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Abstract—A common technical difficulty in target tracking in a wireless sensor network is that individual homogeneous sensors only

measure their distances to the target whereas the state of the target composes of its position and velocity in the Cartesian coordinates.

That is, the senor measurements are nonlinear in the target state. Extended Kalman filtering is a commonly used method to deal with

the nonlinearity, but this often leads to unsatisfactory or even unstable tracking performances. In this paper, we present a new target

tracking approach which avoids the instability problem and offers superior tracking performances. We first propose an improved noise

model which incorporates both additive noises and multiplicative noises in distance sensing. We then use a maximum likelihood

estimator for prelocalization to remove the sensing nonlinearity before applying a standard Kalman filter. The advantages of the

proposed approach are demonstrated via experimental and simulation results.

Index Terms—Target tracking, wireless sensor networks, maximum likelihood estimation, extended Kalman filtering.
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1 INTRODUCTION

RECENT advances in micro-electro-mechanical systems
(MEMS), wireless communications and networking

systems, and embedded microprocessor technologies have
made possible the massive production of inexpensive and
low-power sensors which are integrated with data collec-
tion, information processing, and wireless communication
modules in miniature sizes. A wireless sensor network
consists of a mesh of such small sensors, which are
randomly and densely deployed in the surveillance area
and form a multihop ad-hoc network system through
wireless communication. These networked sensors are able
to process sensed data locally and extract relevant informa-
tion, to collaborate with other sensors on the application-
specific task, and to provide the resultant information about
the monitored events for a number of potential applications,
ranging from battlefield monitoring and environmental
surveillance to health care [3], [4]. Target tracking is one of
the most fundamental tasks for wireless sensor networks
[1], [2], [3], [4], [5], [6], [7], [8], [9].

Most proposed approaches to track and localize targets
are based on different types of measurements, such as angle
of arrival (AOA) [6], [10], [11], time of arrival (TOA) [12],
time difference of arrival (TDOA) [7], [19] and received
signal strength (RSS) [6], [18]. Some hybrid approaches of
TOA, AOA, TDOA, and RSS have also been proposed for
target tracking and localization [13], [14], [15], [16], [17].

In target tracking using distance measurements, the
sensors which can detect the target measure their distances
to the target and transmit the information to a leader
(either a sensor or a separate computing unit). The leader
estimates (updates) the current state of the target based on
the received measurements and the target history, and
reports the tracking results to the system’s users. Since the
measurements are usually nonlinear functions in the target
state (which typically consists of the position and velocity
of the target), the extended Kalman filters (EKFs) have
been proposed in many papers for target tracking in
wireless sensor networks [20], [21], [22], [23], [24], [25]. In
[20] and [21], Brooks et al. described a self-organized
distributed target tracking technique with sensor collabora-
tions based on EKF algorithms. In [22], Kaplan presented a
global sensor selection approach which was integrated
with a decentralized bearings-only EKF tracker. Different
sensor scheduling approaches proposed for target tracking
in wireless sensor networks also employ EKF-based target
state estimators, examples include the multistep adaptive
sensor scheduling algorithm (MASS) [23], EKF-based
adaptive sensor scheduling method [24] and EKF-based
distributed adaptive multisensor scheduling scheme [25]
for energy efficiency. The resulting corresponding covar-
iance matrix of the state estimate error is further utilized to
select the next tasking sensor (s) and/or the sampling
interval for sensors.

The EKF algorithms are derived through first linearizing
the nonlinear state and measurement equations around the
latest state estimate and the predicted state, respectively,
and then applying the standard Kalman filter [42], [28].
However, a significant drawback of the EKF algorithms is
that the resulting state estimate may seriously diverge from
the actual state [26] in many applications. In target tracking
applications, target dynamics are usually linearly modeled
in the Cartesian coordinates, while the measurements are
nonlinear functions in the target state. In these cases, to
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overcome the drawback of EKF, many measurement
conversion methods have been proposed to transform the
nonlinear measurement models into linear ones and
estimate the covariances of the converted measurement
noises before applying the standard Kalman filter; see a
survey paper [27], a monograph [28], and a best linear
unbiased estimation method [29]. Significantly improved
accuracy and consistency have been reported.

