

(4)

2) Prediction:

(5)

In the Update step, the term is given by the
previous iteration and the term can be com-
puted using the fact that integrates to one, i.e.,

(6)

The key term to be studied is , which is computed
using the stochastic characteristics of the measuring functions.
Let

be the likelihood function of , given . In the event
that the measurements are linear on , with additive
Gaussian noises, it is clear that, is Gaussian. This leads
to the well-known Kalman filter [22]. In the general case, the
functions may not be Gaussian and linear in , and con-
sequently, the Bayesian tracker is difficult to evaluate. The pur-
pose of this paper is to study the conditions under which the
functions are approximately Gaussian, i.e.,

(7)

for some , and ,
which depend on (Notice that the value of can be
inferred from (6)). If so, the Bayesian tracking procedure can be
approximated by one similar to a Kalman filter. More precisely,
from (4) and (7), it follows that

(8)

with

(9)

(10)
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and

(11)

with

(12)
(13)

In principle, we would adopt a Gaussian approximation in
which is taken as the argument that maximizes .
However, depending on the matrix , it may occur that
is maximized at an infinite set of points. To go around this, we
define the likelihood function of , given , i.e.,

(14)

and its (normalized) log-likelihood function

Ξ (15)

Suppose that

(16)

for some and . Then, (7) holds

(17)

(18)

where denotes the Moore-Penrose pseudoinverse of [24],
and the last equality follows because has full row rank.
We then adopt the Gaussian approximation yield by

(19)–(20), and obtain the following algorithm:

Maximum Likelihood Kalman Filter (MLKF): Set
and . Then, for each , do the following:

1) ML estimation: Choose

Ξ (19)

Ξ (20)

The numerical optimization algorithm used to solve (19)
is initialized by taking .

2) Update:

with (9)–(10).
3) Prediction:

with (12)–(13).

Remark 1: Notice that, in view of (17)–(18), the update step
(9)–(10) can be written as

Hence, we can interpret it as the Kalman filter update, in infor-
mation form [22, Section 6.3] when the output equation is given
by

where . Hence, the same step can be ex-
pressed as a standard (i.e., covariance form) Kalman filter step,
as follows

with

2) Problem Formulation: The question we try to answer in
this paper is when theMLKF approaches to the Bayesian tracker
as the number of sensors becomes large. This is equivalent to ask
whether the approximate equality (16) becomes asymptotically
exact as . In the remainder of this work we will be
concerned in finding conditions under which this property holds.

III. MAIN RESULT
In this section, we provide conditions under which the ap-

proximation (16) with (19)–(20) becomes asymptotically exact,
as the number of measurements tends to infinity. Since the
study of the approximation (16) is independent of the time index
, we drop this index to simplify the notation. Also, we denote
the true value of by .

A. Main Theorem
Our aim is to show that the sequence of likelihood functions
, , given by (14), converges to a Gaussian func-

tion. We remark that this property does not follow from the
well-known central limit theorem, although it may be tempting
to draw a parallel between them. Notice that depends on
the random observations . Hence,

, , is a sequence of random functions, and our goal
is to show that the desired convergence holds w.p.1. The first
step towards this end is given in Lemma 2, which provides con-
ditions to guarantee that the point-wise limit of a sequence of de-
terministic functions of one variable (i.e., from to ) equals a
normalized Gaussian function. Its proof is partially based on the
proof of the central limit theorem of Lindeberg-Feller [25, Th.
15.43]. Then, Corollary 3 generalizes this result for sequences
of deterministic functions of many variables (i.e., from to
). Finally, the desired result is stated in Theorem 6.
Lemma 2: Let , , and

. If
1) and ;
2) for all ;
3) ;
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4) uniformly on any compact set
;

then, for any ,

Corollary 3: Let , . If, for each ,
with , the sequence of functions ,

, defined by , satisfies the conditions of
Lemma 2, then, for any ,

We now introduce the definitions of strong convergence and
strong uniform convergence [26, S 21.2]. They are used in the
statement of Theorem 6.
Definition 4: A sequence , , of random variables

is said to be strongly convergent (SC) if exists
and

(21)

