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Distributed Localization for 2-D Sensor Networks
With Bearing-Only Measurements Under

Switching Topologies
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Abstract—This paper investigates the problem of bearing mea-
surement based distributed localization for sensor networks that
are undirected and switching. Each node holds a local coordinate
system with no knowledge about the global coordinate system and
measures the bearing angle information about its neighbors in its
local coordinate system. A novel scheme for localization is devel-
oped using a complex Laplacian to overcome the challenges due to
the absence of a global coordinate system and the presence of topol-
ogy switching in communication. First, by using bearing-only mea-
surements, an algorithm is proposed to establish linear equation
constraints for the coordinates of sensor nodes in the global coor-
dinate frame. The main idea is that each node uses its own bearing
and its neighbors’ bearing information to construct a similar con-
figuration, though it is not able to recover the true configuration by
using only bearing measurements. Second, a distributed iterative
algorithm is proposed such that all the sensor nodes can coopera-
tively find the true coordinates of themselves. It is shown that the
algorithm exponentially converges, provided that the communica-
tion network jointly satisfies certain connectivity properties. The
simulation results validate our proposed algorithm.

Index Terms—Bearing measurement, distributed localization,
switching topology.

I. INTRODUCTION

LOCALIZATION problems can be found in many appli-
cations such as tracking a target, collecting sensor data

with location information, intelligent home systems and so on
[1]–[3]. Due to the advantages of distributed localization in re-
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ducing the network resource consumption and fully utilizing the
computation ability of each sensor node, numerous distributed
localization schemes have been developed using different kinds
of local measurement information in recent years. Three kinds
of measurements are often adopted, namely, distance measure-
ments [4]–[10], bearing measurements [11]–[17] and relative
position measurements [18]–[22].

Bearing-only distributed localization has received grow-
ing interest due to its potential applications for vision-based
systems. Distributed localization problems with bearing-only
measurements can be described as follows. In a large sensor
network, there are several sensor nodes called anchors, which
can obtain their own absolute position information in a global
coordinate system through some equipment such as GPS. Other
sensor nodes are to be localized. They can acquire bearing-only
measurements of neighboring nodes. The objective is to de-
sign a distributed position estimation algorithm, by which each
sensor node can use locally available information to iteratively
determine its own coordinate in the global coordinate system.

For the bearing-only localization problem, a fundamental
problem is whether all the nodes in a sensor network can lo-
calize themselves using bearing-only measurements. From this
perspective, it has been shown in [12], [15], [23] that if a 2-D
network is infinitesimally bearing rigid with at least two anchor
nodes, then the network is localizable. Recently, [17] extends
this problem to d-dimensional spaces and shows that if every
infinitesimal bearing motion of the network involves at least
one anchor, then the network is localizable. However, all these
works focus on sensor networks under fixed communication
topologies. In practice, communications between sensor nodes
may fail temporarily or even permanently, which means that a
sensor node may not receive its neighbors’ estimates temporar-
ily or even permanently. So the communication topologies in
the localization process may switch over time. Under such a
setup, it is remaining open results on whether a sensor network
is localizable in a distributed manner.

Moreover, for a large-scale network, all the sensor nodes may
not agree on a common direction without extra equipments such
as compass. That is, the sensor nodes may not have the knowl-
edge about the orientation of the global coordinate system and
thus they can only measure the bearing angles in their own local
frames. However, in the literature such as [15] and [17], it is
often assumed that all the sensor nodes know the orientation of
the global coordinate system in order to make their distributed
localization algorithms work. More specifically, consider a sen-
sor network with the estimate of each node i’s coordinate in
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the global coordinate system denoted by p̂i . The basic idea in
[13]–[17] is that each node i updates its estimate to drive
vT

ij (p̂j − p̂i) to zero, where vij is a vector derived from the
measured bearing angles, which is perpendicular to pj − pi .
With this method, vij must be obtained with respect to the
global coordinate frame. Thus a common orientation is needed
for every node. To address the issue caused by different frame
orientations, algorithms for asymptotically aligning the orien-
tations of the local frames with the one of the global frame
are required. One way for orientation alignment is a sequen-
tial method, which begins with an anchor node and adjusts the
orientation of other nodes one by one or group by group [13],
[14]. But the drawback is that it may accumulate the orienta-
tion alignment errors along the sequence of propagation. An
alternative way is to utilize a simultaneous orientation consen-
sus law for distributed bearing-only localization with different
frame orientations [16]. Nevertheless, an assumption is needed,
i.e., initial angles between any two local frames should be less
than π. This assumption may not be satisfied unless the nodes
are equipped with some extra sensors. Moreover, if the anchors
only know their own absolute locations and have no access to
the global orientation, then all these methods no longer work.

In this paper, we aim to overcome these difficulties and pro-
vide a novel scheme for bearing measurement based distributed
localization. That is to say, a sensor network under consider-
ation does not share a common sense of north and moreover
the communication topology between the nodes switches over
time. To address the localization problem under such a scenario,
our first effort is to establish linear equation constraints for the
coordinates of sensor nodes in the global coordinate frame by
using only local bearing measurements and local information
exchange in local coordinate systems. Our main idea is to let
each node use its own bearing and its neighbors’ bearing in-
formation to construct a similar configuration, although it is not
able to recover the true configuration by using bearing-only mea-
surements. Then linear equation constraints can be established
for the absolute coordinates by using the similarity property of
similar configurations, which overcomes the challenge due to
the absence of a global coordinate system. After obtaining the
linear equation constraints, the remaining challenge lies in the
aspect of finding an effective distributed algorithm under switch-
ing communication topology to ensure that all sensor nodes can
cooperatively solve the linear equations to get the absolute co-
ordinates of themselves. To overcome this difficulty, a Hermi-
tian matrix based iteration algorithm is proposed. Moreover, the
idea similar to persistent excitation is introduced, which plays
a key role in establishing convergence under switching com-
munication topologies. For the localization scheme proposed
in this paper, a sufficient graphical condition is also provided,
which requires each node to have at least two neighbors that
are mutually neighbors. Though the condition is necessary if a
node has exactly two neighbors, it may not be necessary if a
node has more than two neighbors. However, from the practical
viewpoint, if the sensor nodes have the ability to increase their
communication range, it may become always possible to make
the neighbors of every node also mutual neighbors.

To sum up, the main contributions of the paper are as
follows. (i) A distributed localization algorithm is proposed

Fig. 1. (a) Node 3 is 2-reachable from {1, 2}. (b) Node 3 is not 2-reachable
from {1, 2}.

under switching topologies. The algorithm requires no common
orientation for local frames, but ensures globally exponential
convergence. (ii) The distributed localization algorithm relies
on the establishment of linear equation constraints to construct
a complex Laplacian, which is novel. (iii) Graphical conditions
are obtained for switching topologies such that under the pro-
posed algorithm the estimates will converge to the true locations
exponentially.

The rest of the paper is organized as follows. Section II pro-
vides preliminaries to graph theory and formulates the localiza-
tion problem. Section III develops a new scheme for establishing
linear equation constraints about the absolute locations of the
sensor nodes. To make it clearer for understanding the basic idea,
fixed topologies are considered in Section IV. Then Section V
presents a distributed algorithm and provides convergence anal-
ysis for switching topologies. Simulation examples are given in
Section VI and conclusions are drawn in Section VII.

Notation: C represents the set of complex numbers. ι =√
−1 denotes the imaginary unit. 1n denotes the n-dimensional

vector of ones and In denotes the identity matrix of order n. For
a complex number c, |c| and c̄ represent the modulus and the
conjugate respectively. For a complex vector or matrix A, AT

and AH denote the transpose and conjugate transpose respec-
tively. rank(A) represents the rank of A.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

An undirected graph G = (V, E) consists of a node set V
of elements called nodes and an edge set E ⊆ V × V of pairs
of nodes called edges. For each node i ∈ V , let Ni = {j ∈ V :
(j, i) ∈ E} denote the set of its neighbors.