In this paper, we only consider distance measurement for
its simplicity, but our proposed target tracking approach can
be extended to these different types of measurements. This
paper is motivated by two problems. First, the measurement
conversion method presented in [29] and those surveyed in
[27] assume that there is only one sensor which is able to
measure both the distance and bearing (and possibly other
parameters) of the target, whereas in a wireless sensor
network plenty of homogeneous sensors are deployed, and
often only distance measurements are available for target
tracking. For this reason, a new measurement conversion
method needs to be developed. Second, for most EKF
algorithms and measurement conversion methods, it is
assumed that measurement noises are additive only with
constant covariances. This assumption is valid only when
the target is more or less stationary and there is a fixed set of
sensors for target detecting and tracking. In most target
tracking scenarios, the target is moving and the tasking set of
sensors varies with the lapse of time. The implication of
these is that the distance between each sensor and the target
varies greatly as the target moves. As a consequence, the
assumption of constant measurement noise covariances is
grossly inaccurate because distance measurement errors
typically grow as the distance increases.

To overcome these two problems mentioned above, we
propose a new approach to target tracking in wireless
sensor networks. This approach is simple, yet effective.
First, we propose to use a new noise model for distance
measurement to account for both additive noises and
multiplicative noises. We also discuss how to numerically
obtain the necessary noise statistics using the least square
(LS) method. Second, we propose a new measurement
conversion method using maximum likelihood estimation.
This method is based on the triangulation idea, commonly
used in global positioning systems (GPS), recently ex-
tended to sensor localization in wireless sensor networks.
But here we apply maximum likelihood estimation to
obtain a good linear estimate of the target position in
the Cartesian coordinates and an approximate covariance
matrix of the converted measurement noise. Finally,
the converted measurement and noise covariance matrix
are then used in a standard Kalman filter to update the
target state estimate recursively. The key contribution of
this paper is in its proper characterization of the measure-
ment covariance (used in the Kalman filter) via a Gaussian
approximation of the localization error.

We demonstrate via simulation and experimental results
that the proposed approach performs significantly better
than the EKF approach and the approach that is purely
based only on the maximum likelihood estimation method.
Real wireless sensor network systems with homogeneous or
heterogeneous sensors, large, or small scales have been
deployed in reality for energy efficient target tracking.
VigilNet [31], implemented with 70 Mica2 motes, is
designed to track moving targets in an energy-efficient

and stealthy manner. Zhou et al. [30], consider the impact of
radio irregularity on the design of media access control
(MAC), routing, localization, and topology control proto-
cols, in a real-time implementation of wireless sensor
network testbed. Keally et al. [32] propose a multimodality
event detection framework in heterogeneous sensor net-
works, which can activate the right sensors to accuracy
detect event while significantly reducing energy consump-
tion. Different issues, e.g., radio irregularity, the false alarm
of sensors, transmission delay and packet loss, and energy
limits, have complicated the implementation and design of
real-time wireless sensor networks. In this paper, we only
consider a small-scale WSN testbed consisting of four
nodes, one base station connecting a PC, for easy
implementation in a laboratory. Some of the different
reality issues mentioned above also appeared in the
implementation of the small scale testbed, e.g., transmission
delay and packet loss. But these issues have not signifi-
cantly affected on our proposed tracking approach. To
validate our approach on a larger sensor network, simula-
tions using 100 sensors have been performed.

We note that the maximum likelihood estimation
methods are also popular for target or sensor localization
in wireless sensor networks with different types of
measurements; see, e.g., [33], [34], [35], [36], [37]. The
localization problems based on maximum likelihood esti-
mation are nonlinear optimization which is difficult to
obtain a close form solution. Various numerical methods
have also been proposed in these papers for the global
optimization solution, including multiresolution search
algorithm, and expectation-maximization (EM) like iterative
algorithm [9], [33], [34], particle swarm optimization
technique [35], etc. The iterative conjugate-gradient scheme
[5], [6] and the Newton-Raphson iterative method [8] have
also been applied to solve this nonlinear optimization
problem. Unless the initialized value of the MLE is close to
the correct solution, it is possible that these maximization
search may not find the global maxima. Because our
algorithm also utilizes Kalman predictor, much better
initialization is provided.

The remainder of the paper is organized as follows: The
target motion model, sensor measurement model, and
problem formulation are given in Section 2. The proposed
target tracking method is detailed in Section 3. Simulation
and experimental results are reported in Section 4. Conclu-
sions are reached in Section 5.