Definition 5: Let . A sequence of stochastic functions
, , is said to be continuous and strongly

uniformly convergent (CSUC) in if, w.p.1, every is a con-
tinuous function on , and

for some deterministic function .
We are now ready to state our main result.
Theorem 6: Let Ξ , , be a sequence of

stochastic functions, and and be defined as in (19) and
(20), respectively. Suppose that the following conditions hold:

(G1) there exists a compact connected set , such
that Ξ is twice continuously differentiable on and

Ξ is CSUC in ;
(G2) Ξ , Ξ and Ξ are SC, for all
;

(G3) there exists (i.e., the interior of ex-
cluding its boundary), such that ;
(G4) Ξ , where1

Ξ Ξ (22)

Then,

(23)
Remark 7: Theorem 6 states that, under the conditions (G1)-

(G4),

(24)

1Notice that (G2) guarantees the existence of the limit in (22), and (G1), to-
gether with Lemma 8-2) guarantees that Ξ is twice differentiable on .

for large . That is, the approximation (16), with (19)–(20) be-
comes valid as becomes large, and therefore, so does the
MLKF.
The result in Theorem 6 requires the technical conditions

(G1)-(G4). These conditions follow the style used in other
classical results in asymptotic statistics (e.g., conditions to
guarantee strong consistency [27, Property 24.2], [28, Theorem
3.3], [29, Theorem 2.1] and asymptotic normality [27, Property
24.16], [28, Theorem 5.1], [29, Theorem 3.1] of extremum
estimators). The use of these conditions permit stating our
result in a very general form, making it applicable to a large
class of measurement functions, modeling nonlinearities and
measurement errors. For this reason, the conditions are quite
technically involved. The disadvantage of this generality is that
some technical effort may be required to verify these conditions
for a given problem setting. In the next three subsections,
we describe some technical tools which can be used to help
verify these conditions. We end this section by introducing, in
Subsection III-E , an example where the convergence in (23)
fails, because Conditions (G1)-(G4) are not satisfied.

B. About Condition (G1)

The purpose here is of twofold. We first state in Lemma (8) a
key property of CSUC sequences. We then introduce in Lemma
10 amore verifiable condition to guarantee the CSUC condition,
which is required by condition (G1).
Lemma 8: Let be compact and connected, and

, , be a sequence of differentiable stochastic
functions. If and are SC for every , and

is CSUC, then
1) is CSUC;
2)
The proof of Lemma 8 requires the following lemma.
Lemma 9: (Immediate consequence of [30, Th. 7.17]). Let

be compact and connected, and , ,
be a sequence of differentiable functions. If converges
at some point and converges uniformly on ,
then converges uniformly on , and

Proof of Lemma 8: Fix . Let be the event
(i.e., the set on the underlying probability space) where the
SC condition on holds, and be the event where the
CSUC condition on holds. Claim 1 follows since the
conditions of Lemma 9 hold on the event ,
which has probability one. Also, since is SC,
there exists an event , having probability one, on which

, for any .
Hence, the same condition must hold on the event

. Then, on the event , we have

where (a) follows from Lemma 9. Then, Claim 2 follows since
the event has probability one.



4506 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 17, SEPTEMBER 1, 2015

The following result can be used for guaranteeing the CSUC
condition.
Lemma 10: Let be compact and , ,

be a sequence of differentiable functions. If is SC for
every , and there exists such that

(25)

then, , , is CSUC on .
Proof: Let and

. We have

Choose and a realization of satisfying (25). We have
that

Also, for all ,

Hence

Then,

(26)

Since the event formed by realizations satisfying (26) has prob-
ability one, the sequence , , is strongly stochastically
equicontinuous [26, eq. (21.43)]. Also, .
Hence, from [26, Th. 21.8], it is strongly uniformly conver-
gent, and therefore so is . Finally, the existence of the gradient
implies that is continuous on , for each , and the re-
sult follows.