For a graph G, a complex Laplacian matrix L ∈ Cn×n is
defined as follows:

L(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

−wij if i �= j and j ∈ Ni

0 if i �= j and j �∈ Ni∑

k∈Ni

wik if i = j

where wij �= 0 is called the complex weight associated with
edge (j, i).

For a graph G = (V, E), a node v is said to be 2-reachable
from a set R ⊂ V if there exists a path from a node in R to
v after removing any other one node except v. Consider for
example the graphs in Fig. 1. In Fig. 1(a), let R = {1, 2} and it
is known that node 3 is 2-reachable from R as after removing
any other one node we are still able to find a path from a node
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Fig. 2. A dynamic graph G(k), for which node 3 is jointly 2-reachable from
{1, 2}.

in R to node 3. In Fig. 1(b), again let R = {1, 2}, but node 3 is
not 2-reachable from the set R as if we remove node 4, there is
no path from any node in R to node 3.

A dynamic graph G(k) = (V(k), E(k)) represents a graph
whose node set and edge set change over time. For a time
interval [k1 , k2 ] the union graph is defined as G([k1 , k2 ]) =
(
⋃

k∈[k1 ,k2 ] V(k),
⋃

k∈[k1 ,k2 ] E(k)). A node v is called jointly
2-reachable from R if there exists K > 0 such that for every
k, v is 2-reachable from R in the union graph G([k, k + K)).
An example is given in Fig. 2, for which node 3 is jointly 2-
reachable from the set {1, 2} since we can take K = 2 and
for any k the union graph G([k, k + K)) = G1 ∪ G2 , for which
node 3 is 2-reachable from {1, 2}.

A graph G is said to be connected if there is a path between
every pair of nodes. A dynamic graph G(k) is said to be jointly
connected if there exists K > 0 such that for every k, the union
graph G([k, k + K)) is connected.

For a graph G = (V, E) and a set R ⊂ V , the R-induced
graph in G is defined as Π = (R, E ∩ R×R).

A configuration of n nodes in C is defined by their coor-
dinates in C, denoted as p = [p1 , . . . , pn ]T ∈ Cn , where each
pi ∈ C for 1 ≤ i ≤ n. A framework is a graphG equipped with a
configuration p, denoted as F = (G, p). Two frameworks (G, p)
and (G, q) are called similar if

pi − pj = γeιθ (qi − qj ), ∀i, j ∈ V, (1)

where γ > 0 is a scaling factor and θ represents a rotation, and
we write (G, q) ∼ (G, p).

For a square matrix E ∈ Cn×n , the associated graph G(E)
consists of n nodes labeled 1 through n where an edge leads
from node j to node i (i �= j) if and only if the (i, j)th entry of
E is nonzero.

B. Problem Formulation

We consider a sensor network consisting of a set of anchor
nodes, whose absolute positions are already known, and sensor
nodes, which are to be localized. Suppose each sensor node can
acquire the bearing measurements of its neighboring nodes in
its local coordinate system.

Each sensor node i holds a local coordinate system Σi and
has no knowledge about the global coordinate system Σg . For
a node i, let pi denote its coordinate in Σg and let pj

i denote
its coordinate in Σj , where the superscript j for j = 1, . . . , n
is used throughout the paper to represent the value in local
coordinate system Σj . We use a complex number to represent

Fig. 3. An illustration for the bearing measurements.

pi instead of a two-dimensional vector in this paper. Note that
pi

i = 0.
We say node j is a neighbor of node i if and only if i can obtain

the bearing measurement about j, and j can communicate with
i. That is to say, node i can access the normalized vector

bi
ij =

pi
j − pi

i

|pi
j − pi

i |

in node i’s local coordinate system Σi .
Technically, we assume the following.
Assumption 2.1: The bearing measurements and the com-

munications are bidirectional.
Fig. 3 shows an illustration for the bearing measurements,

where node i can measure bi
ij about node j, and node j can

measure bj
ji about node i.

For a network of n nodes with bearing-only measurements,
at least two anchor nodes are needed for localization [14]. Thus,
without loss of generality, we assume that there are two anchor
nodes, whose coordinates in Σg are denoted by p1 , p2 ∈ C.
The coordinates of other sensor nodes in Σg are denoted by
p3 , . . . , pn ∈ C. Let pa = [p1 , p2 ]T , and ps = [p3 , . . . , pn ]T .
The following is a standing assumption.

Assumption 2.2: Assume that the sensor nodes do not over-
lap each other, i.e., pi �= pj , ∀i, j.

Communications between sensor nodes may fail from time
to time due to severe environmental factors. We use a dynamic
graph Ḡ(k) = (V, Ē(k)) to model the whole sensor network,
where V = A ∪ S with A = {1, 2} and S = {3, . . . , n}. Let
N̄i(k) be the set of the neighbors of node i in Ḡ(k). In other
words, (j, i) ∈ Ē(k) if and only if j ∈ N̄i(k). That is to say,
when (j, i) ∈ Ē(k), node i can access bi

ij , and node j can access

bj
ji , and they can exchange information between each other via

communication at time k.
Here we give some explanations about why the entire net-

works can be localized merely based on some local bearing
measurements and how it is different from localization with
bearing measurements in a global frame. Consider a simple ex-
ample as in Fig. 4 where node 1 and 2 are anchors and node 3
is a sensor node. If the bearing measurements are acquired in
the global coordinate system as in Fig. 4(a), then we are able to
uniquely determine the position of node 3 since the two lines
with specific bearing in the global frame and passing through
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Fig. 4. (a) Bearing measurements in the global coordinate system. (b) A con-
figuration with bearing measurements in local coordinate systems. (c) Different
orientation leads to a different configuration with the same bearing constraints
as in (b). (d) Connecting node 1 and 2 leads to the localizability with local
bearing measurements.

node 1 and 2 must intersect at a point. However, this is not true
when the orientations of the local frames are unknown. An ex-
ample is given in Fig. 4(b)–4(c), for which different orientations
lead to different configurations with both satisfying the bearing
constraints in the local frames. That is to say, with only bearing
measurements in the local frames, additional measurements are
required for localizability. For instance, if we add an edge be-
tween node 1 and 2 as shown in Fig. 4(d), then node 3 can be
localized since three angles in the triangle are determined.

The problem in this paper is described as follows. Given
a dynamic graph Ḡ(k) with the edge set Ē(k) indicating the
bearing measurements and communication topology in the net-
work, develop a distributed localization algorithm and explore
the graphical conditions for the whole network, which ensure
globally exponential convergence.

III. LINEAR EQUATION CONSTRAINTS

To solve the localization problem, our first step is to establish
some equation constraints in terms of the coordinates of all
sensor nodes. In this section, we aim to obtain such equation
constraints using the complex linear representation concerning
the coordinates in Σg for the sensor network. More specifically,
for each sensor node i, consider i along with its neighbors j ∈
N̄i . The goal is then to design complex weights wij ∈ C, j ∈
N̄i , with only bearing measurements in Σi and local information
exchange such that

∑

j∈N̄i

wij (pj − pi) = 0. (2)

However, note that pi and pj (j ∈ N̄i) are the coordinates in
Σg . Moreover, every node does not know the orientation of its
own local frame with respect to the global frame Σg . So it is
challenging to find complex weights wij ’s using bearing-only
measurements and local information exchange to establish the
formula (2). To overcome the difficulty, we will consider to con-
struct a similar framework, based on which a new approach will
be developed to find proper complex weights. This can be done
mainly due to the following reason. For a similar framework
(G, q) ∼ (G, p), from (1) we know that

∑

j∈N̄i

wij (qj − qi) = 0, ∀i

Fig. 5. An illustration for the relationship between different frames.

implies
∑

j∈N̄i

wij (pj − pi) = 0, ∀i.