2 SYSTEM MODELS AND PROBLEM FORMULATION

For simplicity, we only consider the problem of tracking a
single target moving in a two-dimensional field covered by a
wireless sensor network. When the target moves through the
monitored area, the sensors which have detected the target
form a cluster [38], [39], [40] and one of them is selected to be
the leader which serves as the center of signal and
information processing. It is assumed that the leader knows
the position of every sensor. The cluster members measure
their distances to the target and transmit the measurements
with other information, such as its identity (ID) and the
corresponding time stamps, to the leader. It is assumed that
there is no transmission delay or packet loss. After receiving
all the measurements, the leader will compute an estimate of
the state (position and velocity) of the target.
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2.1 Target Motion Model

A target moving in a two-dimensional field is usually
described by its position and velocity in the X-Y plane

xk ¼ ½xðkÞ vxðkÞ yðkÞ vyðkÞ�T ;

where ðxðkÞ; yðkÞÞ are the position coordinates of the
target along X- and Y -axes at time tk, respectively, and
ðvxðkÞ; vyðkÞÞ are the velocities of the target along X- and
Y -directions at time tk, respectively. The following nearly-
constant-velocity (CV) model [28] is adopted to represent
the motion of the target

xkþ1 ¼ Fkxk þGkwk; ð1Þ

where

Fk ¼

1 �tk 0 0
0 1 0 0
0 0 1 �tk
0 0 0 1

2
664

3
775; Gk ¼

�t2
k

2 0
�tk 0

0
�t2k

2
0 �tk

2
6664

3
7775:

In the above, �tk ¼ tkþ1 � tk is the sampling time interval
between two successive measurement times tkþ1 and tk,
wk ¼ ½wx wy�T is a white Gaussian noise sequence with zero
mean and covariance matrix Qw, and wx and wy corre-
spond to noisy accelerations along the X- and Y -axes,
respectively. In this paper, we assume that wx is
uncorrelated with wy for simplicity, and Qw is given by

Qw ¼
�2
wx

0

0 �2
wy

" #
:

Remark 2.1. The above model for the moving target is a
standard one studied in the literatures. It does not
consider the case where the moving target follows a
given trajectory, which happens when the target travels
on a given road segment. But if such trajectory is available
as in the case when a road map is available, the system
model for the moving target can be easily modified and
we expect that our approach is still applicable.

2.2 Measurement Model

We assume that all the sensors are of the same type and
have the same noise statistics. Denote by ziðkÞ the distance
measurement to the target obtained by sensor i at time tk.
To simplify our notation, the dependence on time tk is
suppressed in the sequel, e.g., ziðkÞ is simplified to be zi.

Let ri be the true distance between sensor i and the
target, we have

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2

q
;

where ðxi; yiÞ is the known location of sensor i, and ðx; yÞ is
the unknown position of the target at time tk. The
measurement model we adopt is represented in the
following form of additive and multiplicative noises

zi ¼ ð1þ �iÞri þ ni ¼ ri þ ui; ð2Þ

where ni and �i are the additive and multiplicative
Gaussian noises of sensor i with means �n and �� and
covariances �2

n and �2
� , respectively. It is normally assumed

that these two types of noises are uncorrelated. The use of
multiplicative noise is motivated by the fact that measure-
ment error increases roughly linearly as a function of
distance for many distance sensors. Indeed, relative errors
are commonly used in accuracy specifications.

The total noise of sensor i, denoted by ui ¼ ni þ ri � �i, is
also a Gaussian noise with mean �i ¼ �n þ ri � �� and
covariance �2

i ¼ �2
n þ �2

� � r2
i , which are dependent on the

true distance ri.
According to (2), the conditional probability density

function (PDF) of the measurement zi, given ðx; yÞ, is
written as follows:

pðzijx; yÞ ¼
1ffiffiffiffiffiffi

2�
p

�i
exp �ðzi � ri � �iÞ

2

2�2
i

( )

¼ 1ffiffiffiffiffiffi
2�
p

�i
exp � ½ri � ðzi � �iÞ�

2

2�2
i

( )
:

ð3Þ

Remark 2.2. We have assumed that the sensors are of the
same type. Hence, their noise statistics are the same.
Note that we have allowed multiplicative noises. Thus,
different sensors will have different noise sizes depend-
ing on their distances to the target. Also note that our
approach can be easily extended to the case where
different noise statistics are used for different sensors.