C. About Condition (G4)
Definition 11: The Kullback-Leibler distance between the

probability distributions and is defined by [31]
Ξ
Ξ

Ξ Ξ

We then have the following result.
Lemma 12: If Condition (G1) holds, and

(27)

for all , then Condition (G4) holds.

Proof: Let Ξ Ξ . We have

From [31, Th. 2.6.3], , and clearly . Then,
from (27), it follows that Ξ has a unique maximum in at
. Also, from Condition (G1), two applications of Lemma 8

gives that Ξ is twice continuously differential, and Condition
(G4) follows.

D. About Condition (G3)
Condition (G3) of Theorem 6 requires that converges

w.p.1 to the true value . This kind of convergence is called
strong consistency. Conditions to guarantee strong consistency
typically require that the maximization problem used to find
is constrained to a known compact set [27, Property 24.2], [29,
Th. 2.1]. However, this assumption is unsuitable in our context
because can be anywhere in . To go around this difficulty,
we introduce the following variant of the strong consistency re-
sults cited above.
Lemma 13: Suppose that the following condition holds

w.p.1: there exists a compact set (which may depend
on the realization of Ξ ), with , such that, on ,
Ξ is continuous and converges uniformly, and

Ξ (28)

Ξ Ξ (29)

then, condition (G3) holds. In the above, is the complement
set of in .

Proof: Consider a realization of Ξ , together with its asso-
ciated set , satisfying (28)–(29). Since Ξ is continuous and
converges uniformly on , we have that Ξ is continuous in .
Let be an open set with . We have that
is closed and contained in . Hence, there exists
such that,

Ξ Ξ (30)

Let Ξ Ξ and Ξ
Ξ . From (28)–(29), we have that

. Choose . From the uniform
convergence of Ξ , we can choose such that, for all

,

Ξ Ξ

Ξ Ξ (31)

Then, for all , . Hence, it follows from (31)
that, for all , see the equation at the bottom of the next
page. Then, in view of (30), , for all . Since
this holds for any open set containing , we have that, for all
realization of Ξ satisfying (10), . And the
result follows since the event formed by all those realizations
has probability one.
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E. Example on the Necessity of the Conditions on Theorem 6
Suppose that, for each ,

where and , . Also, , , are
independent and identically distributed random variables with

( denotes the uniform distribution on the
interval ), i.e., the probability distribution of is

otherwise.

For each , we have

Hence, the function Ξ , evaluates to
, inside a polygon (once is large enough so that

) and to zero outside it. Let
denote the support of Ξ , determined by the interior of the
aforementioned polygon. Different realizations of Ξ have
their supports on different , but it is clear that no scaled
version of Ξ converges to a Gaussian function. This due to
the fact that Ξ does not satisfy the conditions of Theorem
6. More precisely, for each realization Ξ , , the
sequence , is decreasing (i.e., ). Also,
it is straightforward to see that

where as above, denotes the true value of . It follows that it
is not possible to choose a set , including a neighborhood of
, and on which Ξ is twice continuously differentiable,

for all , and w.p.1. Hence, Conditions (G1) and G3
cannot be simultaneously satisfied.

IV. CASE STUDY I: TARGET TRACKING IN SENSOR NETWORKS
USING DISTANCE MEASUREMENTS

To illustrate the use of Theorem 6, we consider a network of
sensors tracking the position of a moving target. The tracking
is done by measuring the distance between the target and each
sensor.