In the following, we develop a sensing-plus-communication
scheme to construct a similar framework and then compute com-
plex weights, which are divided into three steps.

Step A1: Compute relative orientations of local frames.
Let δij be the angle between bi

ij and the real axis of Σi , and

δji be the angle between bj
ji and the real axis of Σj . Denote αi

and αj the angle between the local frame Σi ,Σj and the global
coordinate system Σg , respectively (Fig. 5).

Define the relative orientation as αji := αj − αi . Then, for
node i, the relative orientation αji can be calculated based on
bi
ij measured by onboard sensors and bj

ji transmitted from its
neighbor node j. That is,

eιαj i = eι(δi j −δj i +π ) =
bi
ij

bj
j i

eιπ . (3)

Step A2: Compute complex weights regarding two neighbors.
Consider node i with its two neighbors j and l. Let G3

represent the complete graph with node set {i, j, l}. Let p′ =
[pi, pj , pl ]T . If node j and node l are mutual neighbors, and
i, j and l are not collinear, then node i can construct a frame-
work (G3 , q

′) with q′ = [qi, qj , ql ]T , which is similar to (G3 , p
′).

The procedure of constructing a similar framework (G3 , q
′) is

as follows.
Notice that node i can access bi

ij and bi
il via local sensing,

and can obtain bj
j l and bl

lj through communication. Based on
(3) in Step A1, node i can compute bi

j l and bi
lj according to the

following formula

bi
j l = eιαj i bj

j l , and bi
lj = eιαl i bl

lj .

We then construct a similar framework (G3 , q
′) by setting qi = 0

and qj = bi
ij , and solving ql from the following formula

{
Re[ιbi

il(ql − qi)] = 0,
Re[ιbi

j l(ql − qj )] = 0. (4)

The equality (4) holds since we aim to obtain ql satisfying

(ql − qi) ⊥ ιbi
il , (ql − qj ) ⊥ ιbi

j l ,
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Fig. 6. An illustration for node i with two neighbors j and l.

where ιbi
j l means rotating bi

j l by 90 degrees counterclockwise.
See Fig. 6 as an illustration.

After node i knows (qi, qj , ql), it can simply choose wij and
wil to satisfy

wij (qj − qi) + wil(ql − qi) = 0.

Due to (1), the same complex weights also make the following
holds

wij (pj − pi) + wil(pl − pi) = 0.

Step A3: Compute complex weights regarding more than two
neighbors.

For the case that node i has more than two neighbors, we
choose a combination of two neighbors from N̄i , say j and l.
If j and l are mutual neighbors, and i, j and l are not collinear,
then according to Step A2, we are able to find complex weights
w

(r)
ij and w

(r)
il to satisfy

w
(r)
ij (pj − pi) + w

(r)
il (pl − pi) = 0

where r enumerates the possible combinations of any two neigh-
bors from N̄i . Then we take a random complex coefficient γr

for each r to combine all these representations, that is,

w′
ij =

∑

r

γrw
(r)
ij for j ∈ N̄i .

At last, node i normalizes the complex weights. That is,

w′
ii = −

∑

j∈N̄i

w′
ij , wij = w′

ij /

n∑

k=1

|w′
ik | for any j.

Thus, the complex weights wij , j ∈ N̄i , are found to satisfy
∑

j∈N̄i

wij (pj − pi) = 0. (5)

We summarize the above results to give an algorithm of com-
puting complex weights wij for node i. The pseudo code is
given in Algorithm 1.

Remark 3.1: Each node executes Algorithm 1 in a distributed
way. That is, each node only requires its own bearing measure-
ments about its neighbors and some bearing measurement in-
formation from its neighbors via communication. It is worth to
emphasize that Algorithm 1 works for all networks. �

Remark 3.2: According to the normalization step we know
that

∑n
j=1 |wij | = 1, which ensures the infinity norm of the

resulted matrix to be one. �

Fig. 7. A simple example with graph Ḡ.

Algorithm 1: Compute Complex Weights wij for Node i.

Input: The measurement bi
ij for j ∈ N̄i ; The measurement

bj
j l for j, l ∈ N̄i and (l, j) ∈ Ē .

Output: wij , j ∈ N̄i .
1: Set m = 0;
2: Set w

(m )
ij = 0 for j ∈ N̄i ;

3: while there is still a combination of two neighbors in
N̄i that have not been selected before do

4: Choose a combination of two neighbors from N̄i ,
say j and l;

5: if node j and l are mutual neighbors, and i, j and l
are not collinear then

6: (1) Update m := m + 1;
7: (2) Compute the weights w

(m )
ij , w

(m )
il of i with

respect to j and l based on Steps A1-A2;
8: (3) Set w

(m )
is = 0 for s ∈ N̄i − {j, l};

9: end if
10: end while
11: Choose random complex coefficients γ1 , . . . , γm ;
12: Compute w′

ij =
∑m

r=1 γrw
(r)
ij for j ∈ N̄i ;

13: Compute w′
ii = −

∑
j∈N̄i

w′
ij ;

14: return wij = w′
ij /

∑n
k=1 |w′

ik | for any j ∈ N̄i .

In the following, we use a simple example in Fig. 7 to demon-
strate how Algorithm 1 calculates the complex weights. In the
example, the nodes in red are anchors while the nodes in blue
are sensor nodes. Each node has its own local coordinate system
as shown in the figure. The absolute coordinates in this case are

p1 = 5 + 5ι, p2 = 10 + 5ι, p3 = 7 + ι, p4 = 9 + 1.5ι.

We take node 3 for example. Notice that nodes 1, 4 ∈ N̄3 and
they are mutual neighbors. Then node 3 can compute w1

31 and
w1

34 based on Steps A1-A2. To be specific, node 3 measures

b3
31 = −0.6635 + 0.7482ι, b3

34 = 0.8743 + 0.4854ι
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and obtain the following bearing information via communica-
tion

b1
13 = 0.4472 − 0.8944ι, b1

14 = 0.7526 − 0.6585ι,

b4
41 = −0.3225 + 0.9466ι, b4

43 = −0.9614 + 0.2750ι.

The next step is to convert the received bearing information to
the ones in node 3’s local frame. For example, b1

13 is converted
into b3

13 according to the following formula:

b3
13 =

b3
31

b1
13

eιπ b1
13 = 0.6635 − 0.7482ι.

Similar, all the others can be obtained in the same way. That is,

b3
14 = 0.8974 − 0.4413ι,

b3
41 = −0.8974 + 0.4413ι,

b3
43 = −0.8743 − 0.4854ι.

Then we construct a similar configuration by setting q3 = 0
and q1 = b3

31 = −0.6635 + 0.7482ι and by solving q4 from the
following formula

{
Re[ιb3

34(q4 − q3)] = 0
Re[ιb3

14(q4 − q1)] = 0

By solving the above equations, we get q4 = 0.4030 + 0.2237ι.
Next, node 3 choose w1

31 and w1
34 to satisfy

w1
31(q1 − q3) + w1

34(q4 − q3) = 0.

That is,

w1
31 = −0.1000 − 0.2000ι, w1

34 = −0.4706 + 0.1176ι.

Moreover, since 2, 4 ∈ N̄3 and they are mutual neighbors,
node 3 can also obtain

w2
32 = 0.1200 − 0.1600ι, w2

34 = −0.4706 + 0.1176ι.

Choose γ1 = 0.5 and γ2 = 0.5. Then

w′
31 = γ1w

1
31 = −0.0500 − 0.1000ι,

w′
32 = γ2w

2
32 = 0.0600 − 0.0800ι,

w′
34 = γ1w

1
34 + γ2w

2
34 = −0.4706 + 0.1176ι.

and

w′
33 = −w′

31 − w′
32 − w′

34 = 0.4606 + 0.0624i.

At last, node 3 normalizes the complex weights as

w31 = −0.0430 − 0.0861ι,

w32 = 0.0517 − 0.0689ι,

w34 = −0.4051 + 0.1013ι.