Remark 2.3. We have assumed that there are no packet loss
and transmission delay when the measurements are sent
to the processing center. These problems can be solved by
combining the presented results and our previous works.

2.3 Problem Formulation

We assume that there are nk ðnk � 3Þ sensors have detected
the target at time tk, and all the measurements (with the
corresponding time stamps) are gathered at the leader. Let
Zk denote the measurements with the same time stamps
from all the nk sensors, that is, Zk ¼ fz1ðkÞ; . . . ; znkðkÞg. The
problem is for the leader to estimate the target state xk,
denoted by x̂kjk, given the measurements fZjg from time 0
up to and including time k.

3 TARGET TRACKING ALGORITHM

In this section, we discuss our proposed target tracking
algorithm in detail. We first explain how to establish the
noise statistics for the sensors using the least square method.
We then lay out the prelocalization algorithm using
maximum likelihood estimation. The solution to the max-
imum likelihood estimation-based localization is also given
by using a Newton iterative method. This will be followed
by a Kalman filter for recursive estimation of the target state.

3.1 Noise Statistics Computation Using Least
Squares Method

Recall the measurement model we have adopted in (2).
We need to find a way to estimate the noise statistics (i.e.,
the means and variances of the additive and multiplicative
noises) of the sensors.

We assume that all the sensors have independent and
identically distributed (i.i.d.) multiplicative and additive
noises. Then, the means and covariances of the additive
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noise and the multiplicative noise can be estimated through
experiments as follows:

Suppose we take a sensor and run m tests with different
distances between the sensor and the target. Denote the
actual distance for the ith test to be ri and we assume that ri
is known (measured through a different and accurate
method). For each ri, N measurement samples zji ,
j ¼ 1; . . . ; N , are collected, where N is a large number.

Take the empirical estimates of the mean and variance of
the measurement samples for the ith test to be

��i ¼
1

N

XN
j¼1

zji ; ��2
i ¼

1

N � 1

XN
j¼1

�
zji � ��i

�2
;

respectively, i ¼ 1; . . . ;m. Using the ergodicity of the
stationary process zji and the independence between the
additive and multiplicative noises, we have, as N !1

��i ! E
�
zji
�
¼ ri þ ri�� þ �n; ð4Þ

��2
i ! E

��
zji � E

�
zji
��2� ¼ r2

i �
2
� þ �2

n: ð5Þ

Define approximation errors as

e1ðiÞ ¼ ��i � ðri þ ri�� þ �nÞ;
e2ðiÞ ¼ ��2

i �
�
r2
i �

2
� þ �2

n

�
:

We can use the least-squares method to determine the
estimates of �� , �n, �2

� , and �2
n. That is, we minimize J1 and

J2 defined in the following equations:

J1 ¼
Xm
i¼1

e2
1ðiÞ; J2 ¼

Xm
i¼1

e2
2ðiÞ:

The minimizations of J1 and J2 are given by the following
necessary conditions:

@J1

@��
¼ 0;

@J1

@�n
¼ 0;

@J2

@�2
�

¼ 0;
@J2

@�2
n

¼ 0:

Straightforward calculations lead to the following
estimates:

�̂�

�̂n

� �
¼

Xm
i¼1

r2
i

Xm
i¼1

ri

Xm
i¼1

ri m

2
66664

3
77775

�1 Xm
i¼1

rið��i � riÞ

Xm
i¼1

ð��i � riÞ

2
66664

3
77775;

�̂2
�

�̂2
n

" #
¼

Xm
i¼1

r4
i

Xm
i¼1

r2
i

Xm
i¼1

r2
i m

2
66664

3
77775

�1 Xm
i¼1

r2
i ��2

i

Xm
i¼1

��2
i

2
66664

3
77775:

3.2 Prelocalization Using Maximum Likelihood
Estimation

We now discuss how to convert the nonlinear distance
measurements into a linear model with respect to the
position of the target in the Cartesian coordinates. We
assume that the means and covariances of the multi-
plicative noises and the additive noises have been given.
We further assume that the geometrical relation of the

sensors is such that, if measurement noises are not present,
the position of the target can be uniquely determined. Note
that with three or more sensors, this is not a problem unless
all the sensors are in a line, a case which can be easily
discounted by a careful selection of sensors. We will call
this measurement conversion process prelocalization.