A. Problem Description
We have a set of sensor nodes, located at the positions

, , inside a bounded region

, and a moving target located at . The
system is described by (1)–(3), with and

where

(32)

is the squared distance between Node and the target, and
. Also, and are statistically independent

whenever . Again, for notational simplicity, we drop the
dependence on .
We then have the following result, which implies, via Remark

7, that the MLKF becomes asymptotically exact, as the number
of measurements tends to infinity.
Theorem 14: If

(33)

is minimized at the single point , then (23) holds.
Proof: We need to show that the conditions in Theorem

6 are satisfied. Due to the statistical independence of measure-
ments from different sensors, we have

with

(34)

Let Ξ and Ξ be defined as in (15) and (22), respectively.
Let denote the true value of , and be a compact set
with . We split the rest of the argument in five steps:
Step 1: Step 1: We have

(35)

Then,

Hence,

Ξ (36)

Ξ Ξ Ξ Ξ Ξ
Ξ Ξ Ξ
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and Condition (G4) follows from (33), since
is twice continuously differentiable.

Step 2: Step 2: From (35), we easily obtain

and

(37)

Since has a normal distribution, it is straight-
forward to verify that, for a all , ,

and have uniformly
bounded second moments. Then, from Rajchman's
strong law of large numbers [32, Th. 5.1.2], Ξ ,
Ξ and Ξ are SC for every ,

and (G2) follows.
Step 3: Step 3: From (37), we obtain

(38)

with if and 0 otherwise. It fol-
lows from (38) that there exists such
that, .

Hence, Ξ .
Then, Condition (G1) follows Lemma 10.

Step 4: Step 4: from (33) and (36), the function Ξ is max-
imized at the single point . Let

be a disc with center and ra-
dius , such that . Let
and be a disc
concentric with and larger than . From Conditions
(G1) and (G2), it follows that Ξ is CSUC with
limit Ξ . Hence, for every , w.p.1., we can
choose such that Ξ Ξ , for all

and . Then, in order to satisfy
the conditions of Lemma 13, we need to show that
we can choose and such that Ξ
Ξ , for all .

Fix . Suppose that there exists such that

Ξ Ξ (39)

Then, there must exist such that

Ξ (40)

Let . For any , we can then choose
sufficiently large so that . Since

Ξ and , it follows that
there must exist at least values , , such that

, for otherwise Ξ Ξ
cannot be satisfied. Since all nodes are inside , this implies
that there exists Ξ such that , for all

. Then, we can choose such that
Ξ . Since the same holds for

Fig. 1. Tracking error of the particle filter vs. number of particles.

every satisfying (40), then (39) cannot be satisfied. Hence we
can use Lemma 13 and Condition (G3) follows.

B. Numerical Experiments
In this section we compare the performance of the MLKF,

with the one obtained using the Bayesian tracker (4)–(5), when
applied to the target tracking system described in Section IV-A.
Here, , and we use ,
and . Each sensor is placed at a uniform distributed
randomly chosen location within the square region

.
To obtain an approximation of the performance of the

Bayesian tracker, we use an importance-sampling particle filter
[19]. The accuracy of this filter depends on the number of
particles used. In order to choose a number of particles such
that the approximation error is negligible, we plot in Fig. 1 the
relative estimation error obtained using the particle filter
with different number of particles. This error is defined by

(41)

where denotes the estimated state, and we use
samples. We see that the improvement obtained using more than
150 particles is rather small. Hence, we use this value in our
experiments.
In Fig. 2 we show the relative estimation errors obtained using

the particle filter and the MLKF, as a function of the number of
nodes. Again, we use samples. We see that the dif-
ference in performance between both filters becomes negligible
when the number of nodes is greater than or equal to 20. This
is due to the fact that, for these values of , the difference be-
tween the LF (14) and its Gaussian approximation (24) is very
small.
To show how the accuracy of the Gaussian approximation to

the LF increases with , we show in Fig. 3 the quadratic error
between the LF and its Gaussian approximation, for different

valaues of . This error is defined by

(42)

with
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Fig. 2. Tracking error of the particle filter and the MLKF.