Remark 3.3: Notice that for almost all randomly chosen
complex coefficients γ1 , . . . , γm , w

(r)
ij �= 0 for some r implies

that wij �= 0. �
From Algorithm 1 we know that if nodes i and j (j ∈ N̄i)

do not have a common neighbor, then wij will be zero. We then
consider a new graph G(k) = (V, E(k)), where E(k) is a subset
of Ē(k), such that (j, i) ∈ E(k) if and only if wij �= 0. Indeed,

Fig. 8. (a) Graph Ḡ. (b) Graph G. (c) Graph Π3 .

(j, i) ∈ E(k) if and only if node i and node j have at least one
common neighbor in Ḡ(k). LetNi(k) be the set of the neighbors
of node i in G(k).

We rewrite (5) into the matrix form as

L(k)p = 0,

where L(k) is the complex Laplacian with the complex weights
chosen by Algorithm 1. Then we obtain the following complex
linear representation regarding the coordinates in Σg of all the
sensor nodes

L(k)p =
[

0 0
La(k) Ls(k)

] [
pa

ps

]

= 0, (6)

which leads to

La(k)pa + Ls(k)ps = 0. (7)

Notice that there is an edge (j, i), i �= j, in G(k) at k if and only
if the (i, j)th entry of L(k), i.e., −wij (k), is nonzero at time
instant k.

Moreover, we introduce the node-i-neighbor-induced graph
Πi(k) for each sensor node i, which is the Ni(k)-induced graph
in G(k), i.e., Πi(k) = (Ni(k), E(k) ∩Ni(k) ×Ni(k)).

Take Fig. 8 as an example. A graph Ḡ is shown in Fig. 8(a) with
N̄3 = {1, 2, 4, 5, 6}. By Algorithm 1, graph G is constructed in
Fig. 8(b) with N3 = {1, 2, 5, 6}. As a result, Π3 is presented in
Fig. 8(c).

However, assume that no sensor can act as a centralized node
to obtain all the information in (7). Then a distributed algorithm
is needed for each sensor node to solve (7) in parallel, which will
be developed in next section. The convergence of the distributed
algorithm depends on G(k) and Πi(k).

IV. DISTRIBUTED ALGORITHM FOR FIXED TOPOLOGIES

To make it clearer for understanding the basic idea, in this
section we treat fixed topologies firstly.

A. Localizability Condition

Considering fixed topologies, the equality (7) becomes

Lapa + Lsps = 0, (8)

which indicates that ps can be solved uniquely if and only if Ls

is nonsingular, i.e.,

ps = −L−1
s Lapa .

Then it results in two problems. One is that under what graphical
conditions, Ls is nonsingular. The other is how to solve (8) in a
distributed manner.
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Fig. 9. An example to show that L(3, :) may not span an (n3 − 1)-
dimensional linear subspace.

We first present a sufficient graphical condition such that Ls

is nonsingular.
Theorem 4.1: For almost all randomly chosen complex co-

efficients γ1 , . . . , γm in Algorithm 1, the sensor network is lo-
calizable by solving (8) if the following two conditions hold

1) every sensor node is 2-reachable from A in G,
2) the node-i-neighbor-induced graph Πi is connected for

every sensor node i.
The proof of Theorem 4.1 needs several lemmas. We denote

by L(G) the set of all Laplacian matrices with nonzero weights
on the edges in G. Let R be a subset of V and let LR be the sub-
matrix of L ∈ L(G) with the rows and columns corresponding
to nodes in R crossed out. The following lemma provides the
relationship between the determinant of LR and the connectivity
of G.

Lemma 4.1: Consider ξ ∈ Cn satisfying that ξi �= ξj , ∀i, j.
The following two are equivalent.

1) Let R = {1, 2} and every node in V −R is 2-reachable
from R.

2) For almost all1 L ∈ {L ∈ L(G) : Lξ = 0}, the determi-
nant of LR is distinct from zero.

The proof of Lemma 4.1 is given in the Appendix.
Remark 4.1: We now give more explanations about the “al-

most all” property in Lemma 4.1. Denote ni = |Ni | and denote
the i-th row of L by L(i, :). We can know that there are ni + 1
nonzero entries in L(i, :). Also with the fact that L(i, :)1 = 0
and L(i, :)ξ = 0, it is known that L(i, :) can span an (ni − 1)-
dimensional linear subspace. This means that if L(i, :) is ran-
domly taken from the (ni − 1)-dimensional linear subspace for
all i, then the “almost all” property in Lemma 4.1 implies that for
such an L, the determinant of LR must not be zero in probabil-
ity one. However, if L(i, :) can only be taken from a subspace
of dimension less than ni − 1, then the “almost all” property
in Lemma 4.1 may not guarantee that such an L has non-zero
det(LR). An example is given in Fig. 9. For the case in Fig. 9(a),
by Algorithm 1 we can obtain

L(3, :) =
[

γ1w
(1)
31 γ1w

(1)
32 ∗ γ2w

(2)
34 γ2w

(2)
35

]
,

1Here “for almost all” parameter values is to be understood as “for all param-
eter values except for those in some proper algebraic variety in the parameter
space”. The proper algebraic variety for which a property is not true is the zero
set of some nontrivial polynomial with real coefficients in the parameters. A
proper algebraic variety has Lebesgue measure zero [24]. Here “for almost all
L” means “for almost all weights used to construct L”.

which lies in a 2-dimensional linear subspace. For the case in
Fig. 9(b), similarly, we get

L(3, :)=
[

γ1w
(1)
31 γ1w

(1)
32 +γ2w

(2)
32 ∗ γ2w

(2)
34 +γ3w

(3)
34 γ3w

(3)
35

]
,

which lies in a 3-dimensional linear subspace. So whether
L(i, :)’s constructed by Algorithm 1 span (ni − 1)-dimensional
linear subspace depends on the connectivity of Πi . �

The following lemma describes the relationship between the
node-i-neighbor-induced graph Πi and the dimension of the lin-
ear subspace formed by L(i, :) with all possible weights chosen
by Algorithm 1.

Lemma 4.2: With the weights computed by Algorithm 1,
L(i, :) can span an (ni − 1)-dimensional linear subspace if Πi

is connected.
The proof of Lemma 4.2 is given in the Appendix.
We are now ready to present the proof for Theorem 4.1.
Proof of Theorem 4.1: Suppose that in G, every sensor node

is 2-reachable from A, and Πi is connected for all i. It follows
from Lemma 4.1, Remark 4.1 and Lemma 4.2 that

det (Ls) �= 0.

Hence, ps can be solved uniquely from (8). �
Remark 4.2: The graphical condition in Theorem 4.1 also

implies infinitesimal bearing rigidity. This is because infinites-
imal bearing rigidity is necessary and sufficient with global
bearing measurements [17]. As shown in Section II, compared
with global bearing measurements, more edges should be added
to the graph such that the network can be localizable with only
local bearing measurements. �

B. Distributed Algorithm

In this subsection, we will propose a distributed algorithm for
each sensor node to solve (8).

Let wij ’s be the complex weights designed in Section III
and let w̄ij be the conjugate of the complex number wij . We
propose the following iterative algorithm for each sensor node
i = 3, . . . , n,

p̂i(k + 1) = p̂i(k) − ε
∑

j∈Ni

w̄ij θi(k) + ε
∑

j∈Ni

w̄j iθj (k) (9)

where p̂i is the estimate of pi for node i and

θi(k) = −
∑

j∈Ni

wij (p̂j (k) − p̂i(k)).

In the above iterative update, ε is a positive scalar that satisfies

0 < ε < 2/λmax(LH
s Ls),

where λmax(LH
s Ls) represents the maximum eigenvalue of

LH
s Ls .
The following theorem shows that p̂i will converge to pi .
Theorem 4.2: Suppose that Ls is nonsingular. Under dis-

tributed algorithm (9), every p̂i(k) is exponentially convergent
to pi .