Our method for prelocalization is based on maximum
likelihood estimation. Assume that there are n ðn � 3Þ
sensors which have detected the moving target at the same
time tk (which we will suppress in the following section for
simplicity) and that the measurement noises of different
sensors are mutually independent. Define Z ¼ fzi; i ¼
1; . . . ; ng. Denote by pðZjx; yÞ the jointly conditional prob-
ability density function of Z, given ðx; yÞ.

The maximum likelihood estimation-based prelocaliza-
tion is to seek the unknown target positions ðx; yÞ such that
pðZjx; yÞ is maximized. Since the noises of individual sensors
are mutually independent, we have the following equation:

pðZjx; yÞ ¼
Yn
i¼1

pðzijx; yÞ; ð6Þ

where pðzijx; yÞ is given by (3).
There is a small technical difficulty in using (3). That is,

�i and �i depend on the actual distance between the
target and sensor i, ri, which are unknown and are
related to the unknown parameters ðx; yÞ. To get around
this computation difficulty, we take the assumption that
the difference between zi and ri is very small, therefore,
�2
i can be approximately replaced by �2

zi
¼ �2

n þ z2
i � �2

� .
Then, the probability density function (3) can be approxi-
mately rewritten as

pðzijx; yÞ �
1ffiffiffiffiffiffi

2�
p

�zi
exp � ½ð1þ ��Þri � �zi�2

2�2
zi

( )
; ð7Þ

where �zi ¼ zi � �n is the calibrated measurement.

Remark 3.1. The assumption that zi and ri are close is used
only for approximating the variance �2

i ¼ �2
n þ r2

i �
2
� by

�2
n þ z2

i �
2
� which leads to (7). The induced approximation

error in the variance above will not significantly affect
the probability density function pðzijx; yÞ. In fact, it is
well known that Kalman filtering is insensitive to small
changes in the noise covariance.

Lemma 3.1. Assuming that the approximation (7) is valid, then
the maximum likelihood estimate of ðx; yÞ is given by

ð�x; �yÞ ¼ arg min
x;y

fðx; yÞ; ð8Þ

where

fðx; yÞ ¼
Xn
i¼1

½ð1þ ��Þri � �zi�2

2�2
zi

: ð9Þ

Proof. It follows from (6) and (7) that

pðZjx; yÞ ¼ 1

ð2�Þ
n
2
Qn

i¼1 �zi

� exp �
Xn
i¼1

½ð1þ ��Þri � �zi�2

2�2
zi

( )
:

ð10Þ
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Maximizing the above equation is identical to maximiz-
ing its log version:

�
Xn
i¼1

½ð1þ ��Þri � �zi�2

2�2
zi

� n
2

lnð2�Þ �
Xn
i¼1

ln�zi :

Ignoring the last two terms (which are constants), the
maximum likelihood estimate is reduced to minimize the
equation given by (9). tu
The minimization problem of (8) is numerically difficult

because fðx; yÞ is nonlinear. We propose to solve this
nonlinear optimization problem using the following New-
ton-Raphson iterative method [41]: For j ¼ 0; 1; . . . , compute

xðjþ1Þ

yðjþ1Þ

� �
¼ xðjÞ

yðjÞ

� �
� hH�1ðxðjÞ; yðjÞÞ � rfT ðxðjÞ; yðjÞÞ; ð11Þ

until

jxðjþ1Þ � xðjÞj < "; jyðjþ1Þ � yðjÞj < ";

where h is the step size (usually set to be 1),

rfðxðjÞ; yðjÞÞ ¼ @fðx; yÞ
@x

@fðx; yÞ
@y

� �
x¼xðjÞ; y¼yðjÞ

;

HðxðjÞ; yðjÞÞ ¼

@2fðx; yÞ
@x2

@2fðx; yÞ
@y@x

@2fðx; yÞ
@x@y

@2fðx; yÞ
@y2

2
6664

3
7775
x¼xðjÞ; y¼yðjÞ

;

and " > 0 is a prescribed threshold. The initial values

xð0Þ

yð0Þ

� �
¼

x̂1
kjk�1

x̂3
kjk�1

" #
;

where x̂1
kjk�1 and x̂3

kjk�1 are the first and third elements of the
one-step-ahead predicted state x̂kjk�1 of the Kalman filtering
algorithm which is given in the next section.