Fig. 3. Quadratic error between the LF and its Gaussian approximation for dif-
ferent number of nodes.

Fig. 4. LF and its Gaussian approximation (GA) for different number of nodes.

In evaluating this error, we use the true value , and for
each , we use 1000 Monte Carlo runs. Fig. 4 shows examples
of both functions, for equal to 3, 6 and 20.
An example of the evolution of the first component of

the state , together with its estimates obtained using particle
filtering and MLKF, is shown in Fig. 5. In this comparison we
use nodes. We see how both estimates closely resemble
each other.

C. Complexity Analysis
As mentioned in Section I, one of the advantages of the

MLKF over particle filters is that it offers major computational
savings. To illustrate this point, we do a complexity compar-
ison based on the number of multiplications per time-step.
We assume that solving an linear system of equations,
via Gaussian elimination, requires multiplications. Also,
we use to denote the number of multiplications required to

Fig. 5. Evolution of the first component of the state , and its two
estimates obtained using particle filtering and MLKF, for nodes.

evaluate an elementary function (i.e., , , etc.) and to
denote those required for generating a pseudo-random number.
We use the setting in Fig. 5, i.e., nodes and 150 parti-
cles. In order to solve the optimization problem required to find
the ML estimate (19), we use the NLopt [33] implementation
(NLOPT_LD_VAR2) of the shifted limited-memory variable
metric method described in [34]. This requires, on average,
3.781 function and gradient evaluations per time-step. Then,
the MLKF requires 463.6 multiplications per time-step, which
are calculated as follows:
• ML estimate (3.781 iterations on average, 60
mult. per likelihood function evaluation, 21 mult. per gra-
dient evaluation).

• Hessian evaluation .
• Prediction step (4 mult. for computing the mean and
16 for the covariance).

• Update step (5.333 for two Gaussian elimination
steps, 4 for computing the mean and 8 for the covariance).

On the other hand, the particle filter requires
multiplications, which are calculated as follows:

• Update (150 particles, each particle 60
mult. for the likelihood function).

• Prediction (150 particles, 4 mult. per par-
ticle for random number generation).

• Normalization .
• Resampling .

V. CASE STUDY II: BAYESIAN TRACKING IN SENSOR
NETWORKS USING QUANTIZED MEASUREMENTS

As a second example we consider an array of sensors mea-
suring quantized linear combinations of a common random
vector.

A. Problem Description
Consider the system (1)–(3) with and

(43)

where is a vector and . The map
with is a -level quantizer defined

by , with
. We also let and be statistically independent whenever

.
As in Section IV, we provide the following result, stating the

asymptotic optimality of the MLKF.
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Theorem 15: For the system (1)–(3) with (43), if
and

(44)

then (23) holds.
Proof: As before, we use to denote the true value of .

Again, we need to show that satisfies the
conditions of Theorem 6. We have

with

Ξ Ξ (45)

We also define Ξ and Ξ as in the proof of Theorem 15.
We split the rest of the argument in five steps:
Step 1: Step 1: Let . For each , define

(46)

which is clearly independent of . We then have

and

(47)

Let

From (47) we obtain

(48)

Now, it is easy to check that , for all
. Also, for every , there exists

such that, whenever . Let
. In view of (48), it follows

that , for all . We also have
that and . Then, since
is differentiable, we have . We thus
obtain that, for ,

Let

For all where ,
we have . Then, for all ,

Also, since ,
for any and (i.e., it is

monotonously increasing along rays departing from
). Hence, Condition (G4) follows from (44) and

Lemma 12.
Step 2: Step 2: Fix . We have that , ,

are independent random variables. Hence, so are
, and . If ,

from (46), we have

(49)

Then, it follows immediately that ,
and have uniformly

bounded second moments. Then, Condition (G2)
follow by the same argument as the one in Theorem
15.