Proof: Denote by p̂ the aggregated vectors of all p̂i’s. We
can write (9) in the matrix form as

p̂s(k + 1) =
(
I − εLH

s Ls

)
p̂s(k) − εLH

s Lapa . (10)
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Algorithm 2: Distributed Implementation for the Iteration
(9).

1: Each node i computes complex weights wij for
j ∈ N̄i ;

2: Each node i transmits wij to its neighbors j ∈ Ni ;
3: Each node i receives wji from its neighbors j ∈ Ni

and then computes li :=
∑

j∈Ni
|wji |;

4: Each node i computes ‖Ls‖1 = maxi li by the
maximum consensus algorithm;

5: Each node i chooses the parameter ε = 1/‖Ls‖1 ;
6: Each node i transmits its own estimate p̂i to its

neighbors j ∈ Ni ;
7: Each node i receives p̂j from its neighbors j ∈ Ni and

then computes θi = −
∑

j∈Ni
wij (p̂j − p̂i);

8: Each node i transmits w̄ij θi to its neighbors j ∈ Ni ;
9: Each node i receives w̄jiθj from its neighbors j ∈ Ni

and then updates p̂i=p̂i−ε
∑

j∈Ni (k) w̄ij θi+ε
∑

j∈Ni

w̄j iθj ;
10: Go back to 6.

Do the coordinate transformation p̃s(k) = p̂s(k) − ps and apply
the fact that εLH

s Lapa = −εLH
s Lsps . We derive that

p̃s(k + 1) =
(
I − εLH

s Ls

)
p̃s(k). (11)

Since Ls is nonsingular, LH
s Ls is positive definite and the

eigenvalues of LH
s Ls are all real. It follows from 0 < ε <

2/λmax(LH
s Ls) that all the eigenvalues of I − εLH

s Ls lie in
the open unit disk. Thus, every p̂i(k) is exponentially conver-
gent to pi . �

In what follows, we give the distributed implementation of
the iteration (9). Notice that λmax(LH

s Ls) ≤ ‖Ls‖1‖Ls‖∞. By
Remark 3.2 we know that ‖Ls‖∞ ≤ 1. Thus, it remains to
choose ε satisfying ε < 2/‖Ls‖1 . Since each sensor node i is
able to obtain the entries in the i-th column of Ls from its
neighbors through communication, ‖Ls‖1 can be computed for
each node in finite time by the maximum consensus algorithm
[25]. Then the iteration (9) can be implemented in a distributed
manner as described in Algorithm 2.

C. Sensitivity Analysis

In this subsection, we will present sensitivity analysis for the
proposed localization scheme.

Considering the noises in the bearing measurements, the lo-
calization algorithm (10) becomes

p̂s(k + 1) =
(
I − εL̂H

s L̂s

)
p̂s(k) − εL̂H

s L̂apa (12)

where L̂a and L̂s are the corresponding matrices obtained ac-
cording to Algorithm 1. Denote Δa and Δs the error matrices
due to the measurement noises and write L̂a = La + Δa and
L̂s = Ls + Δs .

It is true that if L̂s is nonsingular, then the final estimate of
(12) is given by

p̂∗s = −L̂−1
s L̂apa .

We then give an upper bound for ‖Δs‖ to ensure the nonsin-
gularity of L̂s .

Theorem 4.3: Suppose that Ls is nonsingular. The matrix L̂s

is nonsingular if Δs satisfies

‖Δs‖ <
√

λmin(LH
s Ls),

where λmin(LH
s Ls) represents the smallest eigenvalue of LH

s Ls .
Proof: Notice that ‖Δs‖ <

√
λmin(LH

s Ls) = 1/‖L−1
s ‖,

which further implies ‖L−1
s Δs‖ ≤ ‖L−1

s ‖‖Δs‖ < 1. Thus the
matrix I + L−1

s Δs is nonsingular. Hence, L̂s = Ls + Δs =
Ls(I + L−1

s Δs) is nonsingular. �

V. DISTRIBUTED ALGORITHM FOR SWITCHING TOPOLOGIES

In this section we consider the distributed localization prob-
lem under switching topologies.

A. Localizability Condition

Recall the linear equation constraints (7), i.e.,

La(k)pa + Ls(k)ps = 0.

Although Ls(k) may change over time and may become singular
at some time, it is still possible for each node to solve (7) if
the sum of Ls(k) across a time interval is nonsingular. To be
specific, from

m∑

k=1

La(k)pa +
m∑

k=1

Ls(k)ps = 0

we can attain

ps = −
(

m∑

k=1

Ls(k)

)−1 m∑

k=1

La(k)pa .

However, this property should be persistently satisfied over the
whole time horizon. From this perspective we present the fol-
lowing sufficient graphical condition, under which the sensor
network is localizable.

Theorem 5.1: For almost all randomly chosen complex co-
efficients γ1 , . . . , γm in Algorithm 1, the sensor network is lo-
calizable by solving (7) if the following two conditions hold

1) every sensor node is jointly 2-reachable from A in G(k),
2) the node-i-neighbor-induced graph Πi(k) is jointly con-

nected for every sensor node i.
The proof of Theorem 5.1 is given in the appendix.

B. Distributed Algorithm

To solve (7) in a distributed way, we consider the following
iterative algorithm for each sensor node i = 3, . . . , n,

p̂i(k + 1) = p̂i(k) − ε(k)
∑

j∈Ni (k)

w̄ij (k)θi(k)

+ ε(k)
∑

j∈Ni (k)

w̄ji(k)θj (k) (13)
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Algorithm 3: Distributed Implementation for the Iteration
(13).

1: Each node i computes complex weights w
(c)
ij for

j ∈ N̄ (c)
i ;

2: Each node i transmits rij := maxc |w(c)
ij | to its

neighbors j ∈ Ni ;
3: Each node i receives rji from its neighbors j ∈ Ni and

then computes li :=
∑

j∈Ni
rj i ;

4: Each node i computes maxi li by the maximum
consensus algorithm;

5: Each node i chooses the parameter ε = 1/maxi li ;
6: Each node i selects complex weights wij (k) at each k

by the look-up table method;
7: Each node i transmits its own estimate p̂i to its

neighbors j ∈ Ni(k);
8: Each node i receives p̂j from its neighbors j ∈ Ni(k)

and then computes θi = −
∑

j∈Ni (k) wij (k)(p̂j − p̂i);
9: Each node i transmits w̄ij (k)θi to its neighbors

j ∈ Ni(k);
10: Each node i receives w̄ji(k)θj from its neighbors

j ∈ Ni(k) and then updates p̂i = p̂i − ε
∑

j∈Ni (k)
w̄ij (k)θi + ε

∑
j∈Ni (k) w̄ji(k)θj ;

11: Go back to 6.

where

θi(k) = −
∑

j∈Ni (k)

wij (k)(p̂j (k) − p̂i(k)).

In the above iterative update, ε(k) is a positive scalar that satisfies

0 < ε(k) ≤ 1/λmax(LH
s (k)Ls(k)).

Next we present the convergence analysis for the proposed
algorithm (13).

Theorem 5.2: For almost all randomly chosen complex co-
efficients γ1 , . . . , γm in Algorithm 1, under the distributed
algorithm (13), every p̂i(k) is exponentially convergent to pi

if the graphical conditions in Theorem 5.1 hold.
The proof of Theorem 5.2 is given in the Appendix.
Next we consider the distributed implementation of the it-

eration (13). Note that switching topologies are used to model
possible link failures. Thus, each node i is able to know all
its possible sub-neighbor-set N̄i(k) ⊂ N̄i , based on which each
node can compute the complex weights for each combination of
its neighbors, denoted by N̄ (c)

i where c enumerates all the possi-
ble sub-neighbor-set. For each possible sub-neighbor-set, node i

can calculate w
(c)
ij for j ∈ N̄ (c)

i . Then each node takes ε(k) the
same value ε that satisfies 0 < ε ≤ 1/λmax(LH

s (k)Ls(k)) for
all k. To be specific, the implementation of (13) in a distributed
way is described in Algorithm 3.