Although it is theoretically possible for the iterative
method not to converge to a global minimum, experimental
and simulation results show that this is rarely a problem.
Typically, only a few iterations are sufficient to get the
global minimum. The nice convergence is partly assisted by
the fact that the initial estimate of the iterative process comes
from the Kalman predictor which is typically good,
provided that the sampling time interval is not too long.

3.3 Kalman Filtering

Once the prelocalization is done, we only need to consider
the new converted measurement �zk ¼ ½ �xðkÞ �yðkÞ �T , which
has the following linear representation in the target state:

�zk ¼
1 0 0 0
0 0 1 0

� �
xk þ vk ¼ Cxk þ vk; ð12Þ

where vk is the converted measurement noise.
It remains to specify the statistics for noise vk before the

converted measurement �zk can be used in Kalman filtering.
Using Bayes rule, we have the following posterior

probability distribution of ðx; yÞ:

pðx; yjZÞ ¼ pðZjx; yÞpaðx; yÞ
pðZÞ ;

where paðx; yÞ is the prior probability density function of

ðx; yÞ known to the sensing nodes. Since we will do Kalman

prediction later, paðx; yÞ does not include any prior knowl-

edge on the target position. For this reason, we assume that

there is no a priori, knowledge where the target is, as far as

the sensing nodes are concerned. In other words, paðx; yÞ is

assumed to be uniform (i.e., constant) within the monitored

area. In view of this, pðx; yjZÞ can represented as

pðx; yjZÞ ¼ �pðZjx; yÞ;

with some � independent of ðx; yÞ. Recall from (9) and

(10) that

pðx; yjZÞ ¼ �

ð2�Þ
n
2
Qn

i¼1 �zi
expð�fðx; yÞÞ;

and note that, after prelocalization, we have the following

approximation equation:

fðx; yÞ � fð�x; �yÞ þ 1

2

x� �x
y� �y

� �T
Hð�x; �yÞ x� �x

y� �y

� �
; ð13Þ

where Hð�x; �yÞ is the Hessian matrix given by

Hð�x; �yÞ ¼

@2fðx; yÞ
@x2

@2fðx; yÞ
@x@y

@2fðx; yÞ
@y@x

@2fðx; yÞ
@y2

2
664

3
775
x¼�x;y¼�y

: ð14Þ

In (13), we have neglected the higher order terms.
Using the above approximation, we have

pðx; yjZÞ � � exp � 1

2

x� �x
y� �y

� �T
Hð�x; �yÞ x� �x

y� �y

� � !
;

for some constant �. That is, vk is approximately a Gaussian

distribution with zero mean and covariance matrix

Rk ¼ H�1ð�xðkÞ; �yðkÞÞ: ð15Þ

The analysis above is summarized in the following lemma.

Lemma 3.2. Assuming that the prior probability density function

for the position of the target, paðxðkÞ; yðkÞÞ, is uniform, the

converted measurement equation after prelocalization, �zk, can

be approximated by (12) and the associated converted noise vk
is Gaussian white with zero mean and covariance matrix Rk

given in (15).

Our final step is to utilize the Kalman filtering algorithm

to update the target state using the converted measure-

ments and associated noises. Its expression is standard [42]

and given below

x̂kþ1jk ¼ Fkx̂kjk; ð16Þ

Pkþ1jk ¼ FkPkjkFT
K þGkQwG

T
k ; ð17Þ

x̂kþ1jkþ1 ¼ x̂kþ1jk þKkþ1ð�zkþ1 � Cx̂kþ1jkÞ; ð18Þ

Pkþ1jkþ1 ¼ Pkþ1jk �Kkþ1Skþ1K
T
kþ1; ð19Þ
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Skþ1 ¼ CPkþ1jkC
T þRkþ1; ð20Þ

Kkþ1 ¼ Pkþ1jkC
TS�1

kþ1: ð21Þ

The initial estimates are given as x̂0j0 ¼ x̂0 and P0j0 ¼ P0 for
some large positive definite P0.

4 EXPERIMENTAL RESULTS

In this section, we use simulation and experimental results
to compare the proposed approach with the extended
Kalman filtering approach for target tracking. We will also
compare our approach with the approach that is purely
based only on the maximum likelihood estimation method
(i.e., without Kalman filtering). To this end, a small wireless
sensor network testbed is set up using off-the-self products
from Crossbow.