Step 3: Step 3: If , from (49) we obtain

Let be a compact set. Since
, it is straightforward to verify that there exists
such that

(50)

Then, Condition (G1) follows from Lemma 10, and
is valid for any compact connected set with

.
Step 4: Step 4: Let . Since Ξ

is CSUC on , from (G4), there exist and
, such that, w.p.1, and for all and

all in the boundary of , Ξ Ξ .
Also, from (45), the functions are concave,
hence so is Ξ . Then Ξ satisfies (29) and
(G3) follows from Lemma 13.

B. Numerical Experiments

As in Section IV-B, we compare the performances of the
MLKF and a particle filter approximating the Bayesian tracking
recursions (4)–(5), when tracking the state of the quantized
system described in Section V-A. We use ,
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Fig. 6. State estimation error of the particle filter vs. number of particles.

Fig. 7. State estimation error of the particle filter and the MLKF.

, and . Also, is a one-bit
quantizer, i.e.,

Ξ Ξ
Ξ

and each -dimensional row vector is randomly chosen as
follows

with , , , being drawn from
the distribution , such that .
As in Section IV-B, we use an importance-sampling particle

filter [19]. Its relative estimation error , evaluated as in (41),
as a function of the number of particles, is shown in Fig. 6. In
view of this plot, we choose 200 particles for our experiments.
The tracking errors obtained using the particle filter and the

MLKF, as a function of the number of nodes, are shown in Fig. 7.
We see that the difference in performance becomes negligible
when there are more than 20 nodes.
The quadratic difference, measured as in (42), for different

values of , between the LF and its Gaussian approximation,
is shown in Fig. 8. Again, we use as the true value and
1000Monte Carlo runs. Examples of both functions for equal
to 6, 12 and 18 are given in Fig. 9.
An example of the evolution of the first component of

the target, together with its estimates, is shown in Fig. 10.

Fig. 8. Quadratic error between the LF and its Gaussian approximation for dif-
ferent number of nodes.

Fig. 9. LF and its Gaussian approximation (GA) for different number of nodes.

Fig. 10. Evolution of the first component of the state , and its two
estimates obtained using particle filtering and MLKF, for nodes.

C. Complexity Analysis
In this example, and using the algorithm mentioned in

Section IV-B, solving the optimization problem (19) requires
5.386 function and gradient evaluations per time-step. Then,
repeating the complexity analysis done in Section IV-B, we
obtain that the MLKF requires multiplications
per time-step, calculated as follows:
• ML estimate (5.386 iterations on average,

mult. per likelihood function evaluation,
mult. per gradient evaluation).

• Hessian evaluation .
• Prediction step (9 mult. for computing the mean and
54 for the covariance).

• Update step (27 for three Gaussian elimination steps,
9 for computing the mean and 27 for the covariance).

The particle filter instead requires
multiplications, calculated as follows:
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• Update (200 particles, each particle
60 mult. for the likelihood function).

• Prediction (200 particles, 9 mult. per par-
ticle for random number generation).

• Normalization .
• Resampling .

VI. CONCLUSION
We have provided a set of conditions to guarantee that

the MLKF converges to the theoretically optimal Bayesian
tracking solution, as the number of sensors becomes large. The
implication of this result is that, in tracking applications using a
large number of sensors, the computational advantages offered
by the MLKF, as well as the guarantee for the stability of the
tracker, and the possibility of a distributed implementation,
come without noticeable performance detriment. We have
applied our result to two case studies, and presented exper-
imental results confirming our theoretical claim. We remark
that although the asymptotic optimality conditions require the
number of sensors approaching to infinity, in practice only a
few sensors are sufficient to ensure that the difference between
the MLKF and the Bayesian tracker becomes negligible, as we
have demonstrated via simulations in the two case studies.