Remark 5.1: Here we give a brief discussion for sensitivity
analysis of Algorithm (13). Notice that

p̂s(k + 1) =
(
I − εL̂H

s (k)L̂s(k)
)

p̂s(k) − εL̂H
s (k)L̂a(k)pa

Fig. 10. A periodic switching graph Ḡ(k) that switches between Ḡ1 and Ḡ2 .

where L̂a(k) = La(k) + Δa(k) and L̂s(k) = Ls(k) + Δs(k).
When measurement noises exist, the resulting switching system
may have multiple equilibria. Thus, the error system can be
written as

p̃s(k + 1) =
(
I − εL̂H

s (k)L̂s(k)
)

p̃s(k)

+ εL̂H
s (k)L̂s(k)p̃∗s(k),

where p̃s = p̂s − ps and p̃∗s = p∗s − ps . Moreover, p∗s(k) satis-
fies L̂a(k)pa + L̂s(k)p∗s(k) = 0. Note that εL̂H

s (k)L̂s(k)p̃∗s(k)
is bounded and the system

p̃s(k + 1) =
(
I − εL̂H

s (k)L̂s(k)
)

p̃s(k),
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Fig. 11. Comparison of convergence speed with λm in (εLH
s1Ls1 +

εLH
s2 Ls2 ) = 0.0079, 0.0219 and 0.0537, which shows that larger

λm in (εLH
s1 Ls1 + εLH

s2 Ls2 ) indicates faster convergence.

Fig. 12. A configuration of sensor network of 2 anchor nodes and 75 sensor
nodes, where the anchor nodes are represented by red circles while the others
are sensor nodes. The lines between pairs of nodes indicate that the bearing
measurements are available for these pairs.

is exponentially stable. Then p̃s will converge to a region that
contains all p̃∗s(k). That is to say, the estimates will converge to
a region nearby the true locations. �

VI. SIMULATION

In this section, we provide two simulation results to validate
our results.

A. Performance Influenced by Complex Weights

In this subsection, we use a toy example to demonstrate the
effect of different complex weights on the performance of the
algorithm. Consider a network consisting of 8 nodes. The an-
chor nodes are labeled by 1 and 2. The remaining nodes are

Fig. 13. (a) The estimates obtained from the algorithm (9) perfectly matches
the true positions, where the red stars represent the estimates while the blue
circles are the true locations. (b) The estimates obtained by the algorithm in
[17] do not match the true positions as the algorithm may diverge when the
local frames do not have a common orientation as the global one.

sensor nodes to be localized. In the simulation, suppose that the
absolute coordinates for the nodes are

p = [4 + 35ι, 43 + 47ι, 36 + 76ι, 40 + 20ι,

20 + 72ι, 72 + 60ι, 69 + 37ι, 9 + 25ι]T ,

and consider the graph Ḡ(k) that switches between Ḡ1 and Ḡ2
as shown in Fig. 10.

By taking K = 2, it is known that G([k, k + K)) = G1 ∪
G2 , and it can be checked that every sensor node is jointly 2-
reachable from A in G1 ∪ G2 . It also can be checked that Πi(k)
is jointly connected with K = 2.

Denote Ls1 and Ls2 the computed matrices corresponding
to G1 and G2 , respectively. Notice that both Ls1 and Ls2 are
singular, which means that for each subsystem the estimate
will not converge to the true absolute coordinate. However,
if two subsystems switch between each other, then under the
proposed algorithm the estimate eventually converges since
Ls1 + Ls2 is nonsingular. Next we carry out a simulation to
demonstrate the effect of the eigenvalues of εLH

s1Ls1 + εLH
s2Ls2

on the convergence speed. A simulation result is shown in
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Fig. 11, for which three parameters with λmin(εLH
s1Ls1 +

εLH
s2Ls2) = 0.0079, 0.0219 and 0.0537 are considered. The es-

timation error ratio ‖p̂s(k) − ps‖/‖p̂s(0) − ps‖ is plotted for
each case. From the simulation result we can see that larger
λmin(εLH

s1Ls1 + εLH
s2Ls2) indicates faster convergence.

B. Comparison with Localization Algorithms Needing the
Global Frame

In this subsection, we compare the proposed algorithm (9)
with the approach in [17].

Consider a large network with 2 anchor nodes and 75 sensor
nodes. Each node holds its local coordinate system. Consider a
graph Ḡ, for which an edge in Ē indicates that the corresponding
two nodes can obtain the bearing measurements and communi-
cation with each other. The configuration is plotted in Fig. 12, in
which the anchor nodes are represented by red cycles while the
others are sensor nodes. The lines between pairs of nodes in the
figure indicate that the bearing measurements are available for
these pairs. Each sensor node computes the complex weights
wij ’s by Algorithm 1 and a new graph G is resulted, in which
every sensor node is 2-reachable from the anchor set, and Πi is
connected.

A simulation result with the estimates of sensor locations ob-
tained is shown in Fig. 13. The red stars represent the estimates
while the blue circles are the true locations. Fig. 13(a) shows
that the estimates perfectly match the true positions of the sensor
nodes by algorithm (9). However, the algorithm in [17] diverges
for this simulated scenario as we can see from Fig. 13(b) since
a key assumption in [17] is that the orientations of all the local
coordinate systems should be consistent with the orientation of
the global coordinate system.

VII. CONCLUSION

This paper studies the distributed localization problem for a
large sensor network in the plane with bearing-only measure-
ments. In this paper, we utilize complex numbers to represent
node i’s estimate p̂i and the coordinate pi in the global frame
instead of two-dimensional vectors. The main idea is that each
node i drives

∑
j∈Ni

wij (p̂j − p̂i) to zero, where the complex
weights wij ’s can be computed in node i’s local coordinate sys-
tem by constructing a similar framework. In this way, the global
frame is no longer required. Furthermore, by using complex
weights we attain the complex linear representation concerning
the absolute locations for the sensor network. However, for the
complex Laplacian L, in general wij is not equal to w̄ji , i.e., L
is not Hermitian. Also the value wij will change over time due
to switching topologies. To overcome the difficulty in design-
ing the distributed algorithm and analyzing the convergence, we
introduce an auxiliary state and an idea similar to persistent ex-
citation is developed to show the convergence of the algorithm
under switching topologies. Moreover, graphical conditions en-
suring globally exponential convergence is obtained.

Many interesting problems deserve further investigation. One
problem is to design localization distributed algorithm for sens-
ing networks that only have unidirectional sensing and commu-
nication capability. Under such a setup, two issues need to be
taken into consideration. First, for each node, how to construct

Fig. 14. A path graph with with its terminal nodes labeled as 1 and 2.

similar frameworks to compute complex weights. Second, to
acquire a Hermitian matrix, auxiliary states θj from i’s out-
neighbors j need to be transmitted back to i. This paper consid-
ers undirected topologies, i.e., neighbors are also out-neighbors.
However, for unidirectional case, θj cannot be transmitted di-
rectly from j to i. So extra edges may need for information
exchange and the graphical conditions ensuring global conver-
gence will be different. Another problem is to consider noisy
measurements. Belief propagation based algorithms can take
into account uncertainty of the measurements and estimate the
posterior probability density function of the positions of all un-
known nodes [26], [27]. It may become feasible by combining
the method in this paper with BP based algorithms such that the
localization problem can be solved in the probability framework.