4.1 Testbed Setup

Our testbed is shown in Fig. 1, which consists of four
Cricket nodes [43] and a base station. The base station is
built up using an MIB510CA serial interface board and a
Cricket node. The base station serves as the information
processing center which receives measurements from the
four Cricket nodes and transmits the tracking results to a
computer. An Amigo robot carrying a Cricket node is used
as the moving target.

Cricket [43] nodes make use of the time difference of
arrival of a radio frequency (RF) signal and an ultrasonic
pulse to evaluate the distance between nodes. The target
node S0 anchored on the robot periodically broadcasts its
identity and time stamp information through the RF
channel and transmits an ultrasonic pulse at the same time.
Other sensor nodes within the radio range of S0 listen to the
RF signal, and upon receiving the first few bits of the signal,
start the ultrasound detector to detect the corresponding
ultrasonic pulse. When detected, the distance to the robot is
computed by counting the time difference of arrival
between the RF signal and the ultrasonic pulse. The sensor
nodes then transmit the distances and other information,
including their ID and the time stamps received from S0, to
the base station for data processing.

The monitored field covered by the testbed is 2 m�
2 m with the coordinate from ð0; 0Þ to ð2; 2Þ. The four
sensor nodes are fixed at the four corners of the square
field. The detection range of every sensor node is greater

than 2
ffiffiffi
2
p

m, so the full area can be covered by these four
sensors. The based station has the knowledge of the
positions of the four sensor nodes and estimates the target
state only when it receives three or more distances with
the same time stamps.

4.2 Experimental Results

We first run many offline experiments to test the sensors’
noise statistics using the least-squares method discussed in
Section 3. The mean and covariance of the additive noise are
found to be �n ¼ �0:0386 and �2

n ¼ 7:97� 10�5, respec-
tively, and the mean and covariance of the multiplicative
noise are given by �� ¼ 0:0174 and �2

� ¼ 2:916� 10�4,
respectively. This shows that the multiplicative noise is
not negligible in comparison with the additive noise.

The target node broadcasts once every 0.2 seconds
approximately. The robot first moves along a circle
centered at ð1:00 m; 0:65 mÞ with radius 0:35 m, then moves
along another circle centered at ð1:00 m; 1:35 mÞ with the
same radius. The initial position of the robot is
ð1:00 m; 1:00 mÞ, and the angular velocity is programmed
to be �0:122 rad=s when moving along the first circle and
0:122 rad=s when moving along the second circle. For this
motion, the process noise wk corresponds to the variable
acceleration of the target and can be approximated by a
white Gaussian sequence with zero mean and covariance
matrix of Qw ¼ ½0:0027

0:0
0:0

0:0027�.
In the experiments the initial state estimate and the

corresponding covariance matrix for the proposed target
tracking approach and the extended Kalman filtering
approach are chosen to be

x̂0j0 ¼ 1:0 0:0428 1:0 0:0½ �T ; P0j0 ¼ 0:01 � I4;

where In is an n� n identity matrix. But the variance for the
distance measurement noises used in the extended Kalman
filtering approach also depend on the true distance from the
target to sensor i, ri as well. In these experiments and the
following simulations, the variance Rk of the measurement
noises is approximately computed as

Rk ¼ Rn þR� � ziðkÞ2;

where ziðkÞ is the distance measurement of sensor i at time
instant tk.

The target tracking results are shown in Figs. 2, 3, and 4.
The green curves are the programmed target trajectories of
the moving target, and the red ones are the estimated target
trajectories using different approaches. The results demon-
strate that the proposed target tracking method is more
accurate than the other two methods.

4.3 Simulation Results

Since the tracking errors are random in nature and it is
not practical to repeat the experiments many times, we try
to compare our proposed approach with the extended
Kalman filtering approach and the maximum likelihood
estimation approach for target tracking again using Monte
Carlo simulation.

In the simulations, a wireless network consisting of
100 sensor nodes is deployed to monitor road segments
from GoogleMap as shown in Fig. 5. The sensors cover the
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Fig. 1. Wireless sensor network testbed consisting of four sensor nodes,
a base-station connecting to a PC, and a robot carrying a node as the
moving target.



road segments from point A to C and D through B with a
width of 4 m. Every sensor measures its distance to the
target and transmits the measurement to a fusion center
(or a leader) if the distance is less than or equals to 3 m,
that is, the detecting range of the sensor is 3 m. We
assume that the sensors’ noise biases are removed (which
does not affect the tracking performance). Therefore, the
additive noise is Gaussian and white with zero mean and
covariance of 0.001, and the multiplicative noise is
Gaussian and white with zero mean and covariance of
0.001 for every sensor. The sensors detect the target every
0.1 seconds. The target moves along the road with initial
state given as x0 ¼ ½0:0 1:0 2:0 0:3�T . The covariance matrix

Qw of the target noisy acceleration is given by Qw ¼
diagf0:025; 0:01g when the target moves from A to B or C,
and Qw ¼ diagf0:01; 0:025g when moves from B to C.