APPENDIX

We need the following additional notation.
Notation: The Fourier transform of the function is denoted

by . To simplify the notation, we use the following unconven-
tional definition of the Fourier transform pair

Notice that the factor usually appears in the inverse Fourier
transform formula.

Proof of Lemma 2: We split the proof in steps:
Step 1: Step 1: Let and .

Choose and such that ,
where denotes the indicator function of the set
, and denotes the complement of the set .

In view of Condition 4, we can choose
such that . Let

. Then, for any ,

Hence,

Now, since , from Parseval's iden-
tity, . Also, , for all

. Then,

(51)

Step 2: Step 2: We have

(52)

where

,

.

From [25, Lemma 15.47], for every ,
is continuous and bounded, hence

. Also , hence
.

Step 3: Step 3: From Condition 2, . Then,
the function is in

, hence so are , , and
. Then, using Condition 1, we obtain,

Then, since , from (51),

(53)

Step 4: Step 4: For all , with , we have

From (53), . Then,

and the result follows from (53).

Proof of Corollary (3): Since , , satisfies the
conditions of Lemma 2, we have
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Now, since the above holds for any , it follows that, for
any ,

In order to show Theorem 6, we need the following two
lemmas.
Lemma 16: Let and , , be CSUC

to . If , then

Proof: The result follows since the following holds in an
event with probability one. From [30, Th. 7.12], is continuous.
Then,

Lemma 17: Let . Then

Proof: It follows immediately from

We can now state the proof of Theorem 6.
Proof of Theorem 6: We split the proof in steps:

Step 1: Step 1: Condition (G1) states that

Ξ (54)

Then, (G2) and two applications of Lemma 8-1) give

Ξ (55)
Ξ (56)

Step 2: Step 2: From (G3), (54), Lemma 16 and Lemma 8-
(2),

Ξ

Ξ (57)

Then, from (G4),

(58)

and therefore, for any ,

(59)

Step 3: Step 3: From (G3), (59) and (56) satisfy the condi-
tions of Lemma 16. Then,

Ξ Ξ (60)

Ξ Ξ (61)

Replacing (56) by (55) in the argument above we
obtain

Ξ Ξ (62)

and using (54) instead

Ξ Ξ (63)

Step 4: Step 4: A consequence of the continuous extension
theorem [35, Th. 5.1] is that we can choose a map

such that the following map

,
,

is continuous and

(64)

Let be the unique map satisfying

(65)

and

Ξ

Ξ Ξ

Let also

and . From Lemma (17), we
have

(66)
with

Ξ Ξ (67)

and

Ξ (68)

and

Ξ (69)

Step 5: Step 5: From (60), (61) and (67), since Ξ Ξ ,
on ,

Hence,

(70)
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Also, from (62) and (68)

(71)

and from (63) and (69)

Ξ Ξ Ξ
(72)

Hence, from (66), (70)–(72),

(73)

Step 6: Step 6: From Lemma (17) we have

Ξ Ξ
Ξ Ξ

Then, from (54)–(56), it follows that, w.p.1,

(74)

We then have,

Ξ

From (60), (57), (64) and (74) w.p.1, there exists
such that, for all ,

(75)
(76)

Step 7: Step 7: Let be compact and
. From (G3) and (58),

w.p.1, there exists such that, , for
all . Then, from (54)–(56) and (66),

(77)

Step 8: Step 8: Our next step is to show that , ,
satisfies the conditions of Lemma 2. We have that

, and in view of (65),

Then, satisfies Condition 1 of Lemma 2. So
we need to show that satisfies
Conditions 2–4. We have

Hence, from (75), , for all ,
and Condition 2 of Lemma 2 follows by a simple
substitution making become the initial term in

the sequence. Also, Condition 3 follows from (76)
and Condition 4 from (73) and (77).

Step 9: Step 9: Since , , satisfies the conditions
of Lemma 2, from Corollary 3 it follows that, for
any ,

from where the result follows by substituting (65) in
the equation above.
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