APPENDIX

We introduce a lemma before proving Lemma 4.1.
Lemma A.1 ([28]): Consider a framework (G, ξ), where G

is a path graph of n nodes with its terminal nodes labeled as 1
and 2 (Fig. 14). If ξi �= ξj for i �= j, then there exists a complex
Laplacian matrix L ∈ L(G)

[
A2×2 B2×(n−2)

C(n−2)×2 D(n−2)×(n−2)

]

such that D is of rank n − 2.
Proof of Lemma 4.1: (1) =⇒ (2) For a graph G, denote the

subset byR0 := R = {1, 2} and every other node is 2-reachable
from R0 . Choose a node i not in R0 and then we can find two
disjoint paths from 1 to i and from 2 to i. Denote the set of
nodes in these two paths excluding the nodes in R0 by R1 and
let n1 = |R1 |. Relabel the nodes in R1 from 3 to n1 + 2. Next
we choose another node j �= i not in R0 ∪R1 . Also, there must
exist two disjoint paths from two different nodes in R0 ∪R1 to
node j, for which only the two terminal nodes are in R0 ∪R1 .
Denote the set of nodes in these two paths excluding the nodes
in R0 ∪R1 by R2 and let n2 = |R2 |. Then relabel these nodes
from n1 + 3 to n1 + n2 + 2. Repeat the procedure until all the
nodes are included. It is certain that

∑

i

ni + 2 = n.

Take the graph G′ with only edges included in the above pro-
cedure. And G′ is a subgraph of G with the same node set.
Notice that if a node i in Rm 1 is also a terminal node of some
paths in Rm 2 for some m2 > m1 , i already has two neighbors
in

⋃
k=0,...,m 1

Rk . So we can select 0 for the complex weight
wij where i ∈ Rm 1 and j ∈ Rm 2 with m2 > m1 . Thus, for the
Laplacian L′ corresponding to G′, it is obtained

L′
R0

=

⎡

⎢
⎢
⎣

L1 0 0 0
∗ L2 0 0
∗ ∗ L3 0
· · · · · · · · · · · ·

⎤

⎥
⎥
⎦
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where Li is the corresponding block to the the subgraph induced
by Ri in G′. By the procedure for construction, it is known
that nodes in Ri together with the two terminal nodes form
a path graph. Thus, according to Lemma A.1 we attain that
rank(Li) = ni and

rank(L′
R0

) =
∑

i=1,...,

rank(Li) =
∑

i=1,...,

ni = n − 2.

Note that L′ can be considered as a Laplacian matrix of graph
G for a special choice of weights with some weights being 0.
Hence, by utilizing the fact that either a polynomial is zero or
it is not zero almost everywhere, it follows that for almost all
L ∈ {L ∈ L(G) : Lξ = 0}, LR is distinct from zero.

(2) ⇐= (1) We prove it in a contrapositive way. Suppose
that there exists a node i /∈ R such that after deleting any other
node, without loss of generality say {1}, i is not reachable
from R. Denote U the set of nodes not in R. So all the nodes
in U are not reachable from R after removing {1}. Denote
Ū = V − U − {1}. It follows that there is no edge from any
node in Ū to any node in U . Thus by relabeling the nodes in U
and Ū in a consecutive way respectively, the matrix L can be
transformed to the following form by a permutation matrix P ,
that is,

PLPT = L′ =

⎡

⎣
L11 L12 L13
L21 L22 0
L31 L32 L33

⎤

⎦ ,

where the rows and columns in L11 correspond to nodes {1},
the rows and columns in L22 correspond to the nodes in U , and
the rows and columns in L33 correspond to the nodes in Ū . Thus,

[
L21 L22 0

]
1 = 0,

[
L21 L22 0

]
Pξ = 0.

Therefore,
[
L21 L22 0

]
is not of full row rank, which means

det(LR) = 0 for any L ∈ {L ∈ L(G) : Lξ = 0, Lζ = 0, Lη =
0}. �

Proof of Lemma 4.2: According to Algorithm 1 and the def-
inition of graph Πi , an edge (j, l) ∈ Πi indicates that the infor-
mation from node j and l are used to compute w

(r)
ij and w

(r)
il .

Now we start with any edge in Πi , say (i1 , i2). Then we
compute w

(1)
ii1

and w
(1)
ii2

. Continually, we can find another node,
say i3 , which is connected to {i1 , i2} since Πi is connected.
That is, edge (i3 , ia) ∈ Πi for either ia = i1 or ia = i2 . Thus,
nonzero w

(2)
ii3

and w
(2)
iia

are obtained. Again, there must exist a
node, say i4 , which is connected to {i1 , i2 , i3}. That is, edge
(i3 , ia) ∈ Πi for either ia = i1 , ia = i2 , or ia = i3 . So w

(3)
ii4

are w
(3)
iia

are calculated. Continuing in this way, since i has
ni neighbors we can get ni − 1 linearly independent vectors.
Thus, with such construction of L(i, :) by Algorithm 1, if Πi is
connected, then L(i, :) can span the (ni − 1)-dimensional linear
subspace. �

Proof of Theorem 5.1: Suppose the graph G(k) switches at
k0 = 0, k1 , k2 , . . .. We are always able to find a τM large enough
such that

ki+1 − ki ≤ τM for all i = 0, 1, 2, . . .

If after some time there is no more switching, we can partition
[ki, ki+1) artificially.

Fig. 15. An example for switching instants.

Suppose now every sensor node is jointly 2-reachable from
A and Πi(k) is jointly connected. Then by the definitions there
exits K > 0 such that for all k in the union graph G([k, k +
K)) every sensor is 2-reachable from A, and the union graph
Πi([k, k + K)) is connected.

Let

δ = K + 1.

For any k, without loss of generality, let

k ∈ [km , km+1 − 1], and k + δ − 1 ∈ [kh , kh+1 − 1].

Take Fig. 15 as an example. In the example, k = 3 and K = 6.
As a result, k ∈ [k1 , k2 − 1], and k + δ − 1 ∈ [k3 , k4 − 1].

Define

B(k) := L(km ) + · · · + L(kh).

For almost all randomly chosen complex coefficients
γ1 , . . . , γm ,

L(kl)(i, j) �= 0, l = m, . . . , h

implies

B(k)(i, j) �= 0.

It means that

G(B(k)) = G(L(km )) ∪ · · · ∪ G(L(kh)).

Indeed,

G([k, k + δ − 1]) = G(L(km )) ∪ · · · ∪ G(L(kh)) = G(B(k)).

Moreover, note that

B(k)p = 0 and B(k)1N = 0.

So B(k) is also a Laplacian matrix corresponding to G([k, k +
δ − 1]) which has the following structure

[
02×2 02×(n−2)
∗ Bs(k)

]

where

Bs(k) = Ls(km ) + · · · + Ls(kh).

From

(k + δ − 1) − k = K,

we know that in G([k, k + δ − 1]), every sensor is 2-reachable
from A, and Πi([k, k + δ − 1]) is connected for all i. It follows
from Lemma 4.1, Remark 4.1 and Lemma 4.2 that

det (Bs(k)) �= 0,

which indicates that there exists a time interval δ such that the
sum of Ls(k) across δ is nonsingular for any k. Hence, the
conclusion follows. �

To prove Theorem 5.2, we develop two technical lemmas.
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Lemma A.2: Consider the system

x(k + 1) = (I − ε(k)AH (k)A(k))x(k), (14)

where x(k) ∈ Cn and A(k) ∈ Cn×n is taken from a finite set
{A1 , A2 , . . . , AN }. If the following two conditions hold

1) for some positive δ and α, and all k,

δ−1∑

i=0

AH (k + i)A(k + i) ≥ αI, (15)

2) for each A(k) and its corresponding positive ε(k),

I − ε(k)AH (k)A(k) ≥ 0,

then the origin x = 0 of the system (14) is exponentially stable.
Proof: Consider a Lyapunov function L(x(k)) = xH (k)

x(k). Then we calculate the one step difference of L(x(k))
along the trajectories of (14). We have

Δ1L(x(k))

:= xH (k + 1)x(k + 1) − xH (k)x(k)

= xH (k)[(I − ε(k)AH (k)A(k))2 − I]x(k)

= xH (k)(−2ε(k)AH (k)A(k)

+ ε(k)2AH (k)A(k)AH (k)A(k))x(k).

By condition (2), it follows that

ε(k)2AH (k)A(k)AH (k)A(k) ≤ ε(k)AH (k)A(k),

which is equivalent to

ε(k)AH (k)A(k)(I − ε(k)AH (k)A(k)) ≥ 0.

Thus, we can obtain that

Δ1L(x(k))

≤ xH (k)(−2ε(k)AH (k)A(k) + ε(k)AH (k)A(k))x(k)

= −ε(k)xH (k)AH (k)A(k)x(k).

Similarly we have

Δ1L(x(k + 1))

:= xH (k + 2)x(k + 2) − xH (k + 1)x(k + 1)

≤ −ε(k + 1)xH (k + 1)AH (k + 1)A(k + 1)x(k + 1),

and moreover

ΔδL(x(k))

:= xH (k + δ)x(k + δ) − xH (k)x(k)

=
δ−1∑

i=0

Δ1L(x, k + i)

≤ −σ

δ−1∑

i=0

‖A(k + i)x(k + i)‖2 ,

where σ is lower bound of ε(k) as stated in condition (2). So it
can be concluded that ΔδL(x(k)) ≤ 0.

Next we consider two cases: (a) For some k′ ∈ {k, k +
1, . . . , k + δ}, x(k′) = 0; (b) x(k′) �= 0 for all k′ ∈ {k, k +
1, . . . , k + δ}.

For case (a), the state x will remain in zero.
For case (b), we will show that ΔδL(x(k)) < 0. Suppose on

the contrary that ΔδL(x(k)) = 0. That is,

A(k + i)x(k + i) = 0, i = 0, 1, . . . , δ − 1.

With (14) we get

x(k) = x(k + 1) = · · · = x(k + δ).

Thus,

ΔδL(x(k))

≤ −σ

δ−1∑

i=0

xH (k + i)AH (k + i)A(k + i)x(k + i),

= −σxH (k)

(
δ−1∑

i=0

AH (k + i)A(k + i)

)

x(k),

Furthermore, considering condition (1), we know

ΔδL(x(k)) ≤ −σα‖x(k)‖2 .

Recall that ΔδL(x(k)) = 0. So we can get that x(k) = 0, a
contradiction. Thus we obtain ΔδL(x(k)) < 0 for x(k) �= 0.

On the other hand, we can rewrite Δδ (L(x(k)) as follows.

ΔδL(x(k))

= −xH (k)Δ (A(k), . . . , A(k + δ − 1)) x(k),

where Δ(A(k), . . . , A(k + δ − 1)) is the matrix polynomial
of A(k), . . . , A(k + δ − 1). Recall that ΔδL(x(k)) < 0 for
x(k) �= 0, and that A(k)’s and ε(k)’s are taken from finite sets.
There must exist a positive γ such that

Δ(A(k), . . . , A(k + δ − 1)) ≥ γI, ∀k

which leads to

ΔδL(x(k)) ≤ −γ‖x(k)‖2 .

That is, along all trajectories of (14), the Lyapunov function
satisfies

ΔδL(x(k))
L(x(k))

≤ −γ < 0.

Therefore, L(x(k)) exponentially converges to zero. Since
L(x(k)) is quadratic, it follows that the origin x = 0 of (14)
is exponentially stable. �

Lemma A.3: Consider m matrices A1 , A2 , . . . , Am ∈
Cn×n . If rank(A1 + A2 + · · · + Am ) = n, then AH

1 A1 +
AH

2 A2 + · · · + AH
m Am is Hermitian and positive definite.

Proof: Let

B =
[
AH

1 AH
2 · · · AH

m

]H
.

It is certain that BH B = AH
1 A1 + AH

2 A2 + · · · + AH
m Am .

Note that BH B is a Hermitian matrix due to

(BH B)H = BH B.
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From the fact that

A1 + A2 + · · · + Am =
[
I I · · · I

]

⎡

⎢
⎢
⎢
⎣

A1
A2
...

Am

⎤

⎥
⎥
⎥
⎦

we have

n = rank(A1 + A2 + · · · + Am ) ≤ rank(B) ≤ n

and this implies that

rank(B) = n.

In addition, suppose that there exists a vector x ∈ Cn such
that

xH BH Bx = 0.

Then

‖Bx‖2 = 0 ⇒ Bx = 0.

Due to rank(B) = n we have x = 0, which means that for any
x �= 0 it holds that

xH BH Bx > 0.

Then the conclusion follows. �
Proof of Theorem 5.2: We can write the distributed

algorithm (13) in the matrix form as

p̂(k + 1) =
(

I − ε(k)
[

0 0
LH

s (k)La(k) LH
s (k)Ls(k)

])

p̂(k).

(16)
Note that for the anchors, p̂a(k) = pa . Then we apply the coor-
dinate transformation p̃s(k) = p̂s(k) − ps and derive

p̃s(k + 1) =
(
I − ε(k)LH

s (k)Ls(k)
)
p̃s(k). (17)

Notice that wij (k)’s are finite due to finite nodes and edges.
So Ls(k)’s are finite. According to the procedure for designing
ε(k), it holds that ε(k)’s are finite, and satisfy

I − ε(k)LH
s (k)Ls(k) ≥ 0.

So to show that p̂i(k) is exponentially convergent to pi , by
Lemma A.2, we need to show that there exist some positive δ
and α such that for all k,

δ−1∑

i=0

LH
s (k + i)Ls(k + i) ≥ αI, ∀k. (18)

Suppose the graph G(k) switches at k0 = 0, k1 , k2 , . . .. We
are always able to find a τM large enough such that

ki+1 − ki ≤ τM for all i = 0, 1, 2, . . .

If after some time there is no more switching, we can partition
[ki, ki+1) artificially.

Suppose now every sensor node is jointly 2-reachable from
A and Πi is jointly connected. Then by the definitions there
exits K > 0 such that for all k in the union graph G([k, k +
K)) every sensor is 2-reachable from A, and the union graph
Πi([k, k + K)) is connected.

Let

δ = K + 1.

In what follows, we will show that for all k

W (k) :=
δ−1∑

i=0

LH
s (k + i)Ls(k + i) ≥ αI

holds for some positive α.
For any k, without loss of generality, let

k ∈ [km , km+1 − 1], and k + δ − 1 ∈ [kh , kh+1 − 1].

Define

E(k) := LH (km )L(km ) + · · · + LH (kh)L(kh),

and

B(k) := L(km ) + · · · + L(kh).

According to the proof of Theorem 5.1, we get

det (Bs(k)) �= 0. (19)

Furthermore, E(k) has the following structure
[
∗ ∗
∗ Es(k)

]

where

Es(k) = LH
s (km )Ls(km ) + · · · + LH

s (kh)Ls(kh).

From (19) and Lemma A.3, it is true that Es(k) is Hermitian
and positive definite. From the definition of W (k), we have

W (k) = LH
s (km )Ls(km )(km+1 − k)

+ LH
s (km+1)Ls(km+1)(km+2 − km+1) + · · ·

+ LH
s (kh−1)Ls(kh−1)(kh − kh−1)

+ LH
s (kh)Ls(kh)(k + δ − kh).

Note that the lengths of all time interval appeared in the for-
mula W (k) are positive and Es(k) is Hermitian and positive
definite. So W (k) is also Hermitian and positive definite. Next
we will show that the smallest eigenvalue of W (k) is uniformly
lower bounded with respect to k. With the fact that the number
of switches during [k, k + δ − 1] is finite, and that the length
between any two consecutive switching are bounded, we then
know that all W (k)’s form a finite set. This means, the small-
est eigenvalue of W (k) is uniformly lower bounded. In other
words, there exists α > 0 such that for all k,

W (k) =
δ−1∑

i=0

LH
s (k + i)Ls(k + i) ≥ αI.

Thus, by using Lemma A.2, the conclusion follows. �
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