The same initial state estimate, x̂0j0, and its correspond-
ing error covariance matrix, P0j0, are used for the
proposed tracking approach and the extended Kalman
filtering method, given as x0j0 ¼ x0 þ 0:1 � randnð4; 1Þ and
P0j0 ¼ 0:01I4. The covariance matrix Qw of the process
noise used in the two target tracking approaches is given
as Qw ¼ 0:025I2. The number of runs used in the Monte
Carlo simulation is 100.

The simulation results are shown in Figs. 2, 3, 4, and 5.
When the target moves from A to B then to D, the true
trajectory and the estimated one using the three tracking
approaches are illustrated in Fig. 6, and the root-mean-
square errors (RMSEs) of the three tracking approaches are
compared in Fig. 7. The RMSEs of the position estimate
improves approximately by 15.12 percent using the pro-
posed method compared to the extended Kalman filtering
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Fig. 2. Target tracking using proposed method: The red line is the
estimated trajectory using the proposed method, the green line is the
programmed trajectory, and the four blue circles are sensor nodes.

Fig. 3. Target tracking using extended Kalman filtering: The red line is
the estimated trajectory using EKF, the green line is the programmed
trajectory, and the four blue circles are sensor nodes. Fig. 5. Road segment in GoogleMap.

Fig. 4. Target tracking using maximum likelihood estimation only: The
red line is the estimated trajectory using MLE only, the green line is the
programmed trajectory, and the four blue circles are sensor nodes.



method, and 17.19 percent compared to the maximum
likelihood estimation method alone.

When the target moves from A to C through B, the true
trajectory and the estimated ones using the three approaches
are illustrated in Fig. 8 and the RMSEs of the three tracking
approaches are compared in Fig. 9. The RMSE of the
position estimate improves approximately by 14.87 percent
using the proposed method compared to the extended
Kalman filtering method, and 31.19 percent compared to the
maximum likelihood estimation method alone.

We note that the proposed method gives a better
estimate than the extended Kalman filter-based method
and the maximum likelihood estimation-based method for
most of the tracking process. And also the extended
Kalman filter-based method is more accurate than the
maximum likelihood estimation-based method for most of
the time. This is because the maximum likelihood estima-
tion-based method only utilizes the sensing information
but the two other methods further utilize model informa-
tion of the target. When the target turns, the original model
is not accurate. In this case, the extended Kalman filter-
based method and our proposed method are getting less
accurate than the maximum likelihood estimation-based
method, but our proposed method is still more accurate
than the extended Kalman filter-based method. If we have

an accurate model to describe the turns of the target, we
expect that our method can achieve more accurately than
the maximum likelihood estimation-based method.
Furthermore, if the position estimation is the primary
interest (rather than the whole state), it may be advanta-
geous to use the maximum likelihood estimator initially
and switch to the proposed estimator later when the target
turns, which can be detected using the methods for target
maneuver detection, see [44], [45] for details.

5 CONCLUSION

In this paper, we have presented a new approach for target
tracking in a wireless sensor network by combining
maximum likelihood estimation and Kalman filtering using
the distance measurements. The maximum likelihood
estimator is used for prelocalization of the target and
measurement conversion to remove the measurement
nonlinearity. The converted measurement and its associated
noise statistics are then used in a standard Kalman filter for
recursive update of the target state. The proposed approach
is very simple and yet effective. Simulation and experi-
mental results have shown that the proposed approach
improve the tracking accuracy compared to the commonly
used extended Kalman filtering approach.
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Fig. 7. RMSE of the three tracking approach when the target moves from
A to B, then to D.

Fig. 8. The true and estimated trajectories of the target when it moves
from A to C through B.

Fig. 9. RMSE of the three tracking approaches when the target moves
from A to C through B.

Fig. 6. The true and estimated trajectories of the target when it moves
from A to B, then to D.